Co-funded by the Erasmus+ Programme of the European Union

Module CLIMATE CONTROL EQUIPMENT IN GREENHOUSES

Motivación

Snoc 1

Heating

Cooling

Indoor Climate

Production

Quality Waste

Timetable

08/01/24

Competencies

Climate Management

Case Estudies

Equipment

Improvement Estrategies

Artificial lighting

Co-funded by the Erasmus+ Programme of the European Union

Module CLIMATE CONTROL EQUIPMENT IN GREENHOUSES

Lesson 3:

Microclimate Control In Greenhouse - Artificial Lighting

Co-funded by the Erasmus+ Programme of the European Union

Module 4: CLIMATE CONTROL EQUIPMENT IN GREENHOUSES

Lesson 3:

Microclimate Control In Greenhouse - Artificial Lighting

Theme 3.1:

Functions of Artificial Light in Plants

Overview

Photoshyntesis

Photomorphogenesis

Solar Radiation

Secondary Metabolites

Artificial Lighting

4. Secondary metabolites

NEGHTR

Phtosyntesis

Photosynthetic Biochemistry

 $6 \text{ H}_2\text{O} + 6 \text{ CO}_2 \longrightarrow \text{C}_6\text{H}_{12}\text{O}_6 + 6 \text{ O}_2$

Morphology

2. Photomorph.

3. Solar radiation

4. Secondary metabolites

08/01/24

Photomorphogenesis Germination

Photomorphogenesis -----> Growth

Reproduction

9

3. Solar radiation

NEGHTRA

NEGHTRA

Secondary Metabolites

2. 🔪

3.

NEGHTRA

08/01/24

Artificial Lighting

12

2.

3.

Photomorph.

Solar radiation

Secondary metabolites

Artificial Lighting

Light duration

Artificial Lighting

2. V Photomorph.

3			
Sola	ar ra	dia	tion

Type of light	Plant responses	
Red, Far-red	Germination, De-etiolation, Shade avoidance, Inhibition of stem and petiole elongation, Leaf expansion and flattening, Circadian rhythms, Flowering, Branching.	
Green	De-etiolation, Inhibition of stem and petiole elongation, Leaf expansion, Circadian rhythms, Flowering, Flavonoid biosynthesis. Response to shade by B/G photoperception.	
Blue	Leaf flattening, Phototropism, Stomatal opening, Chloroplast relocation.	
UV-A	Circadian rhythms, Flowering.	
UV-B	De-etiolation, Flavonoid biosynthesis.	

Artificial Lighting

2. V Photomorph.

Solar radiation

Secondary metabolites

3.

Light composition

Summary

- The characteristics of specific lighting influence the development of plants.
 - In the greenhouses there are three ways to modify the characteristics of the light to improve the production and quality of the crops: changes in the intensity, the duration and the composition of the light.

Co-funded by the Erasmus+ Programme of the European Union

Module CLIMATE CONTROL EQUIPMENT IN GREENHOUSES

Lesson 3:

Microclimate Control In Greenhouse - Artificial Lighting

Theme 3.2:

Artificial Light Sources

Artificial Light Sources

08/01/24

Lamp features

- Luminous flux
- Luminous efficacy
- Color rendering index, CRI
- Run-up time
- Lifetime
 - Average Rated Life
 - Useful Lifetime

