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When confronted with water limitation, plants actively reprogram their metabolism and growth. Recently, it has become clear
that growing tissues show specific and highly dynamic responses to drought, which differ from the well-studied responses in
mature tissues. Here, we provide an overview of recent advances in understanding shoot growth regulation in water-limiting
conditions. Of special interest is the balance between maintained growth and competitiveness on the one hand and ensured
survival on the other hand. A number of master regulators controlling this balance have been identified, such as DELLAs and
APETALA2/ETHYLENE RESPONSE FACTOR-type transcription factors. The possibilities of engineering or breeding crops that
maintain growth in periods of mild drought, while still being able to activate protective tolerance mechanisms, are discussed.

Due to their sessile lifestyle, plants are continuously
exposed to changing environmental conditions that
could potentially threaten survival. Therefore, complex
mechanisms have evolved to accurately monitor the
environment and very dynamically reprogram me-
tabolism and growth. Water availability, which can be
constrained by drought, salinity, or freezing, is one of
the major factors limiting plant growth and develop-
ment in agricultural settings (Boyer, 1982). For cereal
crops, drought is the most important abiotic stress
component reducing yield (Araus et al., 2002). A recent
example is the extreme drought that affected 80% of
cultivated land in the United States in 2012 and re-
duced yields of maize (Zea mays) by 27.5% and of
soybean (Glycine max) by 10%, causing enormous
economic damage (USDA, 2013). The effects of water
limitation will likely worsen in the coming decades
due to climate change and the growing scarcity of
fresh water available for irrigation, mostly caused by
urbanization and the depletion of aquifers, which are
currently supplying water to grow food for at least 400
million people in India and China (Jury and Vaux,
2005; Pennisi, 2008). Although selection for high yield
potential has also improved yields under water-
limiting conditions, especially for mild to moderate

drought, there still is a large “yield gap” that is diffi-
cult to tackle with classical phenotype-driven breeding
(Cattivelli et al., 2008).

Given its importance for agriculture, the effects of
drought on plant development have been extensively
studied in the past decades. This has significantly
contributed to our understanding of physiological
and molecular responses to water limitation. In short,
mechanisms for dealing with low water availability
can be divided into two major categories: stress
avoidance and stress tolerance (Verslues et al., 2006;
Lawlor, 2013). The aim of stress avoidance mecha-
nisms is to balance water uptake and water loss. Water
uptake is enhanced by the accumulation of solutes to
lower the tissue water potential and by improving root
growth, and water loss through evaporation is limited
by closing stomata, restricting shoot growth, and ac-
celerating leaf senescence. Stress tolerance mechanisms
are aimed at protecting against cellular damage when
the stress becomes too severe and stress avoidance
mechanisms are no longer sufficient. These mech-
anisms include detoxification of reactive oxygen spe-
cies (ROS) and the accumulation of protective proteins,
such as LATE EMBYOGENESIS ABUNDANT (LEA)
proteins, and solutes such as Pro, which has a dual role
as both osmolyte and osmoprotectant. Both avoidance
and tolerance responses are mainly orchestrated by
abscisic acid (ABA), although ABA-independent mecha-
nisms involving DROUGHT-RESPONSIVE ELEMENT-
BINDING (DREB)-type proteins play a role as well
(for review, see Nakashima et al., 2009).

Inhibition of shoot growth, both directly through an
active response and indirectly by stomatal closure, is
an integral part of improving water balance and stress
tolerance, aimed at ensuring plant survival by limiting
water loss. However, if the stress is only temporary,
limiting growth too extensively can lead to a compet-
itive disadvantage and unnecessary yield losses; on the
other hand, continued growth can threaten survival
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when water limitation turns out to be long and severe.
Therefore, the balance between growth and survival is
tightly regulated, and specific adaptations have evolved
to allow growth under drought conditions (Fig. 1). The
importance of this balance is illustrated by the finding
that DREB2A, a pivotal regulator of water limitation
responses, is tightly repressed in developing tissues by
GROWTH-REGULATING FACTOR7, a member of a
family of important leaf growth regulators (Kim et al.,
2003), to avoid the highly detrimental effects of stress
responses on growth (Kim et al., 2012).
While altering the expression of regulators of drought

responses has often succeeded in enhancing drought
tolerance, at least in laboratory conditions, this usually
comes at the cost of growth inhibition, resulting in a
significant yield penalty (for review, see Yang et al.,
2010). Similarly, breeding for enhanced water use ef-
ficiency can lead to impaired plant productivity (Blum,
2009). Moreover, lines that show enhanced survival
under severe stress do not exhibit improved growth
under milder stress conditions, suggesting that both
processes are regulated by different mechanisms
(Skirycz et al., 2011c). In recent years, major advances
have been made in the elucidation of mechanisms
regulating shoot growth under water-limiting condi-
tions, which is the subject of this review. We will fo-
cus on studies that profile growing shoot tissues
subjected to controlled physiologically relevant stress
levels, preferably combined with growth measure-
ments. First, methods to study growth under stress
conditions and general features of growth regulation
will be discussed, followed by a detailed analysis of
the effects of water limitation on cell proliferation and
cell expansion, the two main processes driving plant
growth. A brief section will then be devoted to stress
tolerance mechanisms in growing leaves. Interest-
ingly, common mechanisms have been identified
that regulate both growth and tolerance, which will

be highlighted in a separate section. Understanding
how growth and survival are balanced is obviously of
great agricultural importance, and in the final section,
we discuss the practical perspectives of this line of
research. This review will focus on Arabidopsis (Arabi-
dopsis thaliana) and common crop species; extremely
drought- or salt-tolerant species were not included, as
these usually have very specific adaptations that can-
not be generalized.

