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APPLIED MATHEMATICAL PROGRAMMING
USING ALGEBRAIC SYSTEMS

Preface
Thisis yet one more book on mathematical programming in use; thusit is useful to ask: Why
should anyone be interested?
Mathematical programming is an areain which two separate disciplines have arisen. First thereis
the algorithm and mathematical properties discipline. People working in this area are interested in the
theoretical and computational properties of mathematical programming solution techniques. The majority
of mathematical programming related articles, professiona journals, and textbooks could be classed into
thisdiscipline. The second disciplineis applied mathematical programmers. People working in this area
are users of the products developed by thosein thefirst area. Their fundamental concerns involve problem
formulation, computer specification, solution interpretation and communication with decision makers.
Their algorithmic and computational concerns frequently reduce to whether the problem can be solved so
that an application can be carried out. Few books address these topics.
This book is aimed toward the second group. Solution methods are discussed only to provide
insight into solution interpretation and to a limited extent insight into solution processes.
In that setting we fedl the book possesses several features which are notable.
1 An orientation toward applied modelers with solution principles covered only as. @) an aid
to problem solution interpretation (Chapters 3 and 12); and b) an aid in formulating
problems (Chapter 15).

2. An orientation toward use of the GAMS modeling system (Chapters 5, 12, 15 and 19).
Material will be presented on GAMS usage from the users perspective which complements
the currently available reference manuals.

3. An orientation toward algebraic modeling including material on algebraic modeling
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10.

techniques and a discussion of advantages (Chapter 5 in particular and all subsequent
modeling chapters, Appendix 1).
An underlying philosophy that mathematical programming modelers need to address all
aspects of the problem from data to answer. Thus, procedures for data collection, data
computation, problem formulation, model interpretation, and report creation are discussed
throughout the book.
Presentation of sufficient theory to allow a complete course with the applied work related
to the theory.
A treatment that spans the Agricultural Economics and Operations Research fields while
being accessible to upper division undergraduates and graduate students.
Discussion oriented around the assumptions of linear programming and their relaxation
(Chapter 1 and Part 2).
A detailed discussion of linear programming duality, including a discussion of how duality
concepts are useful in modeling and interpretation (Chapters 4 and 5).
A modeling discussion which concentrates on models which have been used in application
(with associated references) and/or have great application appeal. Thisdiscussion is
supported by examples which are redlistic in terms of problem types and sizes.
Unified coverage of topics either not discussed in other books or which are not
comprehensively, smultaneoudly covered elsewhere. Such topics include discussions of:
typica linear programming models and their use as building blocksin applications
multi year dynamicsin linear programming
linear programming approaches to non linear programming problems
multi-objective programming
price endogenous (sector) models
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risk

integer programming modeling

model debugging

model validation

extensive and current bibliographic citations

11. Unification of the whole treatment with GAMS, including a disk of the book examples.

CHAPTER I: INTRODUCTION
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This book isintended to both serve as a reference guide and a text for a course on Applied
Mathematical Programming. The material presented will concentrate upon conceptua issues, problem
formulation, computerized problem solution, and results interpretation. Solution algorithms will be treated
only to the extent necessary to interpret solutions and overview events which may occur during the solution

process.

1.1 Practical Problem Analysis

Problem analysisis by nature an interactive process in which an analyst perceives (or is told about)
a problem; conceptualizes an approach; tries out the approach; revises the approach to better fit the
problem (alternatively terminates the investigation or tries a new approach) implements the approach;
interprets the results; and terminates the inquiry, or transfers the approach to operational personnel. This
book will explicitly or implicitly deal with these topics under the assumptions that the problem analysis
technique is mathematical programming.

Mathematical programming problem analysis generally have comparative advantage in knowledge
of the problem, not in algorithm devel opment procedures. Consequently, the problem analyst should be
thoroughly informed on the topics of problem formulation, results interpretation, and model use but in large

part can treat the solution processes as a "black box."

1.2 Mathematical Programming Approach
Mathematical programming refersto a set of procedures dealing with the analysis of optimization
problems. Optimization problems are generally those in which a decision maker wishes to optimize some
measure(s) of satisfaction by selecting values for a set of variables. We will discuss that set of

mathematical programs where the variable values are constrained by conditions external to the problem at
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hand (for example, constraints on the maximum amount of resources available and/or the minimum amount
of certain items which need to be on hand) and sign restrictions on the variables. The general mathematical

programming problem we will treat is:

Optimize F(X)
Subject To (st.) G(X) € S
X €S

Here X isavector of decision variables. The level of X is chosen so that an objective is optimized where

the objective is expressed agebraically as F(X) which is called the objective function. This objective

function will be maximized or minimized. However, in setting X, aset of constraints must be obeyed
requiring that functions of the X's behave in some manner. These constraints are reflected algebraically by
the requirements that: @) G(X) must belong to S, and b) the variables individually must fall into S,.

The mathematical programming problem encompasses many different types of problems some of

which will be discussed in thisbook. In particular, if F(X) and G(X) are linear and the X's are individually

non-negative, then the problem becomes a linear programming problem. If the X € S, restriction requires

some X'sto take on integer values, then thisis an integer programming problem. If G(X) islinear, F(X)

guadratic, and the S, restrictions are smply non-negativity restrictions, then we have a guadratic

programming problem. Finally, if F(X) and G(X) are general nonlinear functions with S, being

nonnegativity conditions, the problem is a nonlinear programming problem.

1.3 Mathematical Programmingin Use
Mathematical programming is most often thought of as a technique which decision makers can use
to develop optimal values of the decision variables. However, there are a considerable number of other

potential usages of mathematical programming. Furthermore, as we will argue below, numerical usage for
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identification of specific decisionsis probably the least common usage in terms of relative frequency.

Three sets of usages of mathematical programming that we regard as common are: 1) problem
insight construction; 2) numerical usages which involve finding model solutions; and 3) solution algorithm
development and investigation. We will discuss each of thesein turn.

1.3.1 Generating Problem Insight

Mathematical programming forces one to state a problem carefully. One must define: @) decision
variables; b) constraints; c) the objective function; d) linkages between variables and constraints that
reflects complementary, supplementary and competitive relationships among variables; and €) consistent
data. The decision maker isforced to understand the problem interacting with the situation thoroughly,
discovering relevant decision variables and constraining factors. Frequently, the resultant knowledge
outweighs the value of any solutions and is probably the number one benefit of most mathematical
programming exercises.

A second insight generating usage of mathematical programming involves analytical investigation
of problems. Whileit is not generally acknowledged that mathematical programming is used, it provides
the underlying basis for alarge body of microeconomic theory. Often one sets up, for example, a utility
function to be maximized subject to a budget constraint, then uses mathematical programming results for
the characterization of optimal values. Inturn, it iscommon to derive theoretical conclusions and state the
assumptions under which those conclusions are valid. Thisis probably the second most common usage of
mathematical programming and again is a nonnumerical use.

1.3.2 Numerical Mathematical Programming

Numerical usages fall into four subclasses: 1) prescription of solutions; 2) prediction of

consequences; 3) demonstration of sengitivity; and 4) solution of systems of equations. The most

commonly thought of application of mathematical programming involves the prescriptive or normative
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guestion: Exactly what decision should be made given a particular specification of objectives, variables,
and congtraints? Thisis most often perceived as the usage of mathematical programming, but is probably
the least common usage over the universe of models. In order to understand this assertion, one simply has
to address the question: Do you think that many decision makers yield decision making power to a
model?" Very few circumstances allow this kind of trust. Most often, models are used for decision
guidance or to predict the consequences of actions. One should adopt the philosophical position that
models are an abstraction of reality and that an abstraction will yield a solution suggesting a practical
solution, not aways one that should be implemented.

The second numerical mathematical programming usage involves prediction. Here the model is
assumed to be an adequate depiction of the entity being represented and is used to predict in a conditiona
normative setting. Typically, this occurs in a business setting where the model is used to predict the
consequences of environmental aterations (caused by investments, acquisition of resources, weather
changes, market price conditions, etc.). Similarly, models are commonly used in government policy
settings to predict the consequences of policy changes. Moddl s have been used, for example, to analyze the
implications for social benefits of achange in ambient air quality. Predictive useis probably the most
common numerical usage of mathematical programming.

The third and next most common numerical usage of mathematical programming is sensitivity
demongtration. Many Ph.D. theses are done where no one ever tries to implement the solutions, and no one
ever uses the solutions for predictions. Rather, the model is used to demonstrate what might happen if
certain factors are changed. Here the model is usualy specified with a"realistic” data set, then isused to
demonstrate the implications of alternative input parameter and constraint specifications.

Thefinal numerical useis as atechnical device in empirical problems. Mathematical programs

can be used to develop such things as solutions to large systems of equations, equation fits which minimize

copyright Bruce A. McCarl and Thomas H. Spreen 15



absolute deviations, or equation fits which result in al positive or al negative error terms. In this case, the
ability of modern day solversto treat problems with thousands of variables and constraints may be called to
use. For example, alarge USDA econometric model was solved for a time using a mathematical
programming solver.
1.3.3 Algorithmic Development

Much of the mathematical programming related effort involves solution algorithm devel opment.
Formally, thisis not a usage, but an enormous amount of work is done here asis evidenced by the many
textbooks treating this topic. In such a setting the mathematical programming model is used as a vehicle
for solution technique development. Work is aso done on new formulation techniques and their ability to

appropriately capture applied problems.

