DNA marker-assisted selection to pyramid rust resistance genes in "carioca" seeded common bean lines

Thiago Lívio P. O. Souza · Vilmar A. Ragagnin · Suelen N. Dessaune · Demerson A. Sanglard · José Eustáquio S. Carneiro · Maurilio A. Moreira · Everaldo G. Barros

Received: 27 January 2014/Accepted: 18 April 2014/Published online: 7 May 2014 © Springer Science+Business Media Dordrecht 2014

Abstract This work reports a gene pyramiding approach assisted by DNA markers used to develop "carioca" seeded common bean (Phaseolus vulgaris L.) elite lines harboring three different rust resistance genes. Rust is among the most destructive diseases that attack P. vulgaris and cause serious damage worldwide. The rust resistance genes Ur-5 (from 'Mexico 309'), Ur-11 (from 'BelMiDak RR-3'), and Ur-14 (from 'BRS Pioneiro', a "carioca" seeded cultivar derived from the resistance source 'Ouro Negro') were combined in the "carioca" seeded bean cultivar 'Rudá'. Firstly, two different backcross programs were conducted separately to produce progenies harboring individually the Ur-5 and Ur-11 genes. Molecular fingerprinting analysis was used to select plants genetically similar to 'Rudá' in the backcross cycles to accelerate the recurrent-background recovery. The obtained progenies were initially intercrossed and then crossed with 'BRSMG Pioneiro' (Ur-14).

T. L. P. O. Souza (⊠)
Embrapa Arroz e Feijão (Embrapa Rice and Beans),
GO-462, km 12, Santo Antônio de Goiás, GO 75375-000,
Brazil
e-mail: thiago.souza@embrapa.br

V. A. Ragagnin Universidade Federal de Goiás (UFG), BR-364, km 192, Jataí, GO 75800-000, Brazil

S. N. Dessaune

Embrapa Cerrados, BR-020, km 18, Planaltina, DF 73310-970, Brazil

The final F_1 plants derived from these crosses were screened with DNA markers linked to the three rust resistance genes: SI19 (*Ur-5*), SAE19 (*Ur-11*) and OPX11 (*Ur-14*). The plants selected as harboring all the alleles of interest were used to obtain the next generations. The selection based on DNA markers was conducted up to the $F_{4:5}$ generation. We were able to select $F_{4:7}$ progenies showing all the DNA markers associated to the genes of interest and resistant to all specific races of *U. appendiculatus* used for phenotypically detecting each one of the rust resistance genes. Yield evaluations show that these selected lines are as productive as the recurrent parent 'Rudá' and high-performing control cultivars grown in Brazil.

Keywords Disease resistance · Markerassisted selection · Molecular markers · *Phaseolus vulgaris* · Plant breeding · *Uromyces appendiculatus*

D. A. Sanglard Universidade Federal de Minas Gerais (UFMG), Instituto de Ciências Agrárias (ICA), Montes Claros, MG 39404-547, Brazil

J. E. S. Carneiro · M. A. Moreira · E. G. Barros Universidade Federal de Viçosa (UFV), Viçosa, MG 36570-000, Brazil

E. G. Barros Universidade Católica de Brasília, Pós-Graduação em Ciências Genômicas e Biotecnologia, Brasília, DF 70790-160, Brazil

Introduction

Common bean (Phaseolus vulgaris L.) is an economically, nutritionally, and socially important crop, especially in developing countries of Latin America, Eastern and Southern Africa. It has been grown and consumed worldwide in distinct areas and different seasons, mainly by subsistence level farmers with low-technology input as well as by farmers that use high input technologies (Wortmann et al. 1998; Broughton et al. 2003). Dry bean cultivars were grown on approximately 30 million hectares in more than 120 countries in 2012, but their yields are quite low compared to other important grain legumes such as soybean and peas (http://faostat.fao.org). In Brazil, the main producer and consumer country, P. vulgaris dry bean is a very popular and relevant crop, representing the major source of dietary protein. It is grown across all edafoclimatic areas of the country, with sowing dates happening almost every month. Its per capita consumption can be as high as 17 kg per year (Feijão 1985-2012). The total growing area in 2012 was 1.78 million ha with a mean productivity of 1,406 kg/ha (Feijão 1985-2012).

One of the several factors that compromising the common bean yield worldwide is the high number of destructive diseases that attack the crop and cause serious damage. Among these diseases is the common bean rust, incited by the basidomycete fungus *Uromyces appendiculatus* F. Strauss (syn. *U. phaseoli* G. Winter), which can cause great yield losses. This fungus is a highly variable and is among the most pathogenically variable of all plant pathogens (Stavely and Pastor-Corrales 1989).

Bean rust is distributed around the world, but it effectively causes major production problems in humid tropical and subtropical areas. Severe epidemics have been reported in Australia, China, the United States, and some areas of Europe. Major losses have occurred in Burundi, Ethiopia, Kenya, Malawi, Rwanda, South Africa, Tanzania, Uganda, and Zimbabwe. In Latin America, the bean rust is also a serious problem, major losses occurred in Argentina, Bolivia, Brazil, Colombia, Costa Rica, Cuba, Dominican Republic, Ecuador, El Salvador, Guatemala, Haiti, Honduras, Jamaica, Mexico, Nicaragua, and Peru (Stavely and Pastor-Corrales 1989; Souza et al. 2008). In Brazil, the disease causes major losses in south, southeast and central areas, including the states of Paraná, Rio Grande do Sul, Santa Catarina, Minas Gerais, São Paulo, and Goiás (Souza et al. 2005). Rust losses worldwide measured in greenhouse and field conditions can vary from 18 to 100 % (Stavely and Pastor-Corrales 1989; Staples 2000). Yield losses higher than 68 % were detected in Brazil (Souza et al. 2008).

The integrated management of the common bean rust is based on three main strategies: application of fungicides, host resistance, and various cultural practices. The use of resistant cultivars is certainly the main component of the integrated bean rust management. The pyramiding of different race-specific resistance genes is an important strategy for developing broad and durable resistance to a large number of *U. appendiculatus* isolates (Souza et al. 2008; Ragagnin et al. 2009).

