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Plants are continually in danger of absorbing more light energy
than they can use productively for their metabolism.
Acclimation to environmental conditions therefore includes the
development of mechanisms for dissipating or avoiding the
accumulation of such excess excitation energy. Acclimation
could be controlled by many signal transduction pathways that
would be initiated by the perception of excess excitation
energy both inside and outside the chloroplast. Recent studies
in related areas provide models of how these signalling
pathways could operate in acclimation to excess light.
Components of photosynthetic electron transport chains,
reactive oxygen species, redox-responsive protein kinases,
thiol-regulated enzymes, chlorophyll precursors and
chloroplast-envelope electron transport chains all have roles in
these models.
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Abbreviations
ABA abscisic acid
APX1 ASCORBATE PEROXIDASE1
EEE excess excitation energy
FMN flavin mononucleotide  
JA jasmonic acid 
LHC light-harvesting complex
LHCP LHC protein 
NADPH reduced form of nicotinamide adenine dinucleotide 

phosphate 
NPH1 NONPHOTOTROPHIC HYPOCOTYL 1
NPL1 NPH1-like1
PET photosynthetic electron transport    
PSII photosystem II  
PsbS gene encoding the PSII subunit S protein 
ROS reactive oxygen species 
TAK1 THYLAKOID-ASSOCIATED KINASE1

Introduction
The amount of light energy encountered by plants in excess
of that which they need for photosynthetic productivity is
termed excess excitation energy (EEE) [1•,2–4]. The
amount of EEE that plants experience may also be dictated
by additional environmental and developmental factors
that cause the amount of light energy required for cellular
processes to vary. Disease, nutrient and water limitation,
and rapid changes in temperature can promote EEE even
at light intensities that would not pose a problem under
benign conditions.

The possibility of generating EEE is ever-present for land
plants, which cannot move away from adverse environmental
conditions. Failure to dissipate or avoid accumulating EEE
leads to photooxidative damage to the photosynthetic
apparatus, which is often manifested as bleaching, chlorosis
or bronzing of leaves [1•,2–5]. Many mechanisms have
evolved that serve to dissipate EEE and act as ‘safety
valves’ to ensure that the harvesting of light energy does
not inadvertently lead to cellular damage [1•]. Acclimation
to a range of adverse environmental conditions might
include increasing the number and efficiency of dissipatory
mechanisms and developing physiological, biochemical
and structural changes that avoid the accumulation of EEE. 

Immediate responses to the conditions that promote EEE
must initiate signalling pathways that lead to whole-plant
acclimation. In this review, we draw on a wider literature to
suggest ways in which such signalling pathways might be
initiated and function.

Dissipation and avoidance of EEE
Several excellent reviews have been written recently that
describe the protective mechanisms of dissipation and
avoidance of EEE [1•,2,3,6,7]. Briefly, dissipation of EEE
in plants is achieved by a combination of so-called non-
photochemical and photochemical quenching processes.

Non-photochemical quenching processes include the
transfer of triplet-state chlorophyll excitation energy to
carotenoids that, in turn, dissipate the excess energy as
heat during their return to a non-excited ground state
[1•,3,6]. In Arabidopsis, a chlorophyll-pigment-binding
protein, photosystem II (PSII) subunit S protein (which is
encoded by the nuclear gene PsbS), has no effect on
photosynthetic efficiency but is absolutely required for
non-photochemical quenching [8••].

Photochemical quenching of EEE is the collective term
for processes that increase the consumption of electrons by
the deployment of additional metabolic sinks. These
include the reduction of O2 by electrons fed directly from
PSII or PSI (i.e. the Mehler reaction), increased rates of
photorespiratory and chlororespiratory metabolism, and
perhaps increased C, N and S metabolism [2,7,9–12]. An
increase in the production of reactive oxygen species (ROS)
is an inevitable by-product of the reduction of O2 in many
of these processes. This increases further the dissipatory
value of such reactions, as both electrons and energy are
required to maintain an extensive network of antioxidants
that prevent the accumulation of ROS [7]. Although poten-
tially damaging, ROS also play a part in other protective
responses, such as the reversible photoinhibition of PSII
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activity [13], and induce acclimation to conditions that
promote EEE both locally and systemically [5]. 