1.4 Book Plan
Mathematical programming in application consists, to a large degree, of applied linear
programming. This book will not neglect that. Chapters 11-X will cover linear solution procedures,
duality, modeling, and advanced modeling, computational issues. Discussion will then move onto nonlinear
programming covering the genera case, then price endogenous programming, risk programs, and integer

programming.
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CHAPTER II: LINEAR PROGRAMMING

The most fundamental optimization problem treated in this book is the linear programming (LP)
problem. In the LP problem, decision variables are chosen so that alinear function of the decision
variablesis optimized and a smultaneous set of linear constraints involving the decision variablesis

satisfied.

2.1 TheBasic LP Problem

An LP problem contains several essential elements. First, there are decision variables(x;) the level

of which denotes the amount undertaken of the respective unknowns of which therearen (j=1, 2 ..., n).

Next isthe linear objective function where the total objective value (Z) equasc,x; + X, + + C X

Here ¢ is the contribution of each unit of x; to the objective function. The problem is also subject to
constraints of which there are m. An algebraic expression for the i constraint is a,x; + a,X, +** + 8,X,
< b (1=1, 2, ..., m) where b, denotes the upper limit or right hand side imposed by the constraint and g; is
the use of theitemsin thei"" constraint by one unit of x;.. Theg, by, and a; are the data (exogenous
parameters) of the LP model.

Given these definitions, the LP problem isto choose x;, X5, ..., X, SO asto
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Maximize (Max) Z =

subject to (st.)

CXp + CX, *
Xy X, v
BXp oA,
Xy t A%, o F
X, > 0,x, >0, ..,

This formulation may also be expressed in matrix notation.

nx1
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S.t.
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X >
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Many variants have been posed of the above problem and applications span a wide variety of

settings. For example, the basic problem could involve setting up: &) alivestock diet determining how
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much of each feed stuff to buy so that total diet cost is minimized subject to constraints on minimum and
maximum levels of nutrients; b) a production plan where the firm chooses the profit maximizing level of
production subject to resource (labor and raw materials) constraints; or ¢) a minimum cost transportation
plan determining the amount of goods to transport across each available route subject to constraints on

supply availability and demand.

2.2 Basic LP Example

For further exposition of the LP problem it is convenient to use an example. Consequently,
consider the decision problem of Joe's van conversion shop. Suppose Joe makes custom vans and can
produce either fine or fancy vans. The decision modeled is how many of each van type to convert this
week. The number converted this week by van type constitutes the decision variables. We denote these
variables as Xine aNd Xra,,- NOW suppose Joe can sell fancy vans for $13,000, but to do this he has to buy a
$10,000 plain van and use $1,000 worth of materials leaving a $2,000 profit margin. Similarly, the profit
margin on fine vansis $1,700. Joe figures the shop can work on no more than 12 vansin aweek. Joe hires
7 people including himself and operates 8 hours per day, 5 days aweek and thus has at most 280 hours of
labor available in aweek. Joe also estimates that a fancy van will take 25 hours of labor, while afine van
will take 20 hours.

In order to set up Joe's problem as an LP, we must mathematically express the objective and
constraint functions. Since the estimated profit per fancy vansis $2,000 per van, then 2,000, is the
total profit from all the fancy vans produced. Similarly, 1,700x;,, isthetota profit from fine van
production. Thetotal profit from all van conversionsis 2,000X;zq,+ 1,700X;.. This equation
mathematically describes the total profit consequences of Joe's choice of the decision variables. Given that

Joe wishes to maximize total profit, his objective is to determine the levels of the decision variables which
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will
Max Z = 2,000%y,, *+ 1700

Thisis the objective function of the LP model.

Joe's factory has limited amounts of capacity and labor. In this case, capacity and labor are
resources which limit the alowable (also called feasible) values of the decision variables. Since the
decision variables are defined in terms of vans converted in aweek, the total vans converted i Xiane + Xine-
This sum must be less than or equal to the capacity available (12). Similarly, total labor useis given by
25X aney + 20Xsine Which must be less than or equal to the labor available (280). These two limits are called
congtraints. Finally, it makes no sense to convert a negative number of vans of either type; thus, X, and
Xiine @€ restricted to be greater than or equal to zero. Putting it al together, the LP model of Joe's problem

is to choose the values of X;a,, and X;ine SO asto:

Max Z = 2,000, + 1,700%;,

st. Xiaey + Xie < 12
Xy 20x, . < 280
Xfancy ! Xfine 2 0

Thisis aformulation of Joe's LP problem depicting the decision to be made (i.e. the choice of X4y,
and X;;,.). The formulation also identifies the rules, commonly called constraints, by which the decison is
made and the objective which is pursued in setting the decision variables.

2.3 Other Forms of the LP Problem
Not al LP problems will naturally correspond to the above form. Other legitimate representations

of LP models are:
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1) Objectives which involves minimize instead of maximizei.e.,
Minimize Z = ¢,X; + CX, + ... + C X,
2) Constraints which are "greater than or equal to" instead of "less than or equal to"; i.e,,
a.X; +aX, + ... +aX, > b,
3) Constraints which are strict equalities; i.e.,
81Xy T 8% + ...+ 8 X, = by
4) Variables without non-negativity restriction i.e., x; can be unrestricted insigni.e., X ; 0.

5) Variables required to be non-positivei.e., x; < 0.

2.4 Assumptionsof LP

L P problems embody seven important assumptions relative to the problem being modeled. The
first three deal with the appropriateness of the formulation; the last four deal with the mathematical
relationships within the model.
2.4.1 Objective Function Appropriateness

This assumption means that within the formulation the objective function is the sole criteria for
choosing among the feasible values of the decision variables. Satisfaction of this assumption can often be
difficult as, for example, Joe might base his van conversion plan not only on profit but also on risk
exposure, availability of vacation time, etc. The risk modeling and multi-objective chapters cover the
relaxation of this assumption.
2.4.2 Decision Variable Appropriateness

A key assumption is that the specification of the decision variables is appropriate. This
assumption requires that

a) The decision variables are all fully manipulatable within the feasible region and are under
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the control of the decision maker.

b) All appropriate decision variables have been included in the model.

The nature and relaxation of sub-assumption (a) is discussed in the Advanced modeling
considerations chapter in the "Common Mistakes" section, asis sub-assumption (b). Sub-assumption © is
also highlighted in Chapters IX and XVI.

2.4.3 Constraint Appropriateness

The third appropriateness assumption involves the constraints. Again, thisis best expressed by
identifying sub-assumptions:

a) The constraints fully identify the bounds placed on the decision variables by resource
availability, technology, the externa environment, etc. Thus, any choice of the decision
variables which simultaneously satisfies al the constraints is admissible.

b) The resources used and/or supplied within any single constraint are homogeneous items
which can be used or supplied by any decision variable appearing in that constraint.

C) Congtraints have not been imposed which improperly eliminate admissible values of the
decision variables.

d) The constraints are inviolate. No considerations involving model variables other than
those included in the model can lead to the relaxation of the constraints.

Relaxations and/or the implications of violating these assumptions are discussed throughout the

text.
2.4.4 Proportionality

Variablesin LP models are assumed to exhibit proportionality. Proportionality deals with the
contribution per unit of each decision variable to the objective function. This contribution is assumed

constant and independent of the variable level. Similarly, the use of each resource per unit of each decision
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variable is assumed constant and independent of variable level. There are no economies of scale.

For example, in the general LP problem, the net return per unit of x; produced is c;. If the solution
uses one unit of x;, then ¢; units of return are earned, and if 100 units are produced, then returns are 100c;.
Under this assumption, the total contribution of x; to the objective function is always proportional to its
level.

This assumption aso applies to resource usage within the constraints. Joe's labor requirement for
fine vans was 25 hoursivan. If Joe converts one fine van he uses 25 hours of labor. If he converts 10 fine
vans he uses 250 hours (25*10). Tota labor use from van conversion is always strictly proportional to the
level of vans produced.

Economists encounter several types of problemsin which the proportionality assumption is grossy
violated. In some contexts, product price depends upon the leve of production. Thus, the contribution per
unit of an activity varies with the level of the activity. Methods to relax the proportionality assumption are
discussed in the nonlinear approximations, price endogenous, and risk chapters. Another case occurs when
fixed costs are to be modeled. Suppose thereis afixed cost associated with a variable having any non-zero
value (i.e., aconstruction cost). Inthiscase, total cost per unit of production is not constant. The integer
programming chapter discusses relaxation of this assumption.

2.4.5 Additivity

Additivity deals with the relationships among the decision variables. Simply put their contributions
to an equation must be additive. The total vaue of the objective function equals the sum of the
contributions of each variable to the objective function. Similarly, total resource use is the sum of the
resource use of each variable. This requirement rules out the possibility that interaction or multiplicative
terms appear in the objective function or the constraints.

For example, in Joe's van problem, the value of the objective function is 2,000 times the fancy vans
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converted plus 1,700 times the fine vans converted. Converting fancy vans does not alter the per van net
margin of fine vansand vice versa. Similarly, total labor use is the sum of the hours of labor required to
convert fancy vans and the hours of labor used to convert fine vans. Making alot of one van does not alter
the labor requirement for making the other.