Gene pyramiding approaches using only conventional breeding methods may not be effective mainly due to the difficulties in selecting genotypes harboring different resistance genes. For this reason, molecular markers are often used to aid gene pyramiding process. With the use of molecular markers, the multiple and/or sequential inoculations can be avoided and selection mistakes caused by confounding phenotypic effect of potential epistatic interactions among the different resistance genes present in the same genotype can also be overcome (Michelmore 1995; Bigirimana and Höfte 2001; Singh et al. 2001; Toenniessen et al. 2003). However, for each resistance allele a specific marker or markers need to be identified. Several RAPD markers associated with genes conferring resistance to rust in common bean have been identified and some of them were converted into SCAR markers to increase the reproducibility of the markers (Souza et al. 2008). Currently, single DNA base differences, referred as single nucleotide polymorphisms (SNPs), and small nucleotide insertions and deletions (InDels), are being detected and used for marker-assisted selection in common bean, in addition to genes and quantitative trait locus (QTL) discovery, assessment of genetic diversity, association analysis, and phylogeny studies. SNP markers are more stable (lower mutation rate) than other DNA marker classes, they are the most abundant form of genetic variation within genomes and can be analyzed using a wide array of high throughput technologies (Souza et al. 2012a).

Molecular markers can also be used to accelerate the recovery of the recurrent parent's genome in backcross breeding programs. Simulation studies and real data indicate that only three or four backcrosses are necessary to recover the recurrent parent's genome when molecular markers are used (Openshaw et al. 1994; Faleiro et al. 2004; Ragagnin et al. 2009). Separate backcross programs assisted by molecular marker fingerprinting can be used for the individual introgression of resistance genes in modern cultivars. This strategy can be the initial step for pyramiding of rust resistance alleles.

The main goal of the present work was to develop high-yielding "carioca" seeded dry bean advanced lines harboring the rust resistance genes Ur-5, Ur-11 and Ur-14. "Carioca" seeded beans are the most consumed in Brazil, representing around 70 % of the internal market.

Materials and methods

Plant genetic material

The Mesoamerican "carioca" seeded common bean cultivar 'Rudá' was used as recurrent parent in all backcrosses. "Carioca" seeded beans are the most consumed in Brazil. 'Rudá' is a high yield cultivar recommended for many growing regions, but it is susceptible to rust. 'Mexico 309' and 'BelMiDak RR-3' (derived from 'PI181996') were used as donor parents. They are Mesoamerican bean lines harboring the genes Ur-5 and Ur-11, respectively, that confer ample resistance to bean rust in Brazil (Souza et al. 2005; 2008) and other parts of the world (Stavely 2000; Steadman et al. 2002). The common bean cultivar 'BRSMG Pioneiro', derived from the cross 'Rudá' × 'Ouro Negro' by molecular marker-assisted backcrosses (Faleiro et al. 2004), was also used as donor parent in the gene pyramiding process. This "carioca" seeded cultivar harbors the gene Ur-14 from 'Ouro Negro' (Moreira et al. 2006; Souza et al. 2011). It has shown to be resistant to several isolates of U. appendiculatus and Colletotrichum lindemuthianum (Sacc. & Magnus) Briosi & Cavara, the causal agent of bean anthracnose (Faleiro et al. 2004).

Backcrosses and pyramiding process

All crosses were conducted under greenhouse conditions. Two separate backcross (BC) programs were conducted until BC_3 generations using 'Rudá' as recurrent parent and the lines 'Mexico 309' and 'BelMiDak RR-3' as donor parents. At each BC cycle, the plants were screened with the pathogen and the genetic distances between the resistant plants and the recurrent parent were determined using RAPD markers. The plants most similar to 'Rudá' were used for the next BC cycle. The BC₃F₁ plants selected based on the cited criteria were selfed to obtain the BC₃F₂ population that was inoculated with U. appendiculatus and screened with molecular markers linked to the genes of interest (Table 1). The resistant BC_3F_2 plants presenting the DNA markers were selfed to obtain BC₃F_{2:3} progenies which were submitted to progeny tests based on inoculation with the pathogen. BC₃F_{2:3} progenies homozygous for resistance to rust were selected for the pyramiding process (Fig. 1). This process was done using a tri-cross design consisted basically of two steps: step 1—pairwise crosses among the $BC_3F_{2:3}$ resistant progenies to obtain single-hybrids; and step 2-crosses of the single-hybrids with the cultivar 'BRSMG Pioneiro' to obtain the triple-hybrids with the three resistance genes of interest. The triple-hybrid plants were screened with the coupling markers SI19 (gene Ur-5) and OPX11 (gene Ur-14) to confirm cross. Plants harboring the both markers were selfed to obtain the subsequent generations. The F2, F3 and F4 plants derived from the triple-hybrids were also selected with molecular markers specifically linked to each one of the rust resistance genes, which were identified in a preliminary molecular characterization of the bean genetic material to be used for rust resistance gene pyramiding. $F_{4.5}$ seeds from the selected F₄ plants were obtained and used for seed increasing. F_{4:5} plants were also used for progeny tests based on screening with molecular markers aiming to identify homozygous progenies for the rust resistance loci Ur-5, Ur-11, and Ur-14 (Fig. 2). $F_{4:6}$ seeds from the selected progenies were sowed in the field for yield evaluation. The corresponding $F_{4:7}$ progenies were also evaluated for grain yield and aspect of grains in other growing season. These F_{4:7} advanced lines (pyramid lines) were also tested for resistance to specific races of U. appendiculatus in greenhouse inoculations and screened with DNA markers (Fig. 2).

Inoculation of *U. appendiculatus* and disease evaluation

The Brazilian *U. appendiculatus* mono-pustule isolates used in this work were provided by the fungal

Fig. 1 Diagram representing the breeding strategy used to develop "carioca" seeded common bean progenies harboring individually different rust resistance genes at two separate backcross (BC) programs

collection of the BIOAGRO/UFV Common Bean Breeding Program (Viçosa, MG, Brazil). Artificial inoculations was carried out when the primary leaves of the bean plants reached approximately two-thirds of their full development, about 10 days after sowing greenhouse conditions $(20 \pm 5 \text{ °C})$, under as described by (Souza et al. 2005). Each one of the BC_nF_1 and BC_3F_2 plants and 12 plants from each tested progeny (BC₃F_{2:3} progenies and F_{4:7} pyramid lines) and control cultivar were inoculated (Figs. 1, 2). Plants derived from the separate backcross programs using 'Mexico 309' (gene Ur-5) and 'BelMiDak RR-3' (gene Ur-11) as donor parents were inoculated with a mixture of the U. appendiculatus races 29-3, 61-3, 63-3 and 63-19. The 16 $F_{4:7}$ pyramid lines and control cultivars were screened with the races 21-3, 29-15 and 53-3, used for specifically detecting the genes Ur-5, Ur-11 and Ur-14, respectively.