METHODS TO STUDY WATER LIMITATION

Much of our knowledge on the effects of water
limitation comes from early studies exposing plants to
severe dehydration, achieved, for instance, by cutting
off leaves and leaving them to dry on the bench or
by withholding water from plants for weeks until they
show severe wilting. Alternatively, osmotic shock was
used, realized by transferring plants to solutions con-
taining high concentrations (more than 100 mM) of os-
motica such as mannitol or polyethylene glycol (PEG).
While these types of experiments have substantially
increased our knowledge of stress physiology and
molecular responses, they may not reflect physiologi-
cal conditions that occur in the field (Verslues et al.,
2006; Lawlor, 2013). Therefore, new methods have been
developed. For short-term responses, in vitro systems in
which plants are transferred to low levels of osmotica
allow us to easily study very early responses (Skirycz
et al., 2011a). While there is an ongoing debate about
the relevance of osmotica (for review, see Verslues et al.,
2006), their use avoids many of the problems associated
with drought experiments on soil-grown plants (for
review, see Lawlor, 2013). To address some of these
problems, automated watering and phenotyping sys-
tems have been built, such as PHENOPSIS (Granier
et al., 2006) and WIWAM (Skirycz et al., 2011c). These

Figure 1. The balance between stress
tolerance and maintained growth. In re-
sponse to water limitation, stress avoid-
ance and tolerance mechanisms are
activated to ensure survival in case the
stress is prolonged or becomes more
severe, resulting in growth limitation
and a potential competitive disadvan-
tage. However, several adaptations allow
plants to balance survival and continued
growth depending on the stress level.
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systems compensate for the amount of water lost through
evaporation by regularly weighing individual pots and
adding sufficient water, subjecting a large number of
plants to controlled mild drought.

To study the effects of water limitation on growth, it
is important to sample growing tissues as specifically
as possible to avoid signal dilution due to the high
developmental stage, tissue, and cell-type specificity of
drought responses (Dinneny et al., 2008; Skirycz et al.,
2010; Duan et al., 2013; Verelst et al., 2013). For instance,
it has been shown that harvesting young seedlings
for molecular analyses obscures effects on proliferating
cells and mainly reveals responses of expanding cells
(Skirycz et al., 2010). In addition to molecular analyses,
growth should be accurately measured, preferably at
the cellular level, to distinguish between effects on cell
proliferation and cell expansion. Using growth and
physiological parameters such as tissue water poten-
tial, the stress severity can be monitored, and in soil-
drying experiments, this allows one to pinpoint when
plants sense the stress and, thus, when tissue sampling
is most informative (Bonhomme et al., 2012). In this
way, correlating molecular changes to changes in growth
becomes possible. Finally, it should be noted that com-
paring the stress sensitivity of different genotypes is not
trivial, complicating the validation of the role of genes
or processes through the analysis of mutant or trans-
genic lines; a recent excellent review by Lawlor (2013)
is highly informative on this subject.

THE EFFECTS OF LIMITED WATER AVAILABILITY
ON GROWTH

Growth regulation, mainly aimed at limiting shoot
growth and thereby the evaporation surface, is an integral
part of the drought response of many plants. It has be-
come clear that this is a very fast and actively regulated
response that is not merely a consequence of altered hy-
draulics, as it cannot be abolished when xylem water
potential is maintained (Nonami et al., 1997) and occurs in
Arabidopsis, maize, and rice (Oryza sativa) even when the
leaf water potential is not affected (Michelena and Boyer,
1982; Parent et al., 2010; Bonhomme et al., 2012). Growth
is also much more sensitive to water limitation than
photosynthesis, and as a consequence, carbohydrates of-
ten accumulate in stressed plants, showing that growth
reduction is not the consequence of carbon deficit (for
review, see Muller et al., 2011). To the contrary, growth is
thought to be uncoupled from carbon availability under
water-limiting conditions (Muller et al., 2011).

A striking feature that has emerged from many
analyses is the highly dynamic and flexible nature of the
growth response to water deficit. In many species, there
is a fast and sharp decrease of leaf elongation rates,
termed acute growth inhibition, followed by recovery to
a new steady-state growth rate, referred to as acclima-
tion (Skirycz and Inzé, 2010). Acclimation of growth can
already occur within 20 to 30 min in wheat (Triticum
aestivum) and barley (Hordeum vulgare) subjected to PEG

or salt in hydroponic cultures (Veselov et al., 2002; Fricke
et al., 2006). Finally, when the stress is relieved, growth
rates can very quickly return to prestress levels (Chazen
and Neumann, 1994; Ben-Haj-Salah and Tardieu, 1995;
Veselov et al., 2002).