In the generad LP formulation, when considering variables x; and x,, the value of the objective
function must always equal ¢; times x; plus ¢, times x,. Using x; does not affect the per unit net return of x,
and vice versa. Similarly, total resource use of resource | isthe sum of g;x; and a,x,. Using x; does not
alter the resource requirement of x,. The nonlinear approximation, price endogenous and risk chapters
present methods of relaxing this assumption.

2.4.6 Divisibility

The problem formulation assumes that all decision variables can take on any non-negative value
including fractional ones; (i.e., the decision variables are continuous). In the Joe's van shop example,
this means that fractional vans can be converted; e.g., Joe could convert 11.2 fancy vans and 0.8 fine vans.

This assumption is violated when non-integer values of certain decision variables make little sense.
A decision variable may correspond to the purchase of atractor or the construction of a building whereit is
clear that the variable must take on integer values. In this case, it is appropriate to use integer
programming.

2.4.7 Certainty

The certainty assumption requires that the parameters ¢, by, and a; be known congtants. The
optimum solution derived is predicated on perfect knowledge of al the parameter values. Since all
exogenous factors are assumed to be known and fixed, LP models are sometimes called non-stochastic as
contrasted with models explicitly dealing with stochastic factors. This assumption givesrise to the term

"deterministic” analysis.
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The exogenous parameters of aLP model are not usualy known with certainty. Infact, they are
usually estimated by statistical techniques. Thus, after developing aLP mode, it is often useful to conduct
sengitivity analysis by varying one of the exogenous parameters and observing the sensitivity of the optimal
solution to that variation. For example, in the van shop problem the net return per fancy van is $2,000, but
this value depends upon the van cost, the cost of materials and the sale price al of which could be random
variables.

Considerable research has been directed toward incorporating uncertainty into programming

models. We devote a chapter to that topic.

CHAPTER IIl SOLUTION OF LP PROBLEMS: A MATRIX ALGEBRA

APPROACH

Linear programming solution has been the subject of many articles and books. Complete coverage
of LP solution approaches is beyond the scope of this book and is present in many other books. However,
an understanding of the basic LP solution approach and the resulting properties are of fundamental
importance. Thus, we cover LP solution principles from a matrix algebra perspective demonstrating the

simplex agorithm and the properties of optimal solutions. In addition, we cover several practica matters.
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3.1 Matrix Formulation of the Linear Programming Problem

The matrix version of the basic LP problem can be expressed asin the equations below.

Max CX
st. AX <
X >

Here the term CX is maximized where C is an 1xN vector of profit contributions and X is an Nx1
vector of decision variables. This maximization is subject to inequality constraints involving M resources
so that A isan MxN matrix giving resource use coefficients by the X's, and b is an Mx1 vector of right
hand side or resource endowments. We further constrain X to be non-negativein al elements.

It is common to convert the LP inequality system to equalities by adding dlack variables. These
variables account for the difference between the resource endowment (b) and the use of resources by the
variables (AX) at no cost to the objective function. Thus, define

S=b-AX
asthe vector of dack variables. Each dack variable isrestricted to be nonnegative thereby insuring that
resource use is always less than or equal to the resource endowment. One dack variable is added for each
congtraint equation. Rewriting the constraints gives

AX +1S=Dh,
wherel isan M x M identity matrix and SisaMx1 vector. Also the dlack variables appear in the
objective function with zero coefficients. Thus, we add an 1xM vector of zero's to the objective function
and conditions constraining the dack variables to be nonnegative. The resultant augmented LPis

Max CX + OS
st. AX + IS

x
0]
v
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Throughout the rest of this section we redefine the X vector to contain both the origina X's and the
dacks. Similarly, the new C vector will contain the original C along with the zeros for the dacks, and the

new A matrix will contain the original A matrix along with the identity matrix for the dacks. The resultant

problemis
Max CX
st. AX =
X >

3.2 Solving LP'sby Matrix Algebra
LP theory (Dantzig(1963); Bazarra, et al.) reveals that a solution to the LP problem will have a set
of potentially nonzero variables equal in number to the number of constraints. Such a solution is called a
Basic Solution and the associated variables are commonly called Basic Variables. The other variables are

sat to zero and are called the nonbasic variables. Once the basic variables have been chosen; the X vector

may be partitioned into X, denoting the vector of the basic variables, and X, denoting the vector of the
nonbasic variables. Subsequently, the problem is partitioned to become
Max CgX; + CpXgp

st.  BXg + AgXy = b
X X

v
=

B NB
The matrix B is called the Basis Matrix, containing the coefficients of the basic variables as they appear in
the congtraints. A, contains the coefficients of the nonbasic variables. Similarly C; and Cy5 are the
objective function coefficients of the basic and nonbasic variables.

Now suppose we address the solution of this problem via the simplex method. The simplex

solution approach relies on choosing an initial B matrix, and then interactively making improvements.
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Thus, we need to identify how the solution changes when we change the B matrix. First, let uslook at how

the basic solution variable values change. If we rewrite the constraint equation as

BX, = b - AygXe

This equation may be solved by premultiplying both sides by the inverse of the basis matrix (assuming non-

singularity) to obtain the solution for the basic variables,

B'BX, = IX; =B o X, = Blb

We may also examine what happens when the nonbasic variables are changed from zero. Multiply both
sidesof the equation including the nonbasic variables by B* giving

XB = B-l b - B-l ANB XNB'

This expression gives the values of the basic variables in terms of the basic solution and the nonbasic
variables. Thisisone of the two fundamental equations of LP. Writing the second term of the equation in

summation form yields

X = B'b- ¥ Blax

jeNB

where NB gives the set of nonbasic variables and g the associated column vectors for the nonbasic
variables x; from the original A matrix. This equation shows how the values of the basic variables are

altered as the value of nonbasic variables change. Namely, if al but one ( xn) of the nonbasic variables are

copyright Bruce A. McCarl and Thomas H. Spreen 34



left equal to zero then this equation becomes

_ -1 _ -1
X = B - Blax

This gives a smultaneous system of equations showing how all of the basic variables are affected by
changes in the value of a nonbasic variable. Furthermore, since the basic variables must remain non-
negative the solution must satisfy

Xo = B "b-B *aXx = U
This equation permits the derivation of a bound on the maximum amount the nonbasic variable X, can be
changed while the basic variables remain non-negative. Namely, X, may increase until one of the basic

variables becomes zero. Suppose that the first element of X to become zero is xg;.. Solving for Xg;- gives

Xg- = (B7'b). - (B'a).x, = 0

where (), denotes the i element of the vector. Solving for X, Yields

X, = (B ’1b)i 1(B ’16111)i ., Where (B ’16111)i .= 0.
This shows the value of X, which causes the I"™ basic variable to become zero. Now since X, must be
nonnegative then we need only consider casesin which abasic variable is decreased by increasing the
nonbasic variable. This restricts attention to cases where (B™ an)' is positive. Thus, to preserve non-

negativity of al variables, the maximum value of X, is

x. = ((B'b)/(B ') )fordliwhere (B'a) > O

|

The procedure is called the minimum ratio rule of linear programming. Given the identification of

anonbasic variable, this rule gives the maximum va ue the entering variable can take on. We aso know
that if I is the row where the minimum is attained then the basic variable in that row will become zero.
Consequently, that variable can leave the basis with X, inserted in its place. Note, if the minimum ratio

rule reveals atie, (i.e., the same minimum ratio occurs in more than one row), then more than one basic
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variable reaches zero at the sametime. In turn, one of the rows where the tie existsis arbitrarily chosen as
I" and the new solution has at |least one zero basic variable and is degenerate’. Also, note that if al the
coefficients of X, arezeroor negative-- (B ’16111)| < 0--for dl I -- then this would indicate an unbounded
solution, if increasing the value of the nonbasic variable increases the objective function, since the variable
does not decrease the value of any basic variables.

Another question is which nonbasic variable should be increased? Resolution of this question
requires consideration of the objective function. The objective function, partitioned between the basic and
nonbasic variables, is given by

Z = CgXg + CpXyg
Substituting the Xz equation (3.1) yields
Z = Cy (B'b - B *AXyg) + CygXyg

or

Z=CgB b - CyB 'ARXys *+ CueXys
or

Z = CgB'b - (CaB A - Cup)Xpe
This s the second fundamental equation of linear programming. Expressing the second term in summation
notation yields

Z = CgB'b- ¥ (CgB'a - ¢)x;
jeNB
This expression gives both the current value of the objective function for the basic solution (CgB™b since
all nonbasic x; equal zero) and how the objective function changes given a change in the value of nonbasic
variables. Namely, when changing X,
Z = CgB'b-(CiB'a -c)x, .