The inoculum concentration was 2.0×10^4 uredospores/mL of distilled water containing Tween-20 (0.05 %, v:v). The inoculum solution was sprayed on both leaf surfaces using a manual atomizer (De Vilbiss n° 15) adapted to an electric compressor. After inoculation the plants were transferred to a mist chamber (20 ± 1 °C and relative humidity >95 %) where they were kept for approximately 48 h under a 12-h light regime. In order to avoid contamination, plants inoculated with different isolates were kept in separate compartments of the mist chamber. After this period the plants were transferred to a greenhouse $(20 \pm 5 \text{ °C})$, where they were kept until symptom evaluation, about 15 days after the inoculation.

Six grades of rust reaction were considered in the evaluation of the disease symptoms based on the scale proposed by Stavely et al. (1983). The description of each grade as well as the additional interpretative symbols associated with the rust grading scale is shown on Table 2. In all cases disease reaction was determined visually by at least two evaluators.

DNA marker analysis

The DNA was extracted from the leaf tissue samples according to Doyle and Doyle (1990). In each BC cycle, a screening was done to identify polymorphic RAPD markers (Operon Technologies, Alameda, CA, USA) to be used for molecular fingerprinting analysis aiming to select plants genetically similar to 'Rudá'. The DNA amplification by PCR-RAPD technique was done according to Faleiro et al. (2000). The primers that revealed at least one polymorphic DNA band among the analyzed plants were selected. The polymorphic and monomorphic DNA bands were used to build a matrix based on the presence (1) or absence (0)

Fig. 2 Diagram representing the breeding strategy used to develop "carioca" seeded common bean elite lines (*pyramid lines*) harboring simultaneously three distinct rust resistance genes

of bands. The genetic similarity values were calculated by the Euclidian method for binary data and used to cluster the plants by the nearest neighbor method with the aid of the statistical genetics software GENES (Cruz 2013).

For the molecular marker-assisted selection, including the progeny test to identify $F_{4:5}$ pyramid progenies homozygous for the rust resistance loci, DNA markers specifically linked to each one of the resistance genes were used. In the assays with the SCAR technique, the DNA amplification reactions were as described by Côrrea et al. (2000). The temperatures of specific annealing for each marker are described in Table 1.

The amplified products were visualized under UV light after electrophoresis on 1.2 % agarose gels containing ethidium bromide (0.2 μ g/mL), immersed in a 1X sodium boric acid (SB) buffer (10 mM sodium hydroxide, pH adjusted to 8.5 with boric acid).

Agronomic performance assays

Two field experiments were conducted at experimental station of the Federal University of Viçosa, in Coimbra, MG, Brazil, to evaluate the pyramid lines: one in the autumn of 2007 (F4:6 progenies) and other one in the winter/spring of 2007 (F_{4:7} progenies). In the first experiment the only trait evaluated was grain production. Besides this trait, aspect of grains was also evaluated in the second experiment. Both experiments included: pyramid progenies identified as homozygous for all rust resistance loci by the progeny test based on molecular markers (Fig. 2); "carioca" seeded progenies harboring one or two rust resistance genes according to marker analysis or inoculation tests, derived from the BC and pyramid programs; and the control cultivars 'Rudá', 'BRSMG Pioneiro', 'BRSMG Majestoso', 'Pérola', 'BRSMG Talismã', and 'BRSMG Madrepérola'--- "carioca" seeded beans high-yielding and widely planted in Brazil, 'Ouro Negro' and 'Mexico 309'-black seeded bean lines resistant to rust, and 'Vermelhinho'-red seeded bean cultivar.

In all experiments a randomized triple 10×10 lattice design was used. Each plot consisted of two rows each 2.0 m long, spaced by 0.5 m, with 15 seeds per meter. The equivalent of 350 kg/ha of the

Fig. 3 Electrophoretic analysis on 1.2 % agarose gel of amplification DNA products obtained with the repulsion marker SAE19 (a), linked to gene Ur-11, and the coupling markers SI19 (b) and OPX11 (c), linked to genes Ur-5 and Ur-14, respectively (Tables 1 and 4). Lanes are as follows: M lambda DNA cut with *Eco*RI, *Bam*HI and *Hind*III (size marker), 1 'Rudá' (susceptible), 2 'Mexico 309' (Ur-5), 3 'BelMiDak RR-3' (Ur-11), 4 'BRSMG Pioneiro' (Ur-14), 5–12 "carioca" seeded F₂ pyramid plants harboring alleles for the rust resistance loci Ur-5, Ur-11, and Ur-14. The *arrows* indicate polymorphic DNA bands associated with the resistance genes

formula 8-28-16 (N, P_2O_5 and K_2O , respectively) was used as fertilizer during sowing, and 150 kg/ha ammonium sulfate was applied 25 days after emergence. Harvest of the whole plot was done manually. The grain yield was determined for each plot and expressed as g/2 m² (g/plot). The aspect of grains was evaluated for visual observation using a five-grade scale as reported by Marques-Júnior et al. (1997). In this scale the grade 1 represents the standard "carioca" type wanted by the market (medium-sized light creamcolored grains with light brown stripes) and the grade 5 is the extreme opposite. At least two researchers evaluated the aspect of grains. The Tukey test was used to evaluate the significance of the differences among the mean values obtained for each trait.

Results

Development of pyramid lines assisted by molecular markers

Resistant BC₃F₁ plants derived from the separate backcross programs using 'Mexico 309' (gene *Ur-5*) and 'BelMiDak RR-3' (gene *Ur-11*) as donor parents were selected to be used for molecular fingerprinting analysis. The relative genetic similarities between recurrent genitor 'Rudá' and the resistant BC₃F₁ plants varied from 80.8 to 98.1 % ('Rudá' × 'Mexico 309') and from 82.1 to 98.2 % ('Rudá' × 'BelMiDak RR-3'). The number and the percentage of polymorphic DNA bands used to calculate these genetic similarity values were 39 and 48.7 %, and 39 and 41.0 %, respectively (Table 3).