The underlying parameters of growth show great
plasticity in their responses to water limitation. Both
growth rate and duration can be affected, and the ex-
tent to which these parameters are impacted by mild
drought was found to strongly depend on the acces-
sion or variety in Arabidopsis and sunflower (Heli-
anthus annuus; Aguirrezabal et al., 2006; Pereyra-Irujo
et al., 2008). As a result, a prolonged growth period can
partially compensate for lower growth rates (Aguirrezabal
et al., 2006; Skirycz et al., 2010; Baerenfaller et al.,
2012). The contributions of cell proliferation and cell
expansion to drought-induced growth inhibition were
also shown to be accession specific in Arabidopsis and
variety dependent in sunflower (Aguirrezabal et al.,
2006; Pereyra-Irujo et al., 2008). Several observations
suggest that this variety specificity also holds for
maize: in cv DEA, both cell proliferation and cell ex-
pansion were reduced by mild drought (Tardieu et al.,
2000), while in cv B73 and B104, only cell proliferation
was affected (H. Nelissen and D. Inzé, unpublished
data). The adjustment of growth to water availability is
thus not only dynamic but also highly flexible, and
different mechanisms have evolved or been selected
through breeding.

MOLECULAR RESPONSES OF GROWING LEAVES
TO WATER LIMITATION

The existence of variety-specific responses suggests
considerable genetic plasticity in the control of the
growth response to water limitation; consequently,
many quantitative trait loci for leaf elongation rate
sensitivity to lower soil water potential were discov-
ered using a maize recombinant inbred line population
(Reymond et al., 2003). However, unraveling the pre-
cise molecular mechanisms controlling growth under
water limitation requires specifically analyzing grow-
ing tissues, as drought responses have been shown to
depend strongly on the developmental stage and the
severity of stress (Dinneny et al., 2008; Skirycz et al.,
2010; Baerenfaller et al., 2012; Verelst et al., 2013). Re-
markably, most of the genes identified with a role in
stress tolerance in mature tissues under severe stress
conditions seem to have little effect on growth inhibi-
tion in mild drought conditions (Skirycz et al., 2011c).
In recent years, several studies have been performed
specifically on drought responses in growing tissues,
revealing many general features.

Hormones have been shown to play an important
role in adjusting growth to water availability. Tran-
script profiling of proliferating and expanding leaf
tissue from Arabidopsis plants exposed to mild os-
motic stress revealed a role for ethylene and GAs in
acclimation to both short-term and long-term mild
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drought stress (Skirycz et al., 2010, 2011a). This important
role for GAs in growth regulation was corroborated by
other studies that profiled leaf tissue at different devel-
opmental stages in Brachypodium distachyon and maize
subjected to mild drought (Verelst et al., 2013; H. Nelissen
and D. Inzé, unpublished data). Other hormones seem
to be involved as well: mutants in jasmonate signaling
showed altered growth under mild drought conditions in
Arabidopsis (Harb et al., 2010), and phosphoproteome
profiling of the maize leaf growth zone also revealed
changes in proteins involved in ethylene and jasmonate
signaling during drought and subsequent rewatering
(Bonhomme et al., 2012). Pretreatment with salicylic acid
conferred enhanced growth and stress tolerance in wheat
exposed to osmotic stress (Kang et al., 2012). Auxin was
found to play a role in growth regulation by osmotic
stress in wheat and Arabidopsis (Veselov et al., 2002;
Skirycz et al., 2010). Finally, the role of ABA, the canonical
stress hormone, is confusing, but the current consensus
suggests that ABA can both directly inhibit growth and
indirectly stimulate growth by reducing ethylene bio-
synthesis and, in severe drought conditions, by activating
aquaporin expression and opening and controlling hy-
draulic conductance (for review, see Tardieu et al., 2010;
Wilkinson and Davies, 2010). Recent work on the effects
of salt stress on root growth showed that the hormonal
signals controlling growth are also organ and tissue spe-
cific, as ethylene mediates primary root growth inhibition,
whereas the quiescence of lateral root growth is mediated
by endodermal ABA signaling (Duan et al., 2013).
The dynamic response seen at the macroscopic level is

also reflected at the molecular level: changes in the
phosphoproteome of maize leaves can already be seen
within 10 min of rewatering after moderate drought
stress (Bonhomme et al., 2012), and gene expression
changes occur in growing leaves within 1 h following
the onset of osmotic stress (Skirycz et al., 2011a; Dubois
et al., 2013). These rapid responses are especially im-
pressive given the fact that water limitation is sensed by
the roots and has to be signaled to the shoot (for review,
see Skirycz and Inzé, 2010). Acute growth inhibition and
acclimation likely involve different molecular processes,
as the transcriptome of leaves from plants acclimated to
drought was reported to be very different from previ-
ously identified short-term drought responses through-
out leaf development (Baerenfaller et al., 2012), although
in other transcriptome studies this disparity was not as
pronounced (Skirycz et al., 2010, 2011a). In addition, in
mature leaves, mild drought-induced transcriptome
changes were also shown to exhibit substantial ecotype
specificity in Arabidopsis (Des Marais et al., 2012); given
the ecotype specificity of growth responses, this is most
likely also the case in growing leaves.
Molecular analyses have further uncovered reprog-

ramming of the energy metabolism in growing leaves
acclimated to stress. Proteome analysis of expanding
cells acclimated to mild osmotic stress revealed that
levels of enzymes involved in the Calvin cycle are de-
creased (Skirycz et al., 2011b), possibly due to feedback
signaling in response to the accumulation of sugars in