Since the first term of the equation is equal to the value of the current objective function, (Z), then

1 A degenerate solution is defined to be one where at least one basic variable equals zero.
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it can be rewritten as
_ 7 _ 1,
Z =27 - (CgB a cn)xn \-
For maximization problems, the objective value will increase for any entering nonbasic variable if
its term, CBB'la11 - cn, isnegative. The criterion that is most commonly used to determine which variable

to enter is; select the nonbasic variable that increases the value of objective function the most per unit of

the variable entered. Thus, we choose the variable to enter as that variable x, such that the value of CzB

18, . C, ismost negative. Thisisthe smplex criterion rule of linear programming and the term CBB'la11 -

C, is called the reduced cost. If there are no variables with negative values of CzB™ a,-C, then the
solution cannot be improved on and is optimal. However, if avariable isidentified by this rule then it
should be entered into the basis. Since the basis always has a number of variables equal to the number of
congtraints, then to put in a new variable one of the old basic variables must be removed. The variable to
remove is that basic variable which becomes zero first as determined by the minimum ratio rule. This
criteria guarantees the non-negativity condition is maintained providing the initial basis is non-negative.
These results give the fundamental equations behind the most popular method for solving LP problems
which is the smplex algorithm. (Karmarkar presents an alternative method which is just coming into use.)
3.21 The Simplex Algorithm
Formally, the matrix algebra version of the simplex agorithm (assuming that an initial feasible
invertible basis has been established) for a maximization problem follows the steps:
1) Sedectaninitia feasible basis B; commonly thisis composed of all dack variables and isthe
identity matrix.
2) Cdculatethe Basisinverse (BY).
3)  Calculate CzB g - ¢ for the nonbasic variables and identify the entering variable as the
variable which yields the most negative value of that calculation; denote that variable as xn; if

there are none, go to step 6.
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4)  Calculate the minimum ratio rule.

Min (B 'b), / (B 'a), where (B 'a), > 0

Denote the row where the minimum ratio occurs asrow | if there are no rows with
(B 'a), >0 thengotostep 7.

5) Removethevariablethat isbasicin row I” by replacing the variable in the I"™ column of the
basis matrix with column a, and recalculate the basisinverse. Go to step 3.

6) Thesolutionisoptimal. The optimal variable values equal Bb for the basic variables and
zero for the nonbasic variables. The optimal reduced costs are CzB 3 - ¢; (also commonly
called Z; - c). Theoptimal value of the objective function is C;B™b. Terminate.

7)  Theproblem isunbounded. Terminate.

3.2.2 Example

Suppose we solve Joe's van conversion problem from Chapter 11. After adding slacks that

problem becomes
Max 2000X,. + 1700X;,. + O0s, + Os
st. XfanCy + Xie © S = 12
25Xfancy 20X o + s, = 280

Now suppose we choose s, and s, to be in the initial basis. Thus, initialy

12
C = ,2000 1700 0 O b =
280
1 110
A =
2@1 001 xfanc:y
Xg = X = X
SZ fine
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CB = [ O O ] CNB = [ 2000 1700 ]

o 10 A 1 1

101 Ne 25 20
. 10
01

Now using criterion for selecting the entering variables (Cg B ay - Cyg):

CyB Ay -Cyp = (-2000 ~1700,

Taking the variable associated with the most negative value (-2000) from this calculation indicates the first
nonbasic variable Xi,,,, should enter. Computation of the minimum ratio rule requires the associated Ba,

and B'b

. [1o0l[21] [12
B al‘[01H25} ‘_25}
[ 12 ]
Xg =B™b _[280_
Using the criterion for leaving variable
: 1 1 VT 12/1 | | 12 | it
I\/Iiln [(B b)./(B &), | = Min [280/25 } = [11.2 } =112=1i" =2

In this case, the minimum ratio occursin row 2. Thus, we replace the second basic variable, s,, with X,

At this point, the new basic and nonbasic items become
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C :[02000] CNB:[:L?OOO]

B
111 1 10
B‘[ozs} ANB_[ZOl}

and the new basisinverseis

Bl - 1 -125
1| 0125

Recomputing the reduced costs for the nonbasic variables Xy, and s, gives

C,B A -Cyy = 0 2000, [ 1 ‘1’25H 10

O 1/25 20 1 ]_[ 1700 O] = [_100 80]
Observe that the procedure implies X;;. should enter thisbasis. The coefficients for the minimum ratio rule

are
1. | 1-125 1| |15 -1, | 0.8
Blaz‘[o 1/25”20]‘[4/5}’ Blb‘[n.z}

The minimum ratio rule computation yields

Min [ 0.8/(1/5) ]

I B A T
11.2/ (4/5) ‘[14}‘4 =1

In the current basis, s, isthe basic variable associated with row 1. Thus, replace s, with X;;.. The

new basis vector is [Xine Xtag,] and the basic matrix is now

1 11
B‘[ 20 25]
In turn the basis inverse becomes
1 |5 -15
B ‘[—4 1/5}

The resultant reduced costs are
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C,B A, - Cyg = 1700 2000 ][ > ‘1/5}

10 )

Since al of these are greater than zero, this solution isoptimal. In this optimal solution

ceto-[ 5 28] 2] (4]

X
X

_ fine
Xg =

fancy
Z = CgXp = 22800

CsB'3-¢ =, 00500 60, jcNB

This method may be expanded to handle difficulties with finding the initial nonnegative basis using

ether the Phase I/Phase |1 or BIG M methods discussed below.

3.3 Solutions and Their Interpretation

LP solutions arise and are composed of a number of elements. In this section we discuss genera
solution interpretation, common solver solution format and contents, special solution cases and sensitivity
anaysis.
3.3.1 General Solution Interpretation

The two fundamental equations developed in section 3.1 may be utilized to interpret the LP solution
information. The first (3.1) shows how the basic variables change as nonbasic variables are changed,
X, =B - EB’la]xj

B
jeNB
and the second (3.2) give the associated change in the objective function when a nonbasic variable is changed

Z=CgB b - X(CiB'a - )

jeNB
Suppose we assume that an optimal basic solution has been found and that B and B are the associated basis

and basisinverse. Now suppose we consider changing the congtraint right hand sides. The implications of
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such a change for the solution information may be explored using calculus. Differentiating the above

equations with respect to the right hand side b yields

oXg
ab
These resultsindicate that C;B™ is the expected rate of change in the objective function when the right hand

_Rr-1

sides are changed. The values C;B™* are called the shadow prices and give estimates of the marginal values of

the resources (later they will also be called the Dual Variables or Dual Solution). Similarly, B* givesthe

expected rate of change in the basic variables when resources are changed. Thus when the first right hand side
is changed, the basic variables change at the rate given by the first column within the basisinverse; i.e., the
first variable changes at rate (B),;, the second at (B),; and so on.
Other results may be derived regarding changes in nonbasic variables. Partially differentiating the
objective function equation with respect to a nonbasic variable yields
2—2 - (CgB ' ~c) jeNB
This shows that the expected marginal cost of increasing a nonbasic variable equals the negative of CgB™a - ¢,

, aconsequence the CzB™g, - ¢; term isusually called reduced cost. The marginal effect of changesin the
nonbasic variables on the basic variables is abtained by differentiating. Thisyields

oX

—= = -B'3 jeNB

9X;

which shows that the marginal effect of the nonbasic variables on the basic variableisminusB*a. The B*
congtitutes a trandation from the original resource use space (i.e., ) into the basic variables space and tells us
how many units of each basic variable are removed with a margina change in the nonbasic variable. We can
also use these results to further interpret the aZ/axj equation. The margina revenue due to increasing a non

basic variable is equd to its direct revenue (c; the objective function coefficient) less the value of the basic

variables (Cg) times the amount of the basic variables diverted (Bg). Thus, this equation takes into account
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both the direct effect from increasing x; plus the substitution effect for the basic variables.
3.3.2 Examples of Solution Interpretation
This set of genera interpretations may be applied to the Joe's Van example above. The appropriate

mathematical expressions for each of the four items are as follows.

z 1 _ [ 5-15 _

= - C,B = [1700 2000] RT: = [500 60]
XKy g1 _ [ 5 -15

o | -4 15

oz l1p . [ 5-15 10] e
*o (CeB Az~ Cye) = -[1700 2000] R [01] [0 0] = [-500 -61]
Xg Bt ) [5-ws 10 ~[-5 ws
X e - -4 15 01 S| 4-ws

NB

Note the first expression, which gives the partial of Z with respect to b, tells how the objective function
changes when the right hand sides change. Thus, if the capacity limit was changed upward from 12, one
would expect the objective function to increase $500 per unit. Similarly if the second right hand side or the
labor limit was increased upwards from 280 then one would expect a return of $60 per hour. The second
expression indicates the anticipated change in the values of the basic variables when the right hand sides are
changed; the basic variables in the model are arranged with Xy, being first and X,,,, being second. The first
column of the basis inverse corresponds to what happens if the van capacity right hand side is changed,
wheresas, the second column corresponds to what happens if the labor right hand sideis changed. Thus, if
capacity was expanded to 13, one would expect to produce 5 more fine vans and 4 less fancy vans. Similarly,
if [abor was expanded, the number of fine vans would decrease by 1/5 per unit and the number of fancy vans
would increase by 1/5. The particular signs of these tradeoffs are caused by the original data. Fancy vans use
more labor then fine vans. Thus, when capacity is expanded, more fine vans are made since they use labor

more intensively while, if labor is increased, one makes more fancy vans.
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Now let us examine the effects of changes on the objective function when the nonbasic variables are
atered. In this problem we have two nonbasic variables which are the dack variables for the two resources.
The effect of increasing the nonbasicsis a $500 decrease if we increase lack capacity, and a $60 decrease if
we increase slack labor. Thisis exactly the opposite of the resource values discussed above, since the
conseguence of increasing the dacksis the same as that of decreasing the resource endowments.