The resistant BC_3F_1 plants which were genetically closest to 'Rudá' were conduced up to BC₃F_{2:3} generation (Fig. 1). The "carioca" seeded $BC_3F_{2:3}$ progenies homozygous for the rust resistance loci were identified by inoculation with the U. appendiculatus races 21-3 ('Rudá' \times 'Mexico 309', gene Ur-5) and 29-15 ('Rudá' \times 'BelMiDak RR-3', gene Ur-11). The selected BC₃F_{2:3} progenies were crossed pairwise to start the pyramiding process of resistance genes in the background 'Rudá'. The F₁ plants obtained were crossed with the "carioca" common bean cultivar 'BRSMG Pioneiro' (gene Ur-14). The triple-hybrid plants that presented the coupling markers SI19 and OPX11 were selfed and 189 F₂ seeds were obtained. DNA extracted from these F₂ plants was amplified with the molecular markers identified as specifically linked to each one of the rust resistance genes (Table 4), and eight F_2 plants were selected (Fig. 3) based on the marker info. These plants were selfed to obtain the next generations. For the selection of plants harboring all resistance genes to U. appendiculatus in subsequent generations, the presence of specific molecular markers (Table 4) was used as the selection

Marker ^a	Primer sequence $(5' \rightarrow 3')$	Resistance gene	Chr ^b	Source	Product size (bp)	Distance (cM)	AT (°C)	Reference
OPF10	GGAAGCTTGG	Ur-5	Pv4	B-190	026	2.1 (C)	35	Haley et al. (1993)
OPAC20	ACGGAAGTGG	Ur-11	Pv11	PI181986	490	NR (C)	35	Johnson et al. (1995)
OPX11	GGAGCCTCAG	Ur-14	Pv4	Ouro Negro	550	5.8 (C)	35	Faleiro et al. (2000), Souza et al. (2011)
SI19	F-	Ur-5	Pv4	B-190	460	NR (C)	53	Melloto and Kelly (1998)
	AATGCGGGGGGGTTCAATAGAAAACC R-			Mexico 309		3.3 (C)	50	Souza et al. (2007)
	AATGCGGGGGGAGATATTAAAAGGAAAG							
SAE19	F-CAGTCCTGACAACATAACACC	Ur-11	Pv11	BelMiDak RR-3	890	1.0 (R)	58	Queiroz et al. (2004)
	K-CAULUULAAAULAULUULUU							
SF10	F-GGAAGCTTGGTGAGCAAGGA	Ur-14	Pv4	Ouro Negro	1,050	4.3 (C)	65	Corrêa et al. (2000), Souza et al.
	K-GGAAGCTTGGCTATGATGGT							
SBA08	F-CCACAGCCGACGGAGGAG	Ur-14	Pv4	Ouro Negro	560	6.0 (C)	65	Corrêa et al. (2000), Souza et al.
	R-GCCATGTTTTTGTCCCC							(2011)
NR no rec	ombinants, linkage phase of the molecular mar	ker: coupling (C) and re	pulsion (R); A7	annealing tempe	tature		
^a RAPD (OP) and SCAR (S) markers							
^b Chromo	some or linkage group based on the integrated	common bean g	enetic a	nd chromosoma	ıl map (Pedrosa-H	Harand et al. 2(08)	

Table 1 DNA markers linked to the common bean rust resistance genes Ur-5, Ur-11 and Ur-14

Table 2 Common bean rust grading scale with the additional interpretative symbols established at the 1983 Bean Rust International Workshop (Stavely et al. 1983)

Grade ^a	Definition	Symbol
1	Immune, having no visible symptoms	Ι
2	Necrotic or chlorotic spots, without sporulation, and less than 0.3 mm in diameter	HR
2+	Spots, without sporulation, 0.3–1.0 mm diameter	HR
2++	Spots, without sporulation, 1.0-3.0 mm diameter	HR
2+++	Spots, without sporulation, greater than 3.0 mm diameter	HR
3	Uredia less than 0.3 mm diameter	R
4	Uredia 0.3-0.5 mm diameter	MR
5	Uredia 0.5-0.8 mm diameter	MS
6	Uredia larger than 0.8 mm diameter	S

I immune; *HR* hypersensitive or highly resistance; *R* resistance, reactions having any of the grades 2 with grade 3 present or predominant with some grade 4; *MR* moderately resistance, grade 4 predominant and no grade 5 uredia; *MS* moderately susceptible, uredia larger than grade 4, but none larger than grade 5; *S* susceptible, grade 6 uredia (Stavely and Pastor-Corrales 1989)

^a When several reaction grades are present as evaluation results, they are recorded in order of predominance

criterion (Fig. 2). Following this methodology it was possible to obtain 16 $F_{4:5}$ progenies phenotypic and genotypically similar to the recurrent cultivar 'Rudá'

and non-segregating for the DNA markers associated to the rust resistance genes.

Agronomic performance evaluation

The 16 selected F_{4:5} pyramid progenies were multiplied in the field to obtain enough seeds for evaluation of agronomic traits. The corresponding $F_{4:6}$ progenies and 75 "carioca" seeded progenies harboring one or two rust resistance genes derived from the backcross and pyramid programs, in addition to nine control cultivars, were tested for grain yield during the autumn of 2007. The resulting 16 $F_{4.7}$ pyramid lines and the other 84 treatments were also evaluated for grain yield and aspect of grains during the winter/spring of 2007. The *F*-statistic (P < 0.01) indicated that there was genetic variability for both evaluated traits among the analyzed common bean genetic material. The mean values for grain yield of the F_{4:7} pyramid lines did not differ statistically in relation to 'Rudá' and other "carioca" seeded control cultivars high yielding and widely grown in Brazil. These lines also shown aspect of grains statistically similar to that presented by recurrent parent 'Rudá' (Table 5).