Acclimation to conditions that promote EEE not only
includes an increase in the number and activity of dissi-
patory processes, but also may involve protective strategies
that avoid the absorption of excitation energy. These
include the movement of chloroplasts away from high
light sources [14••], a decrease in the number of photo-
synthetic reaction centres per unit leaf area [15], leaf
curling [16], an increase in the thickness of cuticular wax
or other EEE-protective screens [17] and changes in leaf
and whole-plant morphology [2]. The dynamic balance of
ROS and antioxidant systems has been suggested to play
a crucial role in determining how quickly plants react and
acclimate to changes in their environment [5,18]. This
suggests that the regulatory and signal transduction
pathways involved in establishing whole-plant acclimation
must contain individual components that are sensitive to
this ROS/antioxidant balance.

Signal transduction pathways that respond to EEE
An emerging literature clearly indicates that signalling
pathways are integrated into a regulatory network, such
that many pathways may share common routes or interact
with one another [19–21]. We could predict, therefore, that
a major part of an EEE-responsive signalling pathway(s)
may well join such a regulatory network in order to effect
acclimation at the whole-plant level. The remainder of this
review focuses on those features of EEE signalling
responses that pose the following questions: How are the
conditions that promote EEE perceived and transduced
into a signal, especially but not exclusively within the
chloroplast? And how does a chloroplast-derived signal exit
the chloroplast to join a cellular regulatory network? 

The perception of EEE and the initiation of signal
transduction 
The photosynthetic apparatus is a prime candidate for the
perception of EEE. In principle, any increase in the
activity of dissipatory processes could initiate signalling
pathways. In response to EEE, increases in electron
transport rates and consequent redox changes in photo-
synthetic electron transport (PET) components would be
almost instantaneous. The regulation of both nuclear and
chloroplast genes that encode components of photosynthesis
and antioxidant metabolism have been associated with
redox changes in PET [5,22,23•,24]. Examples of such
nuclear-encoded genes include Cab (which encodes a
chlorophyll a/b binding protein), Lhc (the gene encoding
the light-harvesting complex protein [LHCP]; [23•]), RbcS
(which encodes the small unit of ribulose-1,5-bisphosphate
carboxylase/oxygenase; [23•]), ASCORBATE PEROXIDASE1
(APX1) and APX2 [5,22].  Chloroplast-encoded genes that
have been associated with redox changes in PET include
psbA (the gene encoding the D1 protein of the PSII
reaction centre) and psaAB (which encodes the PSI
reaction centre protein; [24]). Redox changes in the

vicinity of QA (the primary quinone electron acceptor),
QB (the secondary quinone electron acceptor) or plasto-
quinone (Figure 1) have been suggested to be key starting
points for signalling [5,22,23•,24,25]. Equally, it is likely
that changes in the redox state of PET components could
be coincident with, rather than determine, changes in gene
expression. For example, increased rates of PET could
lead to the channelling of electrons into other routes,
such as the chlororespiratory pathway, which in turn could
initiate a signalling pathway. Alternatively, changes in pH
across thylakoid membranes upon an increase in EEE
could be a rapid and powerful signal initiator [3].

The exposure of plants to wavelengths of light that favour
absorption from PSII over that from PSI triggers the
reversible phosphorylation of the LHCP in PSII, which
then migrates from PSII towards PSI. This process is
termed ‘state transition’, and is thought to ensure a balance
in the light harvesting and, consequently, the functioning
of the two photosynthetic reaction centres [24,26••].
THYLAKOID-ASSOCIATED KINASE1 (TAK1) is
central to this process [26••]. The simplest model of how
the phosphorylation of LHCP is linked to redox changes in
PET components is a postulated direct interaction
between the cytochrome b6/f complex and TAK1 (Figure 1);
TAK1 then disengages to carry out the phosphorylation of
thylakoid proteins including LHCP [26••]. This type of
signal-transduction event may well prove to be a model for
the type of events that initiate changes in nuclear gene
expression in response to EEE.