The interpretation of the basis inverse aso allows usto get further information about the interpretation
of the change in the objective function when the right hand sides have changed. Namely, if changing capacity
causes five more fine vans to be produced (each worth $1700, leading to a $8500 increase but, four less fancy
vans worth $8000) the net effect then is a $500 increase which equals the shadow price. Similarly, the labor
change causes $400 more worth of fancy vans to be produced but $340 less fine vans for a net value of $60.
Overdl, this shows an important property of linear programming. The optimal solution information contains
information about how items substitute. This substitution information is driven by the relative uses of the
congtraint resources by each of the aternative activities. Thisis true in more complex linear programming
solutions.

3.3.3 Finding Limits of Interpretation

The above interpretations only hold when the basis remains feasible and optimal. Ranging analysisis

the most widely utilized tool for analyzing how much alinear program can be atered without changing the
interpretation of the solution. Ranging analysis deals with the question: what is the range of valuesfor a
particular parameter for which the current solution remains optimal? Ranging analysis of right-hand-side (b;)
and objective function coefficients (¢) is common; many computer programs available to solve LP problems
have options to conduct ranging analyses although GAMS does not easily support such features (See chapter
19 for details).

3.3.3.1 Ranging Right-Hand-Sides
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Let us study what happens if we alter the right hand side (RHS). To do this let us write the new RHS
in terms of the old RHS, the size of the change and a direction of change,
Bray = Do + OF
where b, isthe new RHS, b, isthe old RHS, 6 is a scalar giving the magnitude of the change and r isthe

direction of change. Given an r vector, the resultant values for the basic variables and objective function are

Xg = B 'b,, B *(b,, + Or) B 'h,, + 0B Ir

Z = CgB*'b, = CiB'b,, +6) =CB'b, + 6C,B

while CgB - la]. -C isunchanged. The net effect is that the new solution levels are equal to the old solution
levels plus 6B *r and the new objective function is the old one plus 6C; B™ r. For the basis to still hold the
basic variables must remain nonnegative as must the reduced costs (C;B™a - ¢;). However, since the reduced

costs are unaltered we must only worry about the basic variables. Thus the condition for Xg can be written

with non-negativity imposed

Xg =B, =BM,+6BT >0

and merits further examination in terms of the admissible value of 6.
The above expression gives a smultaneous set of conditions for each basic variable for which one can
solve those conditions. In that case, one gets two cases which arise across the set of conditions depending on

the sign of individual elementsin Br.

B !b, )
0 > - g where (B~1r), > 0
(B '),
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and

B b ).
0 < - g where (B1r), < 0
(B *r),

much as in the row minimum rule where positive values of B™*r limit how negative 6 can be and negative
numbers limit how positive 6 can become. This result shows the range over which 6 can be altered with the
basis remaining optimal .
Example

Suppose in the Joe's van factory example we wished to change the first right hand side.
Ordinarily, if one wishes to change the i™" RHS, then r will be a vector with all zeros except for aone

in the i™ position, as illustrated below

J
0
r = 1| - i dement
0
0
Thus
12 1 12 + 0O
bnew - * -
280 0 280

The resultant values of Xz becomes
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4] 5 -15||1
Xg = +
new | 8 | -4 1/5 0
4] 5
= + 6 > O
| 8 | -4
which implies
-8 = 4 < 0 < 8 . 2
5 -4

Therefore the first right hand side can be changed up by 2 or down by 0.8 without the basis changing. Note
that during this dteration the solution (B b) does change, but B™* does not. Furthermore, this gives arange of
values for b, for which the marginal value of the resource (CgB™) remains the same.

This approach also encompasses a generaization of the RHS ranging problem. Namely, suppose we
wish to ater several RHSs at the same time. In this case, the change vector (r) does not have one entry but
rather several. For example, suppose in Joe's van that Joe will add both capacity and an employee. In that

case the change vector would look like the following:

12
280

1
40

12 + 0
280 + 40

new

3.3.3.2 Ranging Objective Function Coefficients

The analysis of ranging objective function coefficients is conceptually similar to RHS ranging. We
seek to answer the question: what is the range of values for a particular objective function coefficient for
which the current basisis optimal?

To examine this question, write the new objective function as the old objective function plus

v, which is a change magnitude, times T which is a direction of change vector.

C = Cyg + YT

new
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Simultaneously, one has to write an expression for the objective function coefficients of the basic variables

C = Coaa * YTg

Bnew
where Tg gives the way the Cy's are altered. Subsequently, one can reexpress the restriction that the reduced
cost values must be nonnegative as

(C;B 718]' - Cj)new = CgreB 718]' " Cnew 2 0

which reduces to

(CeB ™3 - €)pew = (CgB '8 - C)yq + Y(TgB '@ - T) = 0
In turn, we discover for nonbasic variables
y<CgB'g - ¢
while for basic variables
-(C.B 'a - c
< (Ce 181 ’)O'd, where (T;B'a - T) < O
(TBB a - TJ.)
- (C,B'a - ¢
> (GB 3 J), where (T,B '3 -T) >0
(TBB’la]. - TJ.)

Example

Suppose in our example problem we want to alter the objective function on X4, S0 it equals
2,000 + y. Thesetup thenis
Co, =12000 1700 O Q +y1 0 O @
and

TB = [O 1]

0 C; B *A- C,, for the nonbasics equals
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5 —1/5} [1 0

4 15 O:J—[O OJ} = 500 60 + 4 U5 > O

500 60 + y{ 0 1
which implies-300 < y < 125 or that the basisis optimal for any objective function value for X,,,, between

2125 and 1700. This shows arange of prices for Xy, for which its optimal level is constant.

3.3.3.3 Changes in the Technical Coefficient Matrix

The above analysis examined changes in the objective function coefficients and right hand sides. It

is possible that the technical coefficients of several decision variables may be simultaneoudy varied. This can

be done smply if al the variables are nonbasic. Here we examine incremental changes in the constraint
matrix. For example, afarmer might purchase a new piece of equipment which alters the labor requirements
over several crop enterprises which use that equipment. In this section, procedures which alow analysis of

simultaneous incrementa changes in the constraint matrix are presented.

Consider alinear programming problem

Max Z CX

s.t. Kx
X

[\

where the matrix of the technical coefficientsis given by
A= A+M

where K, A, and M are assumed to be mxn matrices. Suppose the matrix M indicates a set s multaneous

changesto be made in A and that the problem solution is nondegenerate, possessing an unique optimal
solution. Then the expected change in the optimal value of the objective function given M is

ZI’IGN - ZO|d = 'U*MX*
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where X" and U” are the optimal decision variable values (B b) and shadow prices ( C;B™) for the unaltered
origina problem.

The equation is an approximation which is exact when the basis does not change. See Freund(1985)
for its derivation and further discussion. Intuitively the equation can be explained as follows: since M gives
the per unit change in the resource use by the variables, then MX ™ gives the change in the resources used and
UM X" then gives an approximation of the value of this change. Further, if M is positive, then more resources
are used and the Z value should go down so aminusis used. McCarl, et d., (1990) have investigated the
predictive power of this equation and conclude it is a good approximation for the case they examined.

Illustrative Example

To illustrate the procedure outlined in the preceding section, consider the Joe's van shop model and

suppose we wish to consider the effect of an equal change in the labor coefficients. For a change equal 6, the

problem becomes
Max Z(0) = 2000X ¢y, * 1700X;
st. Xtancy + Xie + S = 12
(25 + O)Xiyyy  + (20 + )X + S, = 280
Xy Xiine? S, S, > O
For nochange (0 = 0), the optimal solution to this problemis

X" = Blb:H

U® =C,B ! =500 60

with the optimal value of the objective function equal to 22,800, our change matrix in this caseis

g
“laa
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Thus, the change in the value of the objective function is given by

Loow — Lo -U "MX "

0 0|4
- o
A Allr

Suppose the labor requirement is reduced by 1 hour for both vans so that 6 = -1, then the anticipated

-500 60,

increase in the objective function that would result from using the new machineis
AZ =-U'MX =720
aresolution of the revised problem shows the objective function changes by 720.
3.3.4 Finding the Solution
As shown above, the linear programming solution contains a lot of information relative to the ways
the objective function and basic variables change given changes in parameters. However, not al this
information isincluded in an optimal solution as reported by modeling systems such as GAMS. Consider the

following problem

Max Z = 3x;, + 2X, + 0.5x, (ZROW)
X, + X + Xy < 10 (CONSTRAIN 1)
X, = % < 3 (CONSTRAIN 2)
X X > 0.

The GAMS solution information for this problem appearsin Table 3.1. The optimal objective function value
equals 26.5. Then GAMS givesinformation on the equations. For this problem, there are 3 equations as
named in the parenthetical statements above. For each equation information is given on the lower limit
(labeled LOWER), value of AX™ (labeled LEVEL), upper limit (labeled UPPER), and shadow price CgB™
(labeled MARGINAL). The objective function row (ZROW) does not contain interesting information. The

congtraint equations show thereis a) no lower bound on the first equation (there would be if it were >) b) the
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left hand side equals 10 (AX") and c) the right hand side is 10 (UPPER) while the shadow priceis 2.5
(MARGINAL). Similar information is present for the second equation.