Rust resistance tests

The 16 $F_{4:7}$ pyramid lines and control cultivars were screened with DNA markers specifically linked to each one of the rust resistance genes (Table 4): the

Table 3	Parameters	used to	o estimate	the	relative	genetic	similarity	between	the	recurrent	genitor	'Rudá'	and	BC_2F_1	and	BC_3F_1
plants res	sistant to co	mmon	bean rust													

Parameter	Cross/generation							
	Rudá × Mexico	309 (Ur-5)	Rudá × BelMiDa	k RR-3 (<i>Ur-11</i>)				
	BC ₂ F ₁	BC ₃ F ₁	BC ₂ F ₁	BC ₃ F ₁				
Proportion of resistant plants	6/22	7/33	5/18	7/22				
Number of RAPD primers randomly selected	13	13	13	13				
Total number of evaluated DNA bands ^a	93	80	69	95				
Number of polymorphic bands	35	39	36	39				
Percentage of polymorphic bands	37.6 %	48.7 %	52.2 %	41.0 %				
Expected genetic similarity ^b	87.5 %	93.7 %	87.5 %	93.7 %				
Average genetic similarity	89.4 %	90.2 %	86.1 %	90.7 %				
Range of genetic similarity	86.8–94.3 %	80.8-98.1 %	75.8–97.0 %	82.1-98.2 %				

^a PCR discrete products easily visualized

^b Estimator: $[1 - (0.5)^{n+1}] \times 100$, where 'n' is the number of backcross cycles

Genetic material	Resistance	Molecular	marker (resi	stance gene) ^a				
	gene	OPX11 ₅₅₀ (<i>Ur-14</i>) ^b	OPF10 ₉₇₀ (<i>Ur-5</i>)	OPAC20 ₄₉₀ (Ur-11)	SF10 _{1.050} (<i>Ur-14</i>)	SBA08 ₅₆₀ (Ur-14)	SI19 ₄₆₀ (<i>Ur-5</i>) ^b	SAE19 ₈₉₀ (Ur-11) ^b
$BC_3F_{2:3}$ plants (Rudá × Mexico 309)	Ur-5	0	1	1	1	1	1	1
BC ₃ F _{2:3} plants (Rudá × BelMiDak RR-3)	Ur-11	0	0	1	0	0	0	0
Rudá	-	0	0	0	0	0	0	1
Mexico 309	Ur-5	0	1	1	1	1	1	1
BelMiDak RR-3	Ur-11	0	0	1	0	0	0	0
BRSMG Pioneiro	Ur-14	1	1	1	1	1	0	1

Table 4 Molecular characterization of the common bean genetic material used for rust resistance gene pyramiding using DNA markers linked to the resistant gene

^a Presence (1) or absence (0) of DNA marker. Unexpected results (false-positive results) are highlighted in italics

^b DNA marker selected to assist the introgression of its associated rust resistance gene into cultivar 'Rudá' once it shown to be specifically linked to its tagged gene and polymorphic in relation to 'Rudá'

coupling markers SI19 (Ur-5) and OPX11 (Ur-14), and the repulsion marker SAE19 (Ur-11). In addition, these lines were also screened with specific races of U. *appendiculatus* used for phenotypically detecting each one of the rust resistance genes. The races 21-3, 29-15 and 53-3 of the rust pathogen provided by the fungal collection of the BIOAGRO/UFV can specifically detecting the genes Ur-5, Ur-11 and Ur-14, respectively. This is because they elicit hypersensitive or highly resistance reaction (HR, necrotic spots without sporulation) only in plants presenting those genes.

All 16 pyramid lines presented the expected molecular profile based on the DNA marker screening using the rust resistance parents and the recurrent cultivar 'Rudá' as standards (Table 6). In addition to the pyramid lines, only 'Mexico 309' presented the coupling marker SI19 linked to *Ur-5*. DNA marker OPX11, linked in coupling phase to the gene *Ur-14*, was also presented by the 16 pyramid lines and only by the control cultivars 'Ouro Negro' and 'BRSMG Pioneiro', both harboring *Ur-14*. All pyramid lines and only the common bean lines 'BelMiDak RR-3' and 'PI181996', both presenting the gene *Ur-11*, did not present the marker SAE19 linked in repulsion to *Ur-11*.

Out of the 16 $F_{4:7}$ pyramid lines, nine lines were selected as indeed harboring the genes *Ur-5*, *Ur-11* and *Ur-14*, once they presented HR reaction to all tested races of *U. appendiculatus*. The resistance spectra presented by these selected lines (TL-006, TL-009, TL-015, TL-016, TL-026, TL-032, TL-034, TL-0

035 and TL-037) indicate that they possess the genes Ur-5, Ur-11, and Ur-14 in homozygosis (Table 6). This is because no segregation has been observed in the 12 tested plants from each $F_{4:7}$ pyramid line and control cultivar. Lines TL-005, TL-011, TL-012 and TL-031 presented HR reactions to the races 21-3 and 29-15, confirming the presence of the genes Ur-5 and Ur-11, respectively. Lines TL-039 and TL-041 presented HR reactions to the races 21-3 and 53-3, detecting the genes Ur-5 and Ur-14, respectively. The other line (TL-038) shown harboring the genes Ur-11 and Ur-14, once it presented HR reaction respectively to the races 29-15 and 53-3 of U. appendiculatus (Table 6).

Except line TL-038, all others presented the gene *Ur-5* based on the rust pathogen inoculation test. Only two lines did not present the gene *Ur-11*: TL-039 and TL-041. The lines TL-005, TL-011, TL-012 and TL-031 shown did not harbor the gene *Ur-14* (Table 6).

Discussion

Resistance to pathogens is one of the main focuses of common bean breeders worldwide. The large number of diseases affecting this crop is a significant cause of the low yield observed in many dry bean growing regions. Among these diseases is the bean rust (Stavely and Pastor-Corrales 1989; Steadman et al. 2002; Souza et al. 2005, 2008, 2011).

Pyramid line/control cultivar	Market class	Grain yield (g/2	Grain yield (g/2 m ²)				
		Autumn 2007	Winter/spring 2007	Joint analysis	(scale 1–5) ^a		
TL-005	Carioca	870.39ab	665.94abcde	768.16ab	2.80cdef		
TL-006	Carioca	906.98ab	799.86abc	853.42a	2.93cdef		
TL-009	Carioca	927.78ab	626.82bcde	777.30ab	3.13defg		
TL-011	Carioca	819.05ab	711.10abcd	765.08ab	2.83cdef		
TL-012	Carioca	928.98ab	741.37abcd	835.17a	3.00cdef		
TL-015	Carioca	883.53ab	749.76abcd	816.65a	3.03cdefg		
TL-016	Carioca	847.52ab	759.17abcd	803.35a	2.70bcde		
TL-026	Carioca	783.47ab	740.05abcd	761.76ab	2.73cde		
TL-031	Carioca	955.72a	780.22abc	867.97a	3.00cde		
TL-032	Carioca	888.08ab	762.50abcd	825.29a	2.83cdef		
TL-034	Carioca	905.43ab	752.36abcd	828.89a	2.97cde		
TL-035	Carioca	778.49ab	761.24abcd	769.87ab	3.07cdefg		
TL-037	Carioca	889.84ab	638.69bcde	764.26ab	3.07cdefg		
TL-038	Carioca	930.52ab	759.69abcd	845.11a	2.83cdef		
TL-039	Carioca	863.25ab	680.46abcde	771.86ab	3.23defg		
TL-041	Carioca	868.40ab	710.47abcd	789.43ab	2.87cdef		
Rudá	Carioca	847.62ab	666.24abcde	756.93ab	3.20defg		
BRSMG Pioneiro	Carioca	873.31ab	818.21abc	845.76a	2.90cdef		
BRSMG Majestoso	Carioca	764.80ab	458.90ef	611.85ab	2.47bc		
Pérola	Carioca	817.90ab	615.93cdef	716.92ab	2.07ab		
BRSMG Talismã	Carioca	762.29ab	392.09f	577.19ab	2.50bcd		
BRSMG Madrepérola	Carioca	803.21ab	873.85a	838.53a	1.50a		
Ouro Negro	Black	750.56ab	612.24cdef	681.40ab	5.00h		
Mexico 309	Black	678.83b	551.18def	615.00ab	5.00h		
Vermelhinho	Red	556.02b	344.40f	450.21c	5.00h		