these leaves because of reduced demand from growth
(Skirycz et al., 2010). Lower Calvin cycle activity results
in less energy production and less NADP+ regeneration,
leading to overreduction of the photosynthetic electron
transport chain and ROS production. While NADP+ can
be regenerated by redox homeostasis mechanisms in the
chloroplast (Miller et al., 2010), this represents a sub-
stantial loss of energy. However, glycolysis and mito-
chondrial respiration are both up-regulated (Skirycz
et al., 2011b), thereby using the excess of reducing units
and sugars to produce energy for growth. Interestingly,
also in proliferating tissues, mitochondria play a crucial
role in maintaining metabolic homeostasis through the
up-regulation of ALTERNATIVE OXIDASE1A (AOX1A)
during acclimation to mild osmotic stress (Skirycz et al.,
2010). Alternative oxidation allows energy production
under stress conditions while preventing overreduction
of the mitochondrial electron transport chain, which
can lead to ROS formation (Arnholdt-Schmitt et al.,
2006). Furthermore, it was shown that Pro, an impor-
tant osmolyte and osmoprotectant in mature tissues,
can be transported to growing tissues, where it is used
as an energy source by Pro dehydrogenase, shuttling
electrons directly into the mitochondrial transport chain
(Sharma et al., 2011). This fits with increasing evidence
that mitochondria play a crucial role in orchestrating
stress responses (for review, see Jacoby et al., 2011).

As a final note, it should be mentioned that while
many studies on stress-induced growth modulation focus
on transcription factors (TFs), it is likely that there is also
an epigenetic component to be considered here. Epige-
netics are known to play a large role in the regulation
of drought responses (for review, see Kim et al., 2010),
partly explaining the large transcriptional reprogram-
ming seen in response to stress. Consequently, the linker
histone variant H1-3 is strongly induced by moderate
drought in growing tissues (Ascenzi and Gantt, 1999),
and the chromatin-remodeling factor AtCHR12 mediates
the moderate drought stress-induced arrest of stem
growth in Arabidopsis (Mlynárová et al., 2007). Addi-
tionally, the ELONGATOR complex, which has histone
acetyltransferase activity and in yeast (Saccharomyces
cerevisiae) is involved in the adjustment of growth to
environmental conditions, regulates stress-responsive
gene expression and affects cell proliferation during leaf
growth (Nelissen et al., 2005). Furthermore, microRNAs
are differentially regulated by drought in proliferating
and expanding leaf tissue from B. distachyon (Bertolini
et al., 2013). An RNA-Seq study of proliferating maize
leaf tissue also found evidence for substantial alterna-
tive splicing, although this was in response to severe
drought (Kakumanu et al., 2012).

MECHANISMS CONTROLLING
CELL PROLIFERATION

Cell proliferation is driven by the activity of cyclin-
dependent kinases (CDKs), which, as the name sug-
gests, need to be associated with cyclins to be active
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(for review, see De Veylder et al., 2007). Plants have
many different CDK-cyclin modules (Van Leene et al.,
2010), some of which have highly specific roles (Cruz-
Ramírez et al., 2012). The activity of CDK-cyclin com-
plexes is controlled by three major mechanisms: control
of cyclin protein levels through degradation by com-
plexes like the ANAPHASE-PROMOTING COMPLEX/
CYCLOSOME (APC/C); activation or inhibition of the
CDK-cyclin complexes by phosphorylation; and inter-
action of the complexes with inhibitory proteins, of which
there are two main families, CYCLIN-DEPENDENT
KINASE INHIBITOR (CKI)/KIP-RELATED PROTEIN
(KRP)-type proteins and SIAMESE (SIM)/SIAMESE-
RELATED-type proteins (for review, see Komaki and
Sugimoto, 2012).

Different lines of evidence exist for an effect of
drought on almost all components of the cell cycle ma-
chinery (Fig. 2, top left panel): the expression of many
cyclins is down-regulated by salt stress (Burssens et al.,
2000), mild osmotic stress causes down-regulation of
APC/C repressors (Claeys et al., 2012), and both CKI/
KRP- and SIM-type CDK inhibitors are induced by
drought or salt stress (Pettkó-Szandtner et al., 2006;

Peres et al., 2007). Besides the transcriptional response,
there is also control at the posttranscriptional level. In
growing B. distachyon leaves, moderate drought results
in differential expression of microRNAs known to reg-
ulate cell proliferation and cell differentiation (Bertolini
et al., 2013). CDKA activity is inhibited by mild osmotic
stress in wheat (Schuppler et al., 1998) and Arabidopsis
(Skirycz et al., 2011a) and by mild drought in maize
(Granier et al., 2000). Also, many components of the
mitotic machinery involved in cytokinesis showed dif-
ferential phosphorylation upon rewatering after drought
stress in maize (Bonhomme et al., 2012).

Recently, a pathway was established that connects
mild osmotic stress to the cell cycle machinery, involving
the hormones ethylene and GAs. This pathway starts
with very rapid accumulation of the ethylene precursor
1-aminocyclopropane-1-carboxylic acid (ACC) and acti-
vation of ethylene responses within 1 h after stress onset,
leading to posttranslational and reversible inhibition of
CDKA, effectively halting the cell cycle (Skirycz et al.,
2011a). Among the earliest transcripts induced by stress
are ERF5 and ERF6, a redundant pair of ethylene re-
sponse factors. ERF6 induction is highly specific for

