RAREFACTION (APAI $\Omega \Sigma H$)

Rarefaction (apoí $\omega \varnothing \eta$)
$\delta ı \rho \theta \omega ́ v \varepsilon \imath \tau \frac{\tau}{} \alpha \rho \imath \theta \mu o ́ ~ \varepsilon \iota \delta \omega ́ v$ $\sigma \varepsilon \sigma \chi \varepsilon ́ \sigma \eta \mu \varepsilon \tau о \mu \varepsilon ́ \gamma \varepsilon \theta o \varsigma \tau о v \delta \varepsilon i ́ \gamma \mu \alpha \tau о \varsigma$

Мıкро́ $\delta \varepsilon \dot{́} \gamma \mu \boldsymbol{\gamma}$
6 غ́̇̇ๆ
$12 \dot{\alpha} \tau о \mu \alpha$

$$
\begin{aligned}
& S 1=3 \\
& S 2=3 \\
& S 3=2 \\
& S 4=2 \\
& S 5=1 \\
& S 6=1
\end{aligned}
$$

 10

1

N Total sample size
S Number of Species
n standard sample size used for comparison
$\mathbf{n}_{\mathbf{i}}$ number of individuals in the ${ }^{\text {th }}$ species
$\mathbf{N} \ggg \mathbf{n}$

$$
\binom{N}{n}=\frac{N!}{n!(N-n)!}
$$

$$
E\left(S_{i}\right)=\sum_{i=1}^{S}\left(1-\frac{\binom{N-n_{i}}{n}}{\binom{N}{n}}\right)
$$

$$
\mathrm{N}!=1 * 2 * 3 * 4 * \ldots * \mathrm{n}
$$

$$
E\left(S_{i}\right)=\sum_{i=1}^{s}\left(1-\frac{\binom{N-n_{i}}{n}}{\binom{N}{n}}\right)
$$

Apı $\theta \mu \eta \tau \eta ́ \varsigma:$ о $\alpha \rho \imath \theta \mu$ ós ó $\lambda \omega v \tau \omega v$
 то ε ع́́óos

Пароvонабтч̧́: о $\alpha \rho ı \theta \mu$ о̧́ ó $\lambda \omega \nu \tau \omega \nu$ $\delta v v \alpha \tau \omega ́ v ~ \sigma v v \delta v \alpha \sigma \mu \dot{\omega} v \alpha v \alpha ́ \mathbf{n}$

A B
1 Formula Description (Result)
$2=\mathrm{FACT}(5) \quad$ Factorial of 5 , or $(1 * 2 * 3 * 4 * 5=120)$
$3=\mathrm{FACT}(3.9) \quad$ Factorial of the integer of $3.9(1 * 2 * 3=6)$
$4=\mathrm{FACT}(0) \quad$ Factorial of $0(=1)$
$5=F A C T(-1) \quad$ Negative numbers cause an error value (\#NUM!)
$6=\mathrm{FACT}(1) \quad$ Factorial of $1(=1)$

A

1 Formula
$2=\operatorname{COMBIN}(8,2)$

B

Description (Result)

Possible two-person teams that can be formed from 8 candidates (28)

$\underline{E i \delta o c S i}$	B. AMEPIKH	Kеvт. АМЕРІІН	APIENTINH
S_{1}	12		
S_{2}	5		
S_{3}	4	33	
S_{4}	3	32	
S_{5}	1	34	
S_{6}		33	
\boldsymbol{S}_{7}		Ібонйряı	82
\boldsymbol{S}_{s}			
S_{9}			7
S_{10}			5
S_{11}			2
S_{12}			1
Eóvodo			
${ }_{\text {Aroun }} \mathbf{N}$	25	132	106

$$
E\left(S_{i}\right)=\sum_{i=1}^{S}\left(1-\frac{\binom{\mathrm{N}-n_{i}}{n}}{\binom{\mathrm{~N}}{n}}\right)
$$

ェYГKPILH AIMNH Σ K．AMEPIKH（132）ME AIMNH B．AMEPIKH（25）

Species	N	n	n_{i}	$\mathrm{N}-\mathbf{n}_{\mathbf{i}}$	Fraction		
						$\begin{aligned} & \text { APXIKH } \\ & \text { ミYMMETOXH 工TO } \\ & \text { SEITMA } \end{aligned}$	1－K入д́бر α
S3	132	25	33	99	0，0003	1 （100\％）	0，9997
S4	132	25	32	100	0，0004	1 （100\％）	0，9996
S5	132	25	34	98	0，0002	1 （100\％）	0，9998
S6	132	25	33	99	0，0003	1 （100\％）	0，9997
4 Eídך			132		EYNOAO	4	3，999

$$
E\left(S_{i}\right)=\sum_{i=1}^{S}\left(1-\frac{\binom{\mathrm{N}-n_{i}}{n}}{\binom{\mathrm{~N}}{n}}\right)
$$

ЕYГKPILH AIMNH亡 K．AMEPIKHさ（132）ME AIMNH APTEBTINHさ（25）

Species	N	n	ni	N－ni	K入и́б血	1－K χ^{\prime} ¢ $\mu \alpha$
S7	106	25	82	24	0	1
S8	106	25	9	97	0，0794	0，9206
S9	106	25	7	99	0，1427	0，8573
S10	106	25	5	101	0，2528	0，7472
S11	106	25	2	104	0，5822	0，4178
S12	106	25	1	105	0，7642	0，2358
					EYNOAO	4，18