Table 5 Agronomic performance of "carioca" seeded pyramid lines and control cultivars in relation to grain yield (autumn and winter/spring of 2007) and aspect of grains (winter/spring of 2007), Coimbra, MG, Brazil

Means followed by the same letter do not differ by the Tukey test at 5 % probability

^a 1 = standard "carioca" type wanted by the market, medium-sized light cream-colored grains with light brown stripes; and 5 = extreme opposite (Marques-Júnior et al. 1997)

In this work we report a gene pyramiding approach assisted by DNA markers to develop "carioca" seeded high yielding common bean elite lines harboring simultaneously the genes Ur-5, from 'Mexico 309'; Ur-11, from 'BelMiDak RR-3'; and Ur-14, from 'BRSMG Pioneiro', a "carioca" seeded cultivar derived from the cross 'Rudá' × 'Ouro Negro'. The Brazilian black seeded cultivar 'Ouro Negro' is the original source of the gene Ur-14 (Faleiro et al. 2004; Souza et al. 2011), and the line 'PI181996' is the original source of Ur-11 (Souza et al. 2002). "Carioca" seeded beans are the most consumed in Brazil, representing around 70 % of the internal market. The developed resistance gene pyramid can potentially present a wide and durable resistance to the rust disease in Brazil and other world areas, e.g. Latin America and Africa. The reason is that it results in a HR type of resistance reaction when bean plants presenting it are challenged with the majority of the *U. appendiculatus* races identified in the abovementioned locations (Stavely and Pastor-Corrales 1989; Steadman et al. 2002; Souza et al. 2005, 2008).

The concept of molecular marker-assisted breeding was successfully used in this work. The development of two separate backcross programs assisted by RAPD-PCR fingerprinting allowed the individual

	DNA -	norkor (Docistor	noo cono) ^a	Race of U	. appendiculatus		
F4:7 pyramid	DINA I	liarkei (Kesistai	nce gene)		gene) ^b		Desistance cons ^c
line/Control cultivar	SI19 ₄₆₀	SAE19890	OPX11550	21.2 (Un 5)	20 15 (Un 11)	52 2 (Un 14)	Resistance gene
	(Ur-5)	(Ur-11)	(Ur-14)	21-3 (07-3)	29-13 (07-11)	55-5 (07-14)	
TL-005	1	0	1	HR	HR	R	Ur-5, Ur-11
TL-006	1	0	1	HR	HR	HR	Ur-5, Ur-11, Ur-14
TL-009	1	0	1	HR	HR	HR	Ur-5, Ur-11, Ur-14
TL-011	1	0	1	HR	HR	R	Ur-5, Ur-11
TL-012	1	0	1	HR	HR	R	Ur-5, Ur-11
TL-015	1	0	1	HR	HR	HR	Ur-5, Ur-11, Ur-14
TL-016	1	0	1	HR	HR	HR	Ur-5, Ur-11, Ur-14
TL-026	1	0	1	HR	HR	HR	Ur-5, Ur-11, Ur-14
TL-031	1	0	1	HR	HR	R	Ur-5, Ur-11
TL-032	1	0	1	HR	HR	HR	Ur-5, Ur-11, Ur-14
TL-034	1	0	1	HR	HR	HR	Ur-5, Ur-11, Ur-14
TI 025	1	0	1	LID	UD	UD	Un S. Un 11 Un 14
TL-035	1	0	1	нк	HK	нк	<i>Ur-3, Ur-11, Ur-14</i>
TL-037	1	0	1	HR	HR	HR	Ur-5, Ur-11, Ur-14
TL-038	1	0	1	R	HR	HR	Ur-11, Ur-14
TL-039	1	0	1	HR	R	HR	Ur-5, Ur-14
TL-041	1	0	1	HR	R	HR	Ur-5, Ur-14
Mexico 309	1	1	0	HR	S	R	Ur-5
BelMiDak RR-3	0	0	0	R	HR	R	Ur-11
PI181996	0	0	0	R	Ι	R	Ur-11
Ouro Negro	0	1	1	R	R	HR	Ur-14
BRSMG Pioneiro	0	1	1	R	R	HR	Ur-14
Rudá	0	1	0	S	S	S	-
US Pinto 111	0	1	0	S	S	S	-

Table 6 Rust resistance reaction and molecular characterization of pyramid lines and control cultivars

Pyramid lines selected as harboring simultaneously the rust resistance genes Ur-5, Ur-11 and Ur-14 are highlighted in grey

I immune, no visible symptoms; *HR* hypersensitive or highly resistance, necrotic spots without sporulation; *R* resistance, sporulating lesions (uredias) less than 0.3 mm in diameter; *MR* moderately resistance, uredias with 0.3-0.5 in diameter; *MS* moderately susceptible, uredias with 0.5-0.8 in diameter; *S* susceptible, uredias larger than 0.8 mm in diameter (Table 2)

^a Presence (1) or absence (0) of DNA marker

^b Results based on evaluation of 12 plants

^c Rust resistance genes presented by the pyramid lines and control cultivars detected or confirmed based on reaction elicited by specific races of *U. appendiculatus*

introgression of the Ur-5 and Ur-11 genes into cultivar 'Rudá' after only three BC cycles. In addition, molecular markers specifically linked to the three target genes were identified and/or validated during the breeding process (Fig. 1; Tables 1 and 4). These markers were effectively used to aid the pyramiding process and the development of advanced lines harboring simultaneously all resistance genes in homozygosis. The use of the DNA markers reduced the time and cost of pyramiding the rust resistance genes into the commercial "carioca" seeded cultivar 'Rudá'. The efficiency of the markers was checked by inoculation with specific races of the rust pathogen in the end of the breeding process (Table 6). Yield evaluations of the advanced lines demonstrated that no grain yield penalty in relation to recurrent progenitor was observed after the pyramiding process.