Turning to the variables, the solution table gives the variable name, lower bound (LOWER), optimal
level (LEVEL), upperbound (UPPER) and reduced cost (MARGINAL). The solution shows X, = 6.5 and x, =
3.5 while the cost of forcing x; into the solution is estimated to be $2.00 per unit. We also see the objective
function variable (Z) equals 26.5. The solution information also indicates if an unbounded or infeasible
solution arises.

GAMS output does not provide access to the B or B*a matrices. Thisisamixed blessing. A 1000
row model would have quite large B* and B'g matrices, but there are cases where it would be nice to have
some of the information. None of the GAMS solvers provide access to this data.

3.3.5 Alternative Optimal and Degener ate Cases

Linear programming does not always yield a unique primal solution or resource valuation. Non-
unique solutions occur when the model solution exhibits degeneracy and/or an alternative optimal.

Degeneracy occurs when one or more of the basic variables are equal to zero. Degeneracy isa
conseguence of constraints which are redundant in terms of their coefficients for the basic variables.
Mathematically, given a problem with M rows and N original variables, and M dacks, degeneracy occurs
when there are more than N original variables plus slacks that equal zero with less than M of the original
variables and slacks being non-zero.

Mosgt of the discussion in LP texts regarding degeneracy involves whether or not degeneracy makes the
problem harder to solve and most texts conclude it does not. Degeneracy aso has important implications for

resource valuation. Consider for example the following problem:
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IViax J.UU/\l + I:)/\z

50
50
100

IN IN

X
+
<
N

The solution to this problem is degenerate because the third constraint is redundant to the first two. Upon
application of the smplex agorithm, one finds in the second iteration that the variable X, can be entered in
place of the slack variable from either the second or third rows. If X, is brought into the basisin place of the
second dack, the shadow prices determined are (u,, U,, Us) = (100, 75, 0). If X, isbrought into the basisin
place of the third dack, the value of the shadow prices are (uy, U,, Us) = (25, 0, 75). These differ depending on
whether the second or third dack variable isin the basis at avalue of zero. Thus, the solution is degenerate,
since avariable in the basis (one of the dacks) is equal to zero (given three constraints there would be three
non-zero variables in a non-degenerate solution). The alternative sets of resource values may cause difficulty
in the solution interpretation process. For example, under the first case, one would interpret the value of the
resource in the second constraint as $75, whereas in the second case it would interpret nominally as $0. Here
the shadow prices have a direction and magnitude as elaborated in McCarl (1977) (this has been shown
numerous times, see Drynan or Gal, Kruse, and Zornig.). Note that decreasing the RHS of the first constraint
from 100 to 99 would result in a change in the objective function of 100 as predicted by the first shadow price
set, whereas increasing it from 100 to 101 would result in a $25 increase as predicted by the first shadow price
set. Thus, both sets of shadow prices are valid. The degenerate solutions imply multiple sets of resource
valuation information with any one set potentially misleading. Both McCarl (1977) and Paris discuss

approaches which may be undertaken in

such acase. The underlying problem is that some of the right hand side ranges are zero, thus the basis will
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change for any right hand side aterations in one direction.

Another possibility in the smplex agorithm is the case of alternate optimal. An aternative optimal
occurs when at |east one of the nonbasic variables has a zero reduced cost; i.e., CBB'la]- - ¢ for somej € NB
equal to zero. Thus, one could pivot, or bring that particular variable in the solution replacing one of the basic
variables without changing the optimal objective function value. Alternative optimals also imply that the
reduced cost of more than M variablesin a problem with M constraints are equal to zero. Consider the
following problem:

Max 25X, + 50X,
X, + 2X, < 100
In this problem the optimal solution may consist of either X; = 100 or X, = 50 with equa objective function
values one or the other of these variables will have zero reduced cost at optimality. Alternative optimals may
cause difficulty to the applied modeler as there is more than one answer which is optimal for the problem.
Paris (1981, 1991); McCarl et a. (1977); McCarl and Nelson, and Burton et al., discuss this issue further.
3.3.6 Finding Shadow Prices for Boundson Variables

Linear programming codes impose upper and lower bounds on individual variablesin a specia way.

Many modelers do not understand where upper or lower bound related shadow prices appear. An example of

a problem with upper and lower bounds is given below.

IVIaX O/\l - /\2
st. Xl + X2 < 15
X, < 10
X, > 1

The second constraint imposes an upper bound on X, i.e., X, < 10, while the third constraint, X, > 1, isa
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lower bound on X,. Most LP algorithms allow one to specify these particular restrictions as either constraints
or bounds. Solutions from LP codes under both are shown in Table 3.2.

In the first solution the model has three constraints, but in the second solution the model has only one
congtraint with the individual constraints on X, and X, imposed as bounds. Note that in the first solution there
are shadow prices associated with constraints two and three. However, this information does not appear in the
equation section of the second solution table. A closer examination indicates that while X, and X, are non-
zero in the optimal solution, they also have reduced costs. Variables having both a non-zero value and a non-
zero reduced cost are seemingly not in accordance with the basic/nonbasic variable distinction. However, the
bounds have been treated implicitly. Variables are transformed so that inside the algorithm they are replaced
by differences from their bounds and thus a nonbasic zero value can indicate the variable equals its bound.
Thus, in general, the shadow prices on the bounds are contained within the reduced cost section of the column
solution. In the example above the reduced costs show the shadow price on the lower bound of X, is 1 and the
shadow price on the upper bound of X, is-3. Notice these are equal to the negative of the shadow prices from
the solution when the bounds are treated as constraints.

One basic advantage of considering the upper and lower limits on variables as bounds rather than

congraints is the smaller number of rows which are required.

3.4 Further Details on the Smplex Method
The smplex method as presented above is rather idealistic avoiding a number of difficulties. Here we
present additional details regarding the basisin use, finding an initial nonnegative basis and some comments on

the rea LP solution method.
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3.4.1 Updating the Basis I nverse

In step 5 of the matrix simplex method the basis inverse needs to be changed to reflect the replacement
of one column in the basis with another. This can be done interactively using the so-called product form of the
inverse (Hadley(1962)). In using this procedure the revised basisinverse (B*) is the old basis inverse (B?)

times an elementary pivot matrix (P), i.e.,

By = PB4

new

This pivot matrix is formed by replacing the I'™ (where one is pivoting in row |) column of an identity matrix
with elements derived from the column associated with the entering variable. Namely, suppose the entering

variable column updated by the current basis inverse has elements
* _ -l
a, =B a,.

then the elements of the elementary pivot matrix are
Pi * k= +1/q;

P.,* = q{i/q;, k#i *

Suppose we update the inverse in the Joe's van example problem using product form of theinverse. In the first
pivot, after X,q has been identified to enter the problem in row 2, then we replace the second column in an
identity matrix with a column with one over the pivot element (the element in the second row of Bg,

divided by the pivot element elsewhere. Since Bg, equas

1
, the pivot matrix P, is
25

1 -1/25
0 1/25

P,
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and thenew Bt is

. L, |1 -wes|hoo 1 -1/25
B,' = PB," = =
0 1250 1 0 125
_) 1/(1/5) o) ) )5 o)
2 ~(4/5)/(1/5) 1 -4 1

Similarly in the second pivot we find the minimum in the first row and have B'a, =

15
, S0 that in forming
/5
P,, the first column of an identity matrix was replaced since xs will enter asthe first element of the basis

vector. Multiplication of B™ by P, gives

50
41

5 -15
-4 1/5

1 -1/25
0 125

which equals the basis inverse computed above.
3.4.2 Advanced Bases

The process of solving aLPisahunt for the optimal basis matrix. Experience with LP reveals that
the simplex method usually requires two or three times as many iterations as the number of constraints to find
an optimal basis. Thisimplies that when solving a series of related problems (i.e., changing a price of an
input), it may be worthwhile to try to save the basis from one problem and begin the next problem from that
particular basis. Thisis commonly supported in LP solution algorithms and is quite important in applied LP
involving sizable models. In arecent study, it took more than thirty-five hours of computer time to obtain an
initial basis, but from an advanced basis, a series of related problems with afew changes in parameters could
be solved in two hours. Dillon (1970) discusses ways of suggesting a basis for problems that have not

previoudy been solved.
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Modeling systems like GAMS do not readily take an advanced basis although one can be attempted by
achoice of initia levelsfor variables (GAMBAS (McCarl (1996)) permits this). However, once an initial
model solution has been found, then any additional solutions are computed from an initial basis. Furthermore,
an advanced basis can be employed by restarting from a stored file.

3.4.3 Finding an Initial Feasble Basis

When an LP problem includes only less-than constraints with non-negative right hand sides, it is
straightforward to obtain an initial feasible basis with al non-negative variable values. In that case the slacks
form theinitial basis and all decision variables are nonbasic, equaling zero, with each dack variable set equal
to the RHS (s = b;). Theinitial basis matrix isan identity matrix. In turn, the smplex agorithm isinitiated.

However, if one or more: a) negative right hand sides, b) equality constraints, and/or c) greater than or
equal to constraints are included, it is typicaly more difficult to identify an initial feasible basis. Two
procedures have evolved to deal with this situation: the Big M method and the Phase I/Phase |1 method.