Figure 2. Mechanisms regulating growth and stress tolerance in developing leaves, and their interactions. In the top and middle
panels, mechanisms regulating cell proliferation and expansion in short-term growth inhibition and more long-term acclimation
to stress, respectively, are depicted. In the bottom panel, stress tolerance mechanisms that interact with growth-regulating
mechanisms are shown. Font color indicates the direction of change by stress: red for up-regulation, green for down-regulation,
and black for no change.
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growing leaves; in mature leaves, its expression is re-
pressed by osmotic stress (Dubois et al., 2013). ERF6 was
shown to be posttranslationally activated through a
mitogen-activated protein kinase cascade involving
MPK3 and MPK6 in response to ACC treatment, oxi-
dative stress, or infection with Botrytis cinerea (Meng
et al., 2013; Wang et al., 2013), and this most likely also
happens under osmotic stress. ERF6 then activates the
expression of GA2OX6, encoding an enzyme that in-
activates GAs and thereby causes DELLA stabilization
(Dubois et al., 2013). Finally, DELLAs modulate APC/C
activity by transcriptional repression of DEL1 and UVI4,
two important APC/C inhibitors, and thereby push cells
into differentiation and early onset of endoreduplication,
irreversibly abolishing their potential for proliferation
(Claeys et al., 2012). GAs control the transition from cell
proliferation to cell expansion in maize leaf develop-
ment as well, both in control conditions (Nelissen et al.,
2012) and during mild drought (H. Nelissen and D. Inzé,
unpublished data), but the molecular mechanisms con-
necting DELLAs to the transition have not been eluci-
dated yet in maize. In this respect, it is interesting that
while Achard et al. (2009) demonstrated that DELLAs
control the cell cycle by inducing the expression of KRP2
and SIM-type inhibitors in young seedlings, we found no
up-regulation of cell cycle inhibitors by DELLAs in pro-
liferating leaves but, rather, an effect on APC/C regulators
(Claeys et al., 2012). This suggests that cell cycle regulation
by DELLAs may be a general theme, but the exact
mechanism depends on the tissue and conditions.
In leaves of dicotyledonous plants, there is also a

special type of cell proliferation in the stomatal lineage,
which is controlled independently of the primary cell
proliferation arrest front (Gonzalez et al., 2012). This
lineage is based on the activity of meristemoids, pro-
liferating cells that generate pavement cells to ensure
accurate spacing of stomata, before finally differenti-
ating into a pair of guard cells (for review, see Bergmann
and Sack, 2007). The importance of the stomatal lin-
eage is often underestimated in plant growth, but
estimates suggest that 48% of pavement cells are the
result of meristemoid divisions (Geisler et al., 2000). It
is known that water limitation reduces the stomatal
index in many species to reduce evaporation (for re-
view, see Casson and Gray, 2008). Interestingly, under
prolonged but stable mild osmotic stress, meristemoid
activity is modulated in a highly elegant manner,
leading to enhanced generation of pavement cells, and
thus improved growth, while keeping the number of
stomata, and thereby water loss through transpiration,
low (Skirycz et al., 2011a). While the pathways involved
in the generation of guard cells are well understood,
little is known about the control of meristemoid divi-
sions in leaf development (for review, see Gonzalez
et al., 2012). ABA was recently shown to restrict entry
into the meristemoid lineage, fitting the reduced number
of stomata found in water-limiting conditions (Tanaka
et al., 2013), but nothing is known about the control of
the ratio of pavement cells to guard cells in the output of
this lineage.

MECHANISMS CONTROLLING CELL EXPANSION

Cell expansion in plants is essentially regulated
by a combination of water uptake and expansion of
the vacuole, on the one hand, and controlled loos-
ening of the cell wall and deposition of new cell wall
material, on the other hand. Loosening of the cell
wall is mediated by the activity of expansins, which
are mainly active at low pH (forming the basis of the
so-called “acid growth” hypothesis), of xyloglucan
endotransglucosylases/hydrolases (XETs), of pectin
methylesterases, and of ROS (for review, see Cosgrove,
2005). The most important signals controlling the ac-
tivity of these effectors are thought to be auxin and
mechanical signals (Uyttewaal et al., 2010). The ma-
jority of these cell wall-modulating signals and effec-
tors are modulated by water deficit (Fig. 2, top right
panel).

It is likely that hydraulics play a role in cell expansion
responses to water deficit. Osmotic adjustment, achieved
by the accumulation of solutes to lower the cellular water
potential and thereby facilitate water uptake, is seen after
water deficit in barley leaves (Fricke et al., 2006) and
maize leaves (Chazen and Neumann, 1994). This osmotic
adjustment can occur specifically in the growth zone
while at the same time being absent in the mature part of
the leaf (Michelena and Boyer, 1982), again highlighting
the specific responses of growing tissues to stress.
However, from the aforementioned studies, it is clear
that osmotic adjustment does not always correlate with
enhanced cell expansion, indicating that there is also an
active growth restriction, most likely targeting cell wall
dynamics. Several observations confirm this theory.
Chazen and Neumann (1994) showed cell wall harden-
ing in PEG-treated maize leaves within minutes after
stress onset. Cell wall extensibility decreased by drought
stress in soybean, and this correlated with lower XET
activity (Wu et al., 2005). Likewise, the expression of
expansin genes in maize leaves correlates with growth
dynamics in several environmental conditions, including
drought (Muller et al., 2007). PEG treatment also leads to
rapid cell wall alkalinization in the growth zone of the
maize leaf, thereby counteracting the activity of expan-
sins (Ehlert et al., 2011). In white clover (Trifolium repens),
lignification was observed in leaves subjected to osmotic
stress (Lee et al., 2007), and in the growth zone of maize
leaves, drought increases the levels of enzymes involved
in lignin formation (Riccardi et al., 1998). Thus, although
different mechanisms are used in different species, the
end result is always a fast hardening of the cell wall,
thereby inhibiting cell expansion even with maintained
turgor pressure.