Marker-assisted selection strategy applied in this work presented an efficiency estimated at 56.25 %; out of the 16 pyramid lines selected as potentially harboring all the alleles of interest based on DNA markers, nine lines shown HR resistance when tested with specific races of U. appendiculatus used for phenotypically detecting each one of the rust resistance genes (Table 6). Considering these same pyramid lines and selection using marker SI19 (Ur-5), the efficiency was 93.75 %; one line among 16 did not present HR reaction to the race 21-3 (Ur-5). Selection efficiency of the marker SAE19 (Ur-11) was 87.50 %, once two lines did not present HR reaction to the race 29-15 (Ur-11). Regarding to the marker OPX11 (Ur-14), the selection efficiency was 75.00 %, once four lines among 16 did not show HR reaction when tested with the race 53-3 (Ur-14) of U. appendiculatus (Table 6). These results could be explained by the imperfect linkage between the markers and the rust resistance loci Ur-5, Ur-11 and Ur-14, although the frequencies of recombinants are higher than those previously estimated using biparental segregating populations (Table 1). An imperfect linkage exists when there is a certain genetic distance between the marker and the target gene. Being so, there are still a lot of room, opportunity, and need to develop most precise and effective marker-assisted selection tools to be adopted by the common bean breeding programs for cultivar development with multiple and wide disease resistance.

In future research activities of the Embrapa common bean breeding program, the "gene pyramid" formed by the rust resistance genes Ur-5, Ur-11 and Ur-14 will be transferred from the lines developed in this work to modern cultivars and elite lines from different market classes consumed in Brazil, such as "carioca", black, red, and "rajado" (medium-sized cranberry-sugar bean). In addition, it could also be transferred to white seeded elite lines, cranberry-sugar bean, dark red kidney, light red kidney and calima, targeting the international market. New rust resistance sources are also being tested and added to Embrapa breeding program to widen the basis of the present resistance gene pyramid. To be effective, the gene pyramiding strategy must be a continuous effort. Special focus is being done on the identification of effective rust resistance genes from Andean common bean gene pool. The reason is that combining resistance genes from different gene pools could widen the resistance spectra to a higher number of U. appendiculatus races.

Although the gene pyramiding is not fully accepted by the scientific community as a efficient breeding strategy to develop wide and durable resistance to pathogens, there are experimental evidence demonstrating that it confers more effective resistance to a cultivar than that conferred by the sum of the resistance present by its parents (Yoshimura et al. 1995; Huang et al. 1997; Singh et al. 2001). According to Schafer and Roelfs (1985), the probability that a pathogen will overcome a gene pyramid of more than two genes is extremely low. In order for this to happen, independent mutations in the pathogen genome must occur and they should be combined in the same genetic background, or they could occur simultaneously or sequentially in the genome of a specific isolate of the pathogen. Thrall and Burdon (2003) also report epidemiology data that support the use of gene pyramiding as an effective strategy for disease control. According these authors, there is an inverse correlation between pathogen fitness and the number of avirulence genes present in its genome. By studying the pathosystem Melampsora lini-Linum marginale in Australia, these authors observed that natural pathogen populations which were able to infect a greater number of host populations were less aggressive than pathogen populations which were able to infect a lower number of host populations. That means that the inactivation of several avirulence genes in the pathogen compromises its adaptability. In other words, it indicates that gene pyramiding can potentially keep the disease below an economical damage level and also prevent its fast dissemination.

The use of recurrent selection assisted by molecular markers as a breeding strategy to combine different target alleles into a same progeny presenting other desirable agronomic traits and still uses this and other superior progenies to form a promissory new base population has also been adopted by the Embrapa breeding program (Souza et al. 2012b). This strategy could be very useful to develop high agronomic performing and modern common bean cultivars harboring multiple rust resistance genes.

Acknowledgments This work was supported by grants from "Empresa Brasileira de Pesquisa Agropecuária—Embrapa", "Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq" and "Fundação de Amparo à Pesquisa do Estado de Minas Gerais—FAPEMIG" (Brazilian Government). CNPq also provided a research fellowship to the first author, which was greatly appreciated.

References

- Bigirimana J, Höfte M (2001) Bean anthracnose: inoculation methods and influence of plant stage on resistance of *Phaseolus vulgaris* cultivars. J Phytopathol 149:403–408
- Broughton WJ, Hernandez G, Blair M, Beebe S, Gepts P, Vanderleyden J (2003) Beans (*Phaseolus* spp.): model food legumes. Plant Soil 252:55–128
- Corrêa RX, Costa MR, Good-God PI, Ragagnin VA, Faleiro FG, Moreira MA, Barros EG (2000) Sequence characterized amplified regions linked to rust resistance genes in the common bean. Crop Sci 40:804–807
- Cruz CD (2013) GENES: a software package for analysis in experimental statistics and quantitative genetics. Acta Sci Agro 35:271–276
- Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15
- Faleiro FG, Vinhadelli WS, Ragagnin VA, Corrêa R, Moreira MA, Barros EG (2000) RAPD markers linked to a block of genes conferring rust resistance to the common bean. Genet Mol Biol 23:399–402
- Faleiro FG, Ragagnin VA, Moreira MA, Barros EG (2004) Use of molecular markers to accelerate the breeding of common bean lines resistant to rust and anthracnose. Euphytica 183:213–218
- Feijão, Dados de Conjuntura da Produção de Feijão (*Phaseolus vulgaris* L.) e Caupi [*Vigna unguiculata* (L.) Walp] no Brasil (1985–2012). Accessed on May 2014. Available at: http://www.cnpaf.embrapa.br/socioeconomia/index.htm
- Haley SD, Miklas PN, Stavely JR, Byrum J, Kelly JD (1993) Identification of RAPD markers linked to a major rust resistance gene block in common bean. Theor Appl Genet 86:505–512
- Huang N, Angeles ER, Domingo J, Magpantay G, Singh S, Zhang G, Kumaravadiel N, Bennett J, Khush GS (1997)