Conceptualy, these two procedures are smilar, both imply an inclusion of new, artificial variables, which

artificially enlarge the feasible region so an initial feasible basisis present. The mechanics of artificia
variables, of the Big M method and the Phase I/ Phase Il problem are presented in this section.
Models which contain negative right hand sides, equality and or greater than constraints do not yield

aninitial feasible solution when all X's are set to zero. Suppose we have the following

Max CX
st. RX < Db
DX < -e
FX =
HX > p
X > 0

genera problem where b, e, and p are positive.
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Conversion of this problem to the equality form requires the addition of slack, surplus and artificial
variables. The dack variables (S, and S,) are added to the first and second rows (note that while we cover this

topic here, most solvers do this automatically). Surplus variables are needed in the last constraint type and

give the amount that left hand side (HX) exceeds the right hand side limit (p). Thus, the surplus variables (W)
equal p - HX and the constraint becomes HX - W = p.

The resultant equality form becomes

Max CX + OS§ + OS5, + OW

st. RX + IS, = b
DX + 1S, = -e
FX =g
HX - 1w o= p
X, S, S, W > 0

Where the I's are appropriately sized identity matrices and the O's are appropriately sized vectors of zeros.
Note that when X = 0, the dacks and surplus variables do not congtitute an initial feasible basis.
Namely, if S, and W are put in the basis; then assuming e and p are positive, the initial solution for these
variables are negative violating the non-negativity constraint (i.e., S, = -eand W = -p). Furthermore, thereis
no apparent initial basis to specify for the third set of constraints (FX = g). This situation requires the use of

artificial variables. These are variables entered into the problem which permit an initial feasible basis, but

need to be removed from the solution before the solution is finaized.
Artificia variables are entered into each constraint which is not satisfied when X=0 and does not have

an easily identified basic variable. In this example, three sets of artificial variables are required.
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Max CX + OS, + 0,5, + OW

RX + I,S = b
DX s LS - LA, - e
FX +1A, - g
HX - 1w v A, =
X, S, S, W, A,, A, A, >

Here A,, A;, and A, are the artificial variables which permit an initial feasible nonnegative basis but which
must be removed before a "true feasible solution” is present. Notethat S;, A,, A5, and A, can be put into the
initial basis. However, if elements of A, are nonzero in the final solution, then the original FX = g constraints

are not satisfied. Similar observations are appropriate for A, and A,. Consegquently, the formulation is not yet

complete. The objective function must be manipulated to cause the artificial variables to be removed from the
solution. The two alternative approaches reported in the literature are the BIG M method and the Phase
|/Phase || method.

3.4.3.1 BIG M Method

The BIG M method involves adding large penalty costs to the objective function for each
artificial variable. Namely, the objective function of the above problem is written as
Max CX + OS + OS, + OW - MA, - MA, - MA,
where M,, M, and M, are conformable sized vectors of large numbers that will cause the model to drive A,,

A,, and A, out of the optimal solution.
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An example of this procedure involves the problem

Max 3xl + 2x2

X, + 2x, < 10
X, - X, < -2
X, + X, = 3

X, + X, = 1

Xy, X, = 0

and the model as prepared for the Big M method isin Table 3.3. The optimal solution to this problem isin
Table 3.4.

This solution isfeasible since A,, A, and A, have been removed from the solution. On the other hand,
if the right hand side on the second constraint is changed to -4, then A, cannot be forced from the solution and
the problem isinfeasible. This, with the BIG M method one should note that the artificial variables must be
driven from the solution for the problem to be feasible so M must be set large enough to insure this happens (if
possible).

3.4.3.2 Phase |/Phase || Method

The Phase I/Phase || method isimplemented in almost al computer codes. The procedure involves the
solution of two problems. First, (Phase I) the problem is solved with the objective function replaced with an
alternative objective function which minimizes the sum of the artificia variables, i.e.,

Min LA, + LA; + LA,
where L, are conformably sized row vectors of ones.

If the Phase | problem has a nonzero objective function (i.e., not al of the artificials are zero when
their sum has been minimized), then the problem does not have a feasible solution. Note this means the

reduced cost information in an infeasible problem can correspond to this modified objective function.
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Otherwise, drop the artificial variables from the problem and return to solve the real problem (Phase 11) using
the Phase | optimal basis as a starting basis and solve using the normal simplex procedure.

The addition of the dack, surplus and artificial variablesis performed automatically in almost al
solversincluding all that are associated with GAMS.

3.4.4 The Real LP Solution Method

The above material does not fully describe how a LP solution algorithm works. However, the
algorithm implemented in modern computer codes, while conceptually similar to that above is operationally
quite different. Today some codes are using interior point agorithms combined with the simplex method (for
instance, OSL, Singhal et a.). Codes aso deal with many other things such as compact data storage, basis
reinversion, efficient pricing, and round-off error control (e.g., see Orchard-Hays or Murtagh).

In terms of data storage, algorithms do not store the LP matrix as a complete MXN matrix. Rather,
they exploit the fact that L P problems often be sparse, having a small number of non-zero coefficients relative
to the total possible number, by only storing non-zero coefficients along with their column and row addresses.
Further, some codes exploit packing of multiple addresses into a single word and economize on the storage of
repeated numerical values (for in-depth discussion of data storage topics see Orchard-Hays or Murtagh).

Perhaps the most complex part of most modern day LP solversinvolvesinversion. Asindicated
above, the B* associated with the optimal solution is needed, but in forming B the code usually performs
more iterations than the number of constraints. Thus, the codes periodically construct the basis inverse from
the origina data. Thisis done using product form of the inverse; but this also involves such diverse topics as
LU decomposition, reduction of a matrix into lower triangular form and matrix factorization. For discussion
in these topics see Murtagh.

L P codes often call the formation of reduced costs the pricing pass and a number of different

approaches have been developed for more efficient computation of pricing (see Murtagh for discussion).
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Finally, LP codes try to avoid numerical error. In computational LP, one worries about whether
numbers are really non-zero or whether rounding error has caused fractions to compound giving false non-
zeros. Solver implementations usually make extensive use of tolerances and basis reinversion schemes to
control such errors. Murtagh and Orchard-Hays discuss these.

The purpose of the above discussion is not to communicate the intricacies of modern LP solvers, but
rather to indicate that they are far more complicated than the standard implementation of the simplex agorithm

as presented in the first part of the chapter.
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Table3.1. GAM S Solution of Example M ode

SOLVE SUMMARY
MODEL PROBLEM OBJECTIVE Z
TYPE LP DIRECTION MAXIMIZE
SOLVER MINOS5 FROM LINE 37
**x*x SOLVER STATUS 1 NORMAL COMPLETION
**** MODEL STATUS 1 OPTIMAL

**** OBJECTIVE VALUE 26.5000

EXIT -- OPTIMAL SOLUTION FOUND

LOWER LEVEL UPPER MARGINAL
---- EQU ZROW . . . 1.000
---- EQU CONSTRAIN1 -INF  10.000 10.000 2.500
---- EQU CONSTRAIN2 -INF  3.000 3.000 0.500
ZROW OBJECTIVE FUNCTION

CONSTRAIN1 FIRST CONSTRAINT
CONSTRAIN2 SECOND CONSTRAINT

LOWER LEVEL UPPER MARGINAL
---VARX1 . 6.500 +INF
---VARX2 . 3.500 +INF .
--VARX3 . . +INF -2.000
---VARZ -INF 26.500 +INF

X1 FIRST VARIABLE

X2 SECOND VARIABLE
X3 THIRD VARIABLE

Z OBJECTIVE FUNCTION
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Table 3.2. Solution to Bounded Example with Bounds Imposed as Constraints and as Bounds
Solved with Constraints
Variable Vaue Reduced Cost Status Equation Level Shadow Price Status
X, 10 0 Basic 1 4 0 Basic
X, 1 0 Basic 2 0 3
3 0 -1
Solved with Bounds
Variable Vaue Reduced Cost Status Equation Level Shadow Price Status
X, 10 -3 (V) 1 4 0 Basic
X, 1 1 (L)
3-37
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Table3.3.

The Modd as Ready for the BigM Method

Max 3x, + 2, + 0S + 0S, + OW 99A, QQA; - 99,
X, + X, + S = 10
X, - X, + S, A, = -2
X, + X, A, = 3
X, + X, - w + A, = 1
X, X ST s, W A, A, A, > O
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Table 3.4.

Solution to the Big M Problem

Variable Vaue Reduced Cost Equation Shadow Price
X1 1333 0 1 1.667
X, 4.333 0 2 0
S 0 1.667 3 -1.333
S, 1 0 4 0
W 4.667
A, 0 -99
A, 0 -97.667
A, 0 -99
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CHAPTER IV: DUALITY IN LINEAR PROGRAMMING

Economic theory indicates that scarce (limited) resources have value. For example, prime agricultura
land is limited and has value (arental price). On the other hand, air is effectively unlimited and therefore does
not have a market value. In LP models, limited resources are alocated, so they should be, valued. Whenever
we solve an LP problem, we solve two problems: the primal resource alocation problem, and the dua re-
source valuation problem. This chapter covers the resource valuation, or asit is commonly called, the Dua
LP problem and its relationship to the original, primal, problem.

The study of dudity isvery important in LP. Knowledge of duality allows one to develop increased
insight into LP solution interpretation. Also, when solving the dual of any problem, one smultaneoudly solves
the primal. Thus, duality is an aternative way of solving LP problems. However, given today's computer
capabilities, thisis an infrequently used aspect of duality. Therefore, we concentrate on the study of duality as
ameans of gaining insight into the LP solution. We will aso discuss the ways that primal decision variables
place constraints upon the resource valuation information.