However, during the acclimation response, cell walls
become more flexible: in expanding Arabidopsis leaves
that had acclimated to mild osmotic stress, cellulose
synthesis was down-regulated, but genes involved in cell
wall extensibility, such as expansins, were up-regulated,
and levels of superoxide were significantly higher
(Skirycz et al., 2010). The expression of expansin genes
was also up-regulated in Arabidopsis plants exposed to
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moderate drought (Harb et al., 2010). In tissues accli-
mated to a steady-state stress, a more extensible cell wall
may improve growth under lower turgor pressure. Even
more impressively, when Arabidopsis and sunflower
plants were rewatered after they had apparently stopped
growing, cell expansion was resumed, suggesting that
the cell walls were kept in an extendable state (Lechner
et al., 2008).

Not much is known about the signaling networks that
relate water status to cell expansion. The accumulation of
indole-3-acetic acid was demonstrated in barley leaves
after osmotic stress onset (Veselov et al., 2002) and in
leaves of maize plants exposed to salt stress (Veselov
et al., 2008). This could aid in the acclimation of cell ex-
pansion to stress, as auxins are known to stimulate cell
wall acidification, XET and expansin activity, and cell
expansion (Cosgrove, 2005). Furthermore, MYB41 is
thought to be part of a complex network regulating cell
wall modification and cell expansion in response to
abiotic stresses such as drought (Cominelli et al., 2008).
Interestingly, some of the signals that regulate cell pro-
liferation under water limitation, which were discussed
in the previous part, may also play a role in the regulation
of cell expansion. In expanding leaves of B. distachyon,
drought consistently up-regulates miR528, the pre-
dicted target of which is thought to inhibit ethylene
production (Bertolini et al., 2013). Transcriptome profil-
ing of expanding Arabidopsis leaves acclimated to os-
motic stress also points to a role for ethylene, along with
GAs and auxin (Skirycz et al., 2010). Interestingly, ERF6
overexpression strongly affects cell expansion as well
and induces cell shape changes reminiscent of mannitol
treatment, suggesting similar cell wall changes (Dubois
et al., 2013). This could also be mediated by GAs, which
are known to affect cell expansion (Achard et al., 2009).
In accordance with this hypothesis, both ERF6 and
GA2OX6 are induced within hours after stress onset in
expanding leaf cells (M. Dubois and D. Inzé, personal
communication), making a role for ERF6 and DELLAs
highly likely. In the root, DELLAs also control cell
elongation through the control of ROS, which contribute
to cell wall extensibility (Achard et al., 2008b). Further-
more, overexpression of the stress-induced genes BrERF4
(from Brassica rapa) and WRKY44 in Arabidopsis con-
ferred tolerance to salt and drought stress and specifi-
cally inhibited leaf cell expansion, most likely by
affecting the expression of expansins, but had no effect
on cell proliferation (Park et al., 2012). Thus, ethylene
and GAs also play an orchestrating role in regulating
cell expansion under water-limited conditions.

STRESS TOLERANCE MECHANISMS
IN GROWING TISSUES

While growing tissues actively reprogram their growth,
they also activate tolerance mechanisms against cellular
damage. Interestingly, genes traditionally associated with
the response to water limitation, such asDREB2A, RD29B,
LEAs, and ABA-related genes, are not induced or even

repressed in growing tissues of plants subjected to mild
osmotic stress, whereas they are induced in mature tissues
at the same stress level (Skirycz et al., 2010, 2011a). How-
ever, in these studies, an enrichment of stress markers
typically associated with biotic stress, such as WRKY
and ERF TFs, mildew resistance locus proteins, and
genes involved in the biosynthesis of indolic glucosi-
nolates, was found (Skirycz et al., 2010, 2011a). A
different study on young leaves of soil-grown Arabi-
dopsis plants exposed to moderate drought stress
found classical ABA-dominated water deprivation re-
sponses early after stress onset, but this response dis-
appeared in acclimated leaves, at which point several
“biotic” stress markers, such as MYB51 and WRKY33,
were induced (Harb et al., 2010). This suggests that
tolerance mechanisms in growing leaves may be dif-
ferent from those in mature leaves.

Strikingly, in the three aforementioned studies on
growing Arabidopsis leaves, the oxidative stress re-
sponse was much less pronounced than in mature leaves,
which showed accumulation of Pro, flavonoids, and LEA
proteins. As the stress level was the same, this likely re-
flects developmental stage specificity rather than the low
stress severity (Skirycz et al., 2010). However, dividing
cells are especially sensitive to damage from ROS, and
ROS also function as regulators of cell division and dif-
ferentiation (Schippers et al., 2012), suggesting that there
must be mechanisms regulating the redox status in
growing tissues. A proteome analysis of expanding leaf
cells subjected to mild osmotic stress indeed revealed
higher protein levels of redox components such as glu-
tathione S-transferases and ascorbate peroxidase (Skirycz
et al., 2011b). Interestingly, the extensive reprogramming
of mitochondrial metabolism (see above), involving the
up-regulation of AOX1A and the mitochondrial dys-
function regulon (Van Aken et al., 2007), also has an
important function in maintaining ROS homeostasis and
thereby limiting cellular damage (Giraud et al., 2008;
Skirycz et al., 2010). Mechanisms to prevent and deal
with oxidative stress may thus also be somewhat differ-
ent in growing leaves compared with mature leaves.