Changes in the concentrations or rates of production of
ROS, from the Mehler reaction or conceivably from
chlororespiration, could be additional initiators of signalling
pathways inside the chloroplast. Increases in foliar H2O2
concentrations have been shown to be important for the
induction of APX2 expression in excess-light-stressed
Arabidopsis leaves, but the sub-cellular origin of this H2O2
was unknown [5]. Conversely, the infiltration of the thiol
antioxidant glutathione (γ-glutamylcysteinyl glycine) into
Arabidopsis leaves [27], or increasing the glutathione
biosynthetic capacity of the chloroplasts of transgenic
tobacco, increased the sensitivity of the leaves to excess
light. Changes in chlorophyll a fluorescence parameters in
such leaves implied a marked increase in EEE that led to
damage to their photosynthetic apparatus. In both studies,
this was associated with a failure to increase antioxidant-
scavenging capacity in response to EEE-induced oxidative
stress [22,28]. Both treatments could have changed the
chloroplast redox status by upsetting the balance between
ROS and antioxidant levels. This implies that signalling by
chloroplast-derived ROS and/or the prevailing redox
state of the chloroplast could be important determinants
regulating the expression of nuclear-encoded genes
[27,28,29••]. The propagation of such signals inside the
chloroplast may have parallels to the regulation of the
translation of chloroplast-encoded mRNAs and the
activity of Calvin-cycle enzymes by protein disulphide
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isomerase (PDI) and thioredoxin, respectively [30,31].
Both of these regulatory systems function by carrying out
thiol-disulphide exchange reactions on specific redox-
sensitive cysteine residues in target proteins and are
dependent on the activity of PET to provide reducing
equivalents. Their sensitivity to conditions that promote
EEE [30,32••] show that these processes are highly
responsive to chloroplast redox state.

To our knowledge, neither non-photochemical quenching
mechanisms nor highly energised photosynthetic pigments
have been directly implicated in any of the signalling
mechanisms initiated by EEE. However, NPH1-like1
(NPL1) from Arabidopsis, which governs the relocation of
chloroplasts within the cell in response to high light intensity,
encodes an extraplastidial serine/threonine protein kinase
that contains a covalently bound flavin mononucleotide
(FMN) moiety that is a blue-light chromophore [14••].
NPL1 is closely related to the NONPHOTOTROPHIC
HYPOCOTYL1 (NPH1) class of protein kinases that are
involved in other blue-light-mediated responses in plants,
such as phototropism [14••,33]. It is postulated that the
FMN moiety of both NPH1 and NPL1 confers on them
redox sensitivity that leads to their activation [14••,33].

The transmission of signals across the chloroplast
envelope
It should be noted that many of the hormones or signalling
molecules associated with stress, such as jasmonic acid (JA)
and abscisic acid (ABA), are synthesised wholly or in part
within the chloroplast [34,35]. The involvement of EEE in
both abiotic and biotic stresses clearly shows that such
molecules could, in effect, signal for EEE. For example, in
drought-stressed plants, the recently described mediation
of ABA-controlled stomatal closure by H2O2 [36••] is a
clear indication of the way in which such signalling
molecules could interact with the products of EEE. To our
knowledge, the routes that these molecules might use to
exit the chloroplast are not known.

H2O2 is thought to freely diffuse as easily as water across
biological membranes [5,37]. Chloroplast-derived H2O2
could, therefore, directly influence the functions of
extra-plastidial signalling components. The potential for
H2O2 to act as an intracellular mobile signalling molecule
is demonstrated by its role in the systemic responses of
plants to excess light [5], pathogens [38] and physical
damage [39].

Oxidative damage to the thylakoid membranes brought
about by EEE could lead to the release of oxygenated fatty
acid derivatives, including JA, known collectively as
oxylipins [39,40••]. The appearance of these compounds in
plant tissues is associated with physical damage and disease
[39,40••], but there is no reason why such compounds
could not be formed under conditions that promote
EEE in the chloroplast [19]. Such compounds may be
membrane-permeable and, in Arabidopsis, have been shown
to induce expression of GLUTATHIONE-S-TRANSFERASE1
(GST1), a gene whose expression responds to a wide range
of conditions, including those that promote EEE [19,40••].

