An introduction to Linear Regression with R

AUA.R community

Linear Regression – Overview I

• Linear regression is used to predict the value of an outcome variable *Y* based on one or more input predictor variables *X*.

$$Y = \beta_1 + \beta_2 X + \epsilon$$

• We have data and we estimate unknown β that best fit the data. Then we use this formula to estimate the value of the response *Y*, when only the predictors (*Xs*) values are known.

Linear Regression – Example I

A REAL EXAMPLE

The case study "SAT and College GPA" contains high school and university grades for 105 computer science majors at a local state school. We now consider how we could predict a student's university GPA if we knew his or her high school GPA.

Figure 3 shows a scatter plot of University GPA as a function of High School GPA. You can see from the figure that there is a strong positive relationship. The correlation is 0.78. The regression equation is

```
University GPA' = (0.675) (High School GPA) + 1.097
```

Therefore, a student with a high school GPA of 3 would be predicted to have a university GPA of

University GPA' = (0.675)(3) + 1.097 = 3.12.

Figure 3. University GPA as a function of High School GPA.

Linear Regression – Example II

Figure 1.3 "Best Fitting" Regression Line

Linear Regression – Types

Simple Linear Regression with R

Go to linear_regression_code.R

Multiple Linear Regression with R

Are a person's brain size and body size predictive of his or her intelligence?

Interested in answering the above research question, some researchers (Willerman, et al, 1991) collected the following data (iqsize.txt \blacksquare) on a sample of n = 38 college students:

- Response (y): Performance IQ scores (PIQ) from the revised Wechsler Adult
 Intelligence Scale. This variable served as the investigator's measure of the
 individual's intelligence.
- Potential predictor (x₁): Brain size based on the count obtained from MRI scans (given as count/10,000).
- Potential predictor (x2): Height in inches.
- Potential predictor (x₃): Weight in pounds.

Regression resources I

An R Companion to Applied Regression

by Dr. John Fox, Professor Harvey Sanford Weisberg

Synopsis

This is a broad introduction to the R statistical computing environment in the context of applied regression analysis. It is a thoroughly updated edition of John Fox's bestselling text An R and S-Plus Companion to Applied Regression (SAGE, 2002). The **Second Edition** is intended as a companion to any course on modern applied regression analysis. The authors provide a step-by-step guide to using the high-quality free statistical software R, an emphasis on integrating statistical computing in R with the practice of data analysis, coverage of generalized linear models, enhanced coverage of R graphics and programming, and substantial webbased support materials.

car package

Regression resources II

• alr3 package

Regression resources II

- http://r-statistics.co/Linear-Regression.html
- http://tutorials.iq.harvard.edu/R/Rstatistics/R statistics.html