COREGULATION OF GROWTH AND TOLERANCE

As it is crucial for plants to balance, on the one hand,
ensured survival through growth quiescence and tol-
erance mechanisms and, on the other hand, maintained
competitiveness through continued growth, there is
extensive coregulation of both processes. Here, we
highlight four common mechanisms: DELLAs, AP2/
ERF-type TFs, Pro, and mitochondrial metabolism
reprogramming (Fig. 2, bottom panel).

DELLA proteins, an important class of negative
regulators of GA signaling, were shown to be crucial
integrators controlling growth and survival in re-
sponse to various stresses, such as low temperature
and high salinity (Achard et al., 2006). DELLA stabi-
lization following severe salt stress results in the acti-
vation of many genes that protect cells from cellular
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damage, such as ROS-inactivating enzymes, and it
was proposed that lowering ROS levels both enhances
stress tolerance and limits cell expansion and thereby
root growth (Achard et al., 2008b). Consequently,
quadruple DELLA mutants, lacking the four major
DELLAs, are less tolerant to severe salt stress when
survival is scored but show less growth inhibition
(Achard et al., 2006). GASA14 was recently suggested
to be a downstream mediator of DELLAs in tolerance
and growth regulation control through ROS; it is a GA-
regulated gene that stimulates cell expansion and in-
duces tolerance to severe abiotic stress by limiting ROS
accumulation, potentially because the protein exhibits
redox activity (Sun et al., 2013).
However, there is a level of regulation upstream of

DELLAs that suggests that stress tolerance and growth
responses can be uncoupled. As mentioned before,
ERF6 stimulates the inactivation of GAs by 2-oxidation
and thereby induces the stabilization of DELLAs, which
inhibit cell proliferation and expansion (Dubois et al.,
2013). However, ERF6 also activates stress tolerance
genes such as WRKY33, MYB51, and STZ, and this is
independent of DELLAs (Dubois et al., 2013). Addi-
tionally, ERF6 was also shown to provide a protective
role against oxidative stress (Wang et al., 2013) and
biotic stress (Meng et al., 2013). For cold stress, a similar
pathway was established in which CBF1 is the func-
tional equivalent of ERF6, leading to DELLA-dependent
growth inhibition by up-regulation of GA2OX3 and
GA2OX6 and DELLA-independent stress tolerance
(Achard et al., 2008a). Similarly, in response to high
salinity, DDF1 directly activates the transcription of
GA2OX7, leading to a decrease in GA levels and sub-
sequent growth inhibition, and stress tolerance genes
such as RD29A (Magome et al., 2008). Finally, when
AtDREB1A, a master regulator of drought tolerance, is
overexpressed in soybean, up-regulation of GA2OX4
leads to a drop in GA levels and subsequent growth
inhibition, which can be reversed by GA application
(Suo et al., 2012). All these observations point to a
common mechanism in which stress-specific AP2/ERF-
type TFs induce GA inactivation to regulate growth and
independently activate stress tolerance genes.
A very different and surprising form of interplay

between tolerance and growth is mediated by Pro.
Pro accumulates in response to many abiotic stresses
and acts as an osmolyte, osmoprotectant, regulator of
redox balance, and signaling molecule (for review,
see Szabados and Savouré, 2010). Recently, Pro was
shown to be transported to growing tissues to act as an
energy source to support both root and shoot growth
in Arabidopsis, as Pro catabolism directly transfers
electrons to the mitochondrial electron transport chain
(Sharma et al., 2011). This fits the observation that an
increased production or exogenous application of Pro
results in higher stress tolerance and maintained
growth under abiotic stress conditions (for review, see
Ashraf and Foolad, 2007).
Finally, the role of mitochondria in regulating stress

responses, as discussed previously, is also dual: alternative

oxidation supplies energy for growth while maintaining
redox homeostasis and thereby preventing the forma-
tion of ROS. Accordingly, plants overexpressing AOX1A
showed less growth inhibition when subjected to
mild drought (Skirycz et al., 2010), while plants lacking
functional AOX1A were more sensitive to combined
drought and heat (Giraud et al., 2008). CDKE1 was
recently shown to have a role in mitochondrial retro-
grade signaling and AOX1a activation in response to
oxidative and cold stress and was proposed to inte-
grate environmental signals and act as a switch between
growth and tolerance (Ng et al., 2013). Furthermore,
the Arabidopsis TF WRKY15 regulates both cell ex-
pansion and osmotic stress tolerance through control
of the mitochondrial stress response (Vanderauwera
et al., 2012).

Additionally, several genes were identified that regu-
late both growth and tolerance to stress, with potential
for independent regulation. KUP-type K+ transporters are
induced by different stresses with an osmotic component
and specifically inhibit cell expansion while enhancing
drought tolerance (Osakabe et al., 2013). The kinase
NEK6, which is induced by ACC and severe salt stress,
negatively regulates ethylene production and signaling
and stimulates growth by enhancing the expression of
the cyclins CYCB1;1 and CYCA3;1 while also inducing
stress tolerance (Zhang et al., 2011). In rice, RSS1, a
monocot-specific protein that is specifically expressed in
proliferating cells and the stability of which is controlled
by APC/C, is important for maintenance of the shoot
meristem under abiotic stress conditions but is also
thought to control stress tolerance responses, as its loss-
of-function mutation results in the up-regulation of genes
responsive to salt, drought, and cold (Ogawa et al., 2011).