In Chlamydomonas, chlorophyll precursors have been
implicated in chloroplast-to-nucleus signalling during
dark-to-light transitions [41••]. Exogenous supply of these
precursors to cultures mediated the light-induction of the
expression of heat-shock genes in mutants otherwise
incapable of this response to light [41••]. Kropat et al. [41••]
hypothesised, therefore, that in higher plants as well as in
algae, the release or export of chlorophyll precursors from the
chloroplast is an active process that can occur under certain
stress conditions and that can initiate defence responses.

Rates of photorespiration increase substantially in response
to EEE [9,37,42]. The consequent increase in photo-
respiratory metabolism in the peroxisome causes increased
rates of H2O2 formation, brought about by the oxidation of
glycollate [37]. Increased levels of photorespiratory H2O2
have been shown to elicit cellular antioxidant defences in
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Figure 1

Schematic description of the photosynthetic
apparatus and the transport of electrons,
abstracted from water, by the different PET
chain components. Many of these
components may be initiators of signalling in
response to excess excitation energy and are
discussed in the text. Chl, chlorophyll; 
CP43, chloroplast protein 43; D1, D1 protein;
FeS, iron-sulphur centre; Pheo, pheophytin;
PQ, oxidised plastoquinone; PQH2, reduced
plastoquinone; QA, primary quinone 
electron acceptor;, QB, secondary quinone
electron acceptor.
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transgenic tobacco plants that are deficient in catalase [37],
but whether this occurs in wildtype plants remains to be
established. Nevertheless, photorespiratory metabolites
must be candidates for a means of getting an EEE-responsive
signal out of the chloroplast.

The different scenarios described above all depend upon
the passage of some molecule out of the chloroplast to
propagate a signal leading to nuclear gene expression.
Spectroscopic studies have shown, however, that the
chloroplast envelope contains a number of constituents
that are involved in the transfer of electrons and therefore
could provide another exit for a chloroplast-derived signal.
These include iron-sulphur proteins, semiquinones,
flavins and α-tocopherol [43]. It is possible to draw a
scheme in which an electron transport chain starts with
NADPH in the stroma, spans the chloroplast envelope and
ends with O2 as the terminal electron acceptor on the
chloroplast outer surface [43]. From the stoichiometry of
electron transfer from NADPH, there is a clear implication
that ROS could be formed outside the chloroplast and
could, therefore, act to propagate any signal emanating
from it. Exposure to excess light, for example, would at
least transiently increase PET rates, which could stimulate
the activity of an envelope-spanning electron transport chain.

Joining the mainstream
In many of the schemes outlined above, H2O2 or other
ROS are the end-products of signalling pathways that
emanate directly or indirectly from the chloroplast. There
are a number of ways in which one can envisage how such
a signal might be propagated further. ROS could directly
interact with redox-sensitive transcription factors paralleling
OxyR and Sox/RS in E. coli or I-κB:NF-κB in animals
[44,45]. The activation of transcription factors would then
lead to change in gene expression.

Intracellular Ca2+ fluxes and the action of signalling
molecules, such as phosphoinositides and JA, have been
shown to respond to oxidative stress and have been
suggested as a means whereby cross-talk between pathways
is achieved [21,46–48]. The activation of extensive
calcium-dependent protein kinase cascades could provide
a mechanism whereby a chloroplast-derived ROS signal
would merge into a regulatory network. The indirect
activation of a mitogen-activated protein kinase cascade in
H2O2-treated Arabidopsis protoplasts, which induced the
expression of genes involved in defence against oxidative
stress and suppressed genes that are involved in plant
growth [49••], is a clear indication of how such networks
might operate.

Conclusions
We have described briefly some of the means whereby
EEE can initiate signalling leading to acclimation to
changing environmental circumstances. Given the flexibility
of plants’ responses to environmental change and the
importance of protection against EEE, it would not be

surprising to find that all of these possible signalling routes
exist, reflecting the simultaneous operation of many
different protective mechanisms.

There is a need to understand how wide a range of adverse
environmental factors provoke the same changes in cellular
metabolism, reflecting the changed expression of a common
or overlapping set of genes. The holistic view of cellular
metabolism that metabolite, protein and transcript profiling
technology could bring to this problem may prove to be
seminal. It is to be hoped that a rational and prediction-
based understanding of how plants thrive in highly
variable and often adverse environments will emerge from
such systems analysis.
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