Im Im/W % min h

08/01/24

1. Traditional Light Sources

2. Light Emitting Diodes, LEDs

3. HPSs vs LEDs

Incandescent light bulbs

- **Short lifetime: 1000 hours**
- **V CRI: 100%**

Traditional Light Sources

Light Emitting Diodes, LEDs

HPSs vs LEDs

1. Traditional Light Sources

08/01/24

Incandescent light bulbs

Halogen bulbs

- Luminous efficacy: 10 35 lm/W
- Lifetime: 2000 hours
- **V CRI: 100%**

Discharge in a tube

Possible energy states of the electron

E.a. Absorbed energy

E.e. rad. Energy emitted by radiation

1. Traditional Light Sources

High pressure sodium-vapor lamps

Low pressure sodium-vapor lamps

- Mercury-vapor lamps
- Metal-halide lamps
- Fluorescent lamps

ight Sources

Light Emitting

Diodes. LEDs

IPSs vs LEDs

1. Traditional Light Sources

2. Light Emitting Diodes, LEDs

3. HPSs vs LEDs

High pressure sodium-vapor lamps HPS

- Luminous efficacy: 130 lm/W
- Lifetime: 12,000 hours
- **CRI: 25 %**

08/01/24

Low pressure sodium-vapor lamps HPS

- Luminous efficacy: 200 lm/W
- Lifetime: 8,000 hours
- ✓ CRI ≈ 0 %

transport parts

Mercury-vapor lamps

- Luminous efficacy: 40 60 lm/W
- Lifetime: 8,000 hours
- **CRI: 40-45** %

Metal halide lamps

- Luminous efficacy: 60-96 lm/W
- Lifetime: 10,000 hours
- V CRI: 65 85 %

- Sodium: yellow
- > Thallium: green
- Indium: blue, red

Fluorescent lamps

- Luminous efficacy: 40- 90 lm/W
- Lifetime: 6,000 hours
- ✓ CRI: 80 90 %

Traditional Light Sources

Light Emitting Diodes, LEDs

HPSs vs LEDs

Light Emitting Diodes, LEDs

1. Traditional Light Sources

08/01/24

Epoxy lens/case
Wire bond
Reflective cavity
Semiconductor die
Anvil
Post
Leadframe
Flat spot
Anode
Catode

Light color	ΔV (V)	Semiconductor materials
IR	ΔV < 1.63	GaAs, AlGaAs
	1.63 < ∆V < 2.03	AlGaAs, GaAsP AlGaInP, GaP
	$2.10 < \Delta V < 2.18$	GaAsP, GaP
	1.9 < ΔV < 4.0	GaP, AlGaP InGaN, GaN
	2.48 < ∆V < 3.7	ZnSe InGaN
	2.76 < ΔV < 4.0	InGaN
UV	3 < ΔV < 4.1	InGaN

- Luminous efficacy: 70 130 lm/W
- V Lifetime: 50,000 hours
- **CRI: 80 %**

Advantages:

- High level of control
- **No toxic elements**
- LEDs radiate very little heat in the form of IR

Traditional Light Sources

iodes. LEDs

HPSs vs LEDs

1. Traditional Light Sources

2. Light Emitting Diodes, LEDs

3. HPSs vs LEDs

35

LEDs vs HPSs

08/01/24

Summary

- On a large scale, HPS provides a wider and more even light distribution that can cover a larger production area than LEDs.
- LEDs can be used inside the crop, improving production, and optimized for specific production conditions.

Co-funded by the Erasmus+ Programme of the European Union

Module CLIMATE CONTROL EQUIPMENT IN GREENHOUSES

Lesson 3:

Microclimate Control In Greenhouse - Artificial Lighting

Theme 3.3:

Effect of Artificial Lighting on Pest and Diseases

Lighting protects crops from pests and diseases

Protection by changes in the amount of light

2. Amount of Light

Protection by changes in the amount of light

08/01/24

2. Amount of Light

3. Light compositie

08/01/24

2. Amount of Light

3. Light Compositio

08/01/24

08/01/24

Summary

- Artificial lighting allows to improve production, quality and favors the integrated control of pests and diseases.
- Artificial lighting techniques can contribute to improving the management of crops in order to move towards the sustainability of plant production.

Summary

- Quiz to Improve Knowledge:
- Functions of Artificial Light in Plants:
- Artificial Light Sources:
- Effect of Artificial Lighting on Pests and Diseases in greater detail:

References

- Von Zabeltitz, C. Integrated Greenhouse Systems for Mild Climates. 2011. Springer. ISBN: 978-3-642-14582-7.
- Castilla, N. Greenhouse Technology and Management. 2013. CABI. ISBN : 978-1-78064-103-4.
- Stangellini, C., van T'Ooster and Heuveling, E. Greenhouse horticulture: Technology for optimal crop production. 2019. WAP. ISBN: 978-90-8686-329-7.