The examples of coupled stress tolerance and
growth modulation described here show that a flexible
network of genes and processes controls the balance
of survival and growth. DELLAs and KUP-type K+

transporters activate stress tolerance at the cost of
growth inhibition, as is often seen. However, in order
to maintain growth, other mechanisms allow more
flexibility. AP2/ERF-type TFs, such as ERF6, represent
nodes in the network where growth inhibition and
stress tolerance diverge. At the same time, there are
factors that both promote stress tolerance and maintain
growth, such as Pro, the reprogramming of mitochon-
drial metabolism, NEK6, and RSS1. Understanding
how these nodes, and additional ones that are yet to be
discovered, function dynamically in the network con-
trolling growth and survival is one of the major chal-
lenges of abiotic stress research, which holds great
promise for the engineering or breeding of drought-
tolerant plants.

PERSPECTIVES FOR ENHANCING DROUGHT
PERFORMANCE IN THE FIELD

After decades of research on how plants respond
and adapt to drought, many interesting leads have
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been identified, but little of this knowledge has been
translated to the field (for review, see Deikman et al.,
2012). One reason that was brought forward to explain
this discrepancy centers around the observation that
often artificial and too severe stress assays are used,
which bear little relation to physiological conditions
(Lawlor, 2013). Therefore, the severity, duration, and
developmental timing at which stress occurs should be
carefully controlled. Moreover, the use of noninvasive
high-throughput phenotyping allows one to directly
analyze growth and physiological parameters during
water limitation, which may be a better measure than
scoring survival under very severe stress (Skirycz et al.,
2011c; Deikman et al., 2012). Also in classical breeding,
precise and proper phenotyping is currently seen as one
of the most limiting factors in the generation of drought-
tolerant crops, as this is a quantitative trait in which
single genes or quantitative trait loci usually have subtle
effects that are strongly dependent on the genetic back-
ground and show strong environment interactions
(Cattivelli et al., 2008; Araus et al., 2012). A final com-
plication comes from the fact that, in the field, different
stresses are often experienced simultaneously, and a re-
cent report suggests that responses to combinations of
stresses cannot easily be predicted from single stress re-
sponses (Rasmussen et al., 2013). Indeed, transcriptome
and metabolome responses to combined heat and severe
drought, two stresses that commonly occur together in
agricultural conditions, were previously found to be very
different from responses to either stress alone (Rizhsky
et al., 2004).

Despite these shortcomings, the first generation of
targeted drought-tolerant crops is coming to the field. In
recent years, a number of drought-tolerant maize varie-
ties have been released, such as Syngenta’s Agrisure
Artesian and Pioneer’s Optimum AquaMax hybrids,
achieved through advanced molecular breeding based on
knowledge gained by fundamental research into drought
responses (Tollefson, 2011). The first drought-tolerant
genetically modified crop, Monsanto’s DroughtGard
maize, is set for release in 2013. It is a transgenic hybrid
line expressing CspB, an RNA chaperone isolated from
Bacillus subtilis, which was shown to enhance productiv-
ity during drought without yield penalty under well-
watered conditions, although the exact mechanism is
unknown (Castiglioni et al., 2008). An interesting aspect
of this variety is that it was specifically developed to
tackle moderate drought in the western Great Plains of
the United States, and this highlights a growing insight in
the field: most likely, there is no magic bullet that will
offer generic tolerance to water limitation, necessitating
the development of specific solutions for specific situa-
tions (Tardieu, 2012).

It is our belief that enhancing growth with limited
water can be beneficial in areas that experience mild
drought spells, especially during vegetative growth, as
was recently argued for C4 plants such as maize (Lopes
et al., 2011). Likewise, for temperate cereals, enhanced
shoot growth is seen as a contributing factor in breeding
for higher yields under water-limiting conditions, as

this minimizes moisture evaporation from the soil and
is associated with enhanced root growth and, therefore,
better water uptake (Richards et al., 2010). Factors
controlling both growth and tolerance mechanisms, like
those discussed in this review, have a large potential for
the engineering of continued growth in mild drought
conditions, as this allows one to deactivate growth in-
hibition while maintaining a certain level of protection
against damage. However, this approach may exacer-
bate the problems during severe drought (Tardieu,
2012), during which lack of CO2 due to the closure of
stomata, inhibition of photosynthesis, and reduced
turgor will passively limit growth. In this case, different
strategies have to be used to endure the stress as long as
it occurs and, in the meantime, limit evaporation and
cellular damage as much as possible. This is reminiscent
of submergence tolerance in rice, where two basic
strategies are used upon flooding: very rapid growth to
bring the leaves back into the air above the water sur-
face, useful in instances of shallow prolonged flooding,
and completely shutting down growth and metabolism,
which improves survival during short but deep floods
(Bailey-Serres et al., 2012). This knowledge has greatly
contributed to the engineering of flood-tolerant rice, yet
both strategies are detrimental when used in the wrong
conditions. The agony of choice is thus not limited to
plants but also extends to us.
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