Pyramiding of bacterial blight resistance genes in rice: marker-assisted selection using RFLP and PCR. Theor Appl Genet 95:313–320

- Johnson E, Miklas PN, Stavely JR, Martinez-Cruzado JC (1995) Coupling- and repulsion-phase RAPDs for marker-assisted selection of PI181996 rust resistance in common bean. Theor Appl Genet 90:659–664
- Marques-Júnior OG, Ramalho MAP, Ferreira DF, Santos JB (1997) Viabilidade do emprego de notas na avaliação de alguns caracteres do feijoeiro (*Phaseolus vulgaris* L.). Rev Ceres 44:411–420
- Melloto M, Kelly JD (1998) SCAR markers linked to major disease resistance genes in common bean. Annu Rep Bean Improv Coop 41:64–65
- Michelmore R (1995) Molecular approaches to manipulation of diseases resistance genes. Annu Rev Phytopathol 15:393–427
- Moreira MA, Barros EG, Carneiro JES, Faleiro FG, Faria LC, Carneiro GES, Del-Peloso MJ, Paula-Júnior TJ, Abreu AFB, Ramalho MAP, Melo LC, Santos JB, Rava CA, Costa JGC, Sartorato A, Faria JC (2006) BRSMG Pioneiro: new carioca common bean cultivar resistant to anthracnose and rust, for the southern of Brazil. Annu Rep Bean Improv Coop 49:279–280
- Openshaw SJ, Jarboe SG, Beavis WD (1994) Marker-assisted selection in backcross breeding. In: Lower R (ed) ASHS/ CSSA Joint Plant Breeding Symposium on Analysis of Molecular Marker Data. Oregon State University, Corvallis, pp 41–43
- Pedrosa-Harand A, Porch T, Gepts P (2008) Standard nomenclature for common bean chromosomes and linkage groups. Annu Rep Bean Improv Coop 51:106–107
- Queiroz VT, Sousa CS, Souza TLPO, Costa MR, Sanglard DA, Ragagnin VA, Barros EG, Moreira MA (2004) SCAR marker linked to the common bean rust resistance gene Ur-11. Annu Rep Bean Improv Coop 47:271–272
- Ragagnin VA, Souza TLPO, Sanglard DA, Arruda KMA, Costa MR, Alzate-Marin AL, Carneiro JES, Moreira MA, Barros EG (2009) Development and agronomic performance of common bean lines simultaneously resistant to anthracnose, angular leaf spot and rust. Plant Breed 128:156–163
- Schafer JF, Roelfs AP (1985) Estimated relation between numbers of urediniospores of *Puccinia graminis* f. sp. *tritici* and rates of occurrence of virulence. Phytopathol 75:749–750
- Singh S, Sidhu JS, Huang N, Vikal Y, Li Z, Brar DS, Dhaliwal HS, Khush GS (2001) Pyramiding three bacterial blight resistance genes (*xa5*, *xa13* and *Xa21*) using markerassisted selection into indica rice cultivar PR106. Theor Appl Genet 102:1011–1015
- Souza TLPO, Alzate-Marin AL, Moreira MA, Barros EG (2002) Use of Belmidak RR-3 as a source for rust resistance in central Brazil. Annu Rep Bean Improv Coop 45:140–141
- Souza TLPO, Alzate-Marin AL, Moreira MA, Barros EG (2005) Análise da variabilidade patogênica de Uromyces appendiculatus em algumas regiões brasileiras. Fitopatol Bras 30:143–149
- Souza TLPO, Alzate-Marin AL, Dessaune SN, Nunes ES, Queiroz VT, Moreira MA, Barros EG (2007) Inheritance study and validation of SCAR molecular marker for rust resistance in common bean. Crop Breed Appl Biotechnol 7:11–15

- Souza TLPO, Alzate-Marin AL, Faleiro FG, Barros EG (2008) Pathosystem common bean—*Uromyces appendiculatus*: host resistance, pathogen specialization, and breeding for rust resistance. Pest Technol 2:56–69
- Souza TLPO, Dessaune SN, Sanglard DA, Moreira MA, Barros EG (2011) Characterization of the rust resistance gene present in the common bean cultivar Ouro Negro, the main rust resistance source used in Brazil. Plant Pathol 60:839–845
- Souza TLPO, Barros EG, Bellato CM, Hwang EY, Cregan PB, Pastor-Corrales MA (2012a) Single nucleotide polymorphism discovery in common bean. Mol Breed 30:419–428
- Souza TLPO, Pereira HS, Faria LC, Wendland A, Costa JGC, Del Peloso MJ, Abreu AFB, Melo LC (2012b) Embrapa Common Bean Breeding Program: a current overview. Annu Rep Bean Improv Coop 55:255–256
- Staples RC (2000) Research on the rust fungi during the twentieth century. Annu Rev Plant Pathol 38:49–69
- Stavely JR (2000) Pyramiding rust and viral resistance genes using traditional and marker techniques in common bean. Annu Rep Bean Improv Coop 44:1–4
- Stavely JR, Pastor-Corrales MA (1989) Rust. In: Schwartz HF, Pastor-Corrales MA (eds) Bean production problems in the

tropics. Centro Internacional de Agricultura Tropical, Cali, pp 159–194

- Stavely JR, Freytag GF, Steadman JR, Schwartz HF (1983) The 1983 Bean Rust Workshop. Annu Rep Bean Improv Coop 26:iv-vi
- Steadman JR, Pastor-Corrales MA, Beaver JS (2002) An overview of the 3rd Bean Rust and 2nd Bean Common Bacterial Blight International Workshops, March 4–8, 2002, Pietermaritzburg, South Africa. Annu Rep Bean Improv Coop 45:120–125
- Thrall PH, Burdon JJ (2003) Evolution of virulence in a plant host-pathogen metapopulation. Science 299:1735–1737
- Toenniessen GH, O'Toole JC, Devries J (2003) Advances in plant biotechnology and its adoption in developing countries. Curr Opin Plant Biol 6:191–198
- Wortmann CS, Kirkby RA, Eledu CKA, Allen DJ (1998) Atlas of common bean (*Phaseolus vulgaris* L.) production in Africa. Centro Internacional de Agricultura Tropical, Cali, p 17
- Yoshimura S, Yoshimura A, Iwata N, McCouch SR, Abenes ML, Baraoidan MR, Mew TW, Nelson RJ (1995) Tagging and combining bacterial blight resistance genes in rice using RAPD and RFLP markers. Mol Breed 1:375–387