4.1 Basic Duality
The Primal problem can be written as:

Max Ecjxj
j

A

st.  Xgx, < b, foradli
i

X > 0, for dl j
Associated with this primal problem is a dual resource valuation problem. The dua of the above problem is
Min  Xub,

st.  Xua; > ¢ fordlj

Vv

0 for dl i

c
[\

where y; are the dual variables.
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If the primal problem has n variables and m resource constraints, the dual problem will have m
variables and n constraints. There is a one-to-one correspondence between the primal constraints and the dual
variables; i.e., u, is associated with the first primal constraint, u, with the second primal constraint, etc. Aswe
demonstrate later, dual variables (u;) can be interpreted as the marginal value of each constraint's resources.
These dual variables are usually called shadow prices and indicate the imputed value of each resource. A one-
to-one correspondence also exists between the primal variables and the dual congtraints; x; is associated with
the first dual constraint (Xu@, > C,), x, is associated with the second dual constraint (Xug, > c,), etc.

i i

An example aidsin explaining the dua. Consider the prima mode:

Max 40x, + 30X, (profits)

st. X, + X, < 120 (land)
4%, + 2X, < 320 (Iabor)
X X, > 0

The associated dua problemis

(land) (labor)
Min 120u, + 320u,
st. u, - 4u, > 40 (x)
u - 2u, > 30 (x,)
u u, > 0

1 2

The dua problem economic interpretation isimportant. The variable u, gives the margina value of
thefirst resource, or land. Variable u, gives the marginal value of the second resource, or labor in this case.
Thefirst dual constraint restricts the value of the resources used in producing a unit of x, to be greater than or
equal to the marginal revenue contribution of x,. Inthe primal problem x, uses one unit of land and four units

of labor, returning $40, while the dual problem requires land use times its marginal value (1u,) plus labor use
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timesits margina value (4u,) to be greater than or equal to the profit earned when one unit of x; is produced
(40). Similarly, constraint 2 requires the marginal value of land plus twice the marginal value of labor to be
greater than or equa to 30, which is the amount of profit earned by producing x,. Thus, the dual variable
values are constrained such that the marginal value of the resources used by each primal variable is no less
than the marginal profit contribution of that variable.

Now suppose we examine the objective function. This function minimizes the total marginal value of
the resources on hand. In the example, this amounts to the land endowment times the marginal value of land
(120u;,) plus the labor endowment times the marginal value of labor (320u,). Thus, the dual variables arise
from a problem minimizing the marginal value of the resource endowment subject to constraints requiring that
the marginal value of the resources used in producing each product must be at least as great as the marginal
value of the product. This can be viewed as the problem of a resource purchaser in a perfectly competitive
market. Under such circumstances, the purchaser would have to pay at least as much for the resources as the
value of the goods produced using those resources. However, the purchaser would try to minimize the total
cost of the resources acquired.

The resultant dual variable values are measures of the marginal value of the resources. The objective
function is the minimum value of the resource endowment. Any dack in the constraints is the amount that cost

exceeds revenue.

4.2 Primal-Dual Solution Inter-Relationships

Several relationships exist between primal and dual solutions which are fundamental to understanding

duality and interpreting LP solutions.
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Primal Dua

Max CX Min U’b
AX < b UA > C
X > U > 0

First, let us introduce some notation. The primal dual pair of LP problemsin matrix formis
Now let us examine how the problems are related.
4.2.1 Objective Function Interrelationships

Suppose we have any two feasible primal and dua solutions X", U” and we want to determine the

relationship between the objective functions CX"and U * 'b. We know the feasible solutions must satisfy

b ad U*'A > C
0 u- > 0

AX”
x*

IN

[\

To determine the relationship, we take the above constraint inequalities (not the non-negativity conditions) and

premultiply the left oneby U * " while postmultiplying the right one by X".

U AX* > CX*

U AX* < UDb

IN

Noting that the term U ' AX" is common to both inequalities we get

CX" < U'AX" < U*b
CX* < U'b
This shows that the dual objective function value is aways greater than or equal to the primal objective

function value for any pair of feasible solutions.

4.2.2 Constructing Dual Solutions
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Now suppose we explore the construction of an optimal solution to the dual problem, given a primal
optimal solution. Suppose an optimal prima solution is given by X" = B*b and X" = 0. This solution must

befeasible; i.e, Xz  =B'b > 0. It also must have Xz > 0 and must satisfy nonnegative reduced cost for the

nonbasic variables CgB*A,s - Cys > 0. Given this, suppose wetry U *'= CgB* asapotential dual solution.

First, let usinvestigate whether thisisfeasible. To be feasible, we must have U */A >Cand U’ > 0.

Ifweset U™ = CgB*, then we know U */ANB - Cys > 0 because at optimality thisis exactly equivalent to the

reduced cost criteria, i.e., C;B*As - Cyg > 0. Further, we know for the basic variables the reduced cost is

CgB'Ag-Cy=CxBB-C;=C;-C;=0,0 U “'B= Cg. By unifying these two statements, we know when

U' = CyBthen U *'A > Cfor al primal variables.

Now we need to know if U > 0. The problem includes dacks. Thus, A includes an identity matrix for
the dacks and C includes O's for the dack variables. Thus, a part of the UA > C covers the slacks and since
we know that U */AS > Cg where A and Cg arethe portions of A and C relevant to the slacks.

Substituting in the known structure of Agand C, i.e,, Ag=1and Cs=0yieds U “>00rU 0. SotheU's

are non-negative. Thus, U = CgB 1 jsafeasible dual solution.

Now the question becomes, is this choice optimal? In this case the primal objective function Z equals
CX" = CgXp™ + CygXys and since X, equas zero, then Z = C;B™b + Cz0 = CzB™*b. Simultaneoudy, the

dual objective equas U “'b= CyB™b which equals the primal objective. Therefore, the primal and dual

objectives are equa at optimality. Furthermore, since the primal objective must be less than or equal to the

dual objective for any feasible pair of solutions and since they are equal, then clearly CX™ cannot get any

copyright Bruce A. McCarl and Thomas H. Spreen 4-5



larger nor can U “'b get any smaller, so they must both be optimal. Therefore, C;B™* is an optimal dual

solution. This demonstration shows that given the solution from the primal the dua solution can smply be
computed without need to solve the dua problem.

In addition given the derivation in the last chapter we can establish the interpretation of the dual
variables. In particular, since the optimal dual variables equal Cz B (which are called the primal shadow
prices) then the dua variables are interpretable as the marginal value product of the resources since we

showed

4.2.3 Complementary Slackness
Y et another, interrelationship between the primal and dua solutionsis the so called complementary
dackness relation. This states that given optimal values U™ and X™ then

U'(b -AX") = 0

(U”A -OX* = 0.

This result coupled with the primal and dual feasibility restrictions (U > 0; UA > C; AX < b; X > 0) implies
that (in the absence of degeneracy) for each constraint, either the resource is fully used (b, - (AX); = 0) with
the associated dual variable (U;") nonzero, or the dual variable is zero with associated unused resources (b, -

(AX;)) being nonzero. Alternatively, for each variable (again ignoring degeneracy) at optimality, either the

variable level (X;) is non-zero with zero reduced cost (U /A)j - G = 0) or the variable is set to zero with a

non-zero reduced cost.

This result may be proven using matrix algebra. Given optimal primal (X*) and dual (U") solutions
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Let « = U (b - AX")

(U”'A - C)X".

=
I

Now suppose we examine o + . Taking « + B, weget U *'(b- AX") + (U A - C)X" which equals U “'b-
U*AX + U AX -CX = U*'b-CX". Weknow this equals zero at optimality. Further, we know that

both « and g will be nonnegative, snce AX™ < b,U" > 0, U “A-C>0andX > 0, thus « + B can be equd to

zeroif and only if « and p are both equal to zero. Thus, complementary slackness must hold at optimality.

The complementary dackness conditions are interpretable economicaly. The U */(AX* -b)=0

condition implies that the resource will: a) be valued at zero if it is not fully utilized (i.e.,, AX" <b = U =0) or
b) have a nonzero value only if it isfully utilized (i.e,, AX =b = U > 0 [note a zero value could occur]).
Thus, resources only take on value only when they have been exhausted. The condition (U A - OX =0

implies that a good will only be produced if its reduced cost is zero (i.e., X >0 = A - C =0) and that only zero

X's can have areduced cost (i.e., U A - C>0= X =0). Thislast result also shows the returns (C) to every
nonzero variable are fully allocated to the shadow prices (U) times the amount of resources (A) used in
producing that activity (i.e., U A=C).

4.2.4 Zero Profits
We have noted that U; is the imputed marginal value of resourcei and b is its endowment. Thus,
Ui/ b; is sometimes called the "payment” to resource i. When we sum over al m resources, the dual objective

function can be interpreted as the total imputed vaue of the resource endowment. If the total imputed value of
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the resourcesis viewed as a"cost", then it makes sense that firm should seek to find uy, u,,...,Uy, which
minimizes )’ u; b. However, at optimality the dual objective equals that of the primal

Yub = Xcex.

i
Thus, total payments to the resources will equal the profitjgenerated in the primal problem. All profits are
allocated to resource values, and the solution insures that the imputed rate of the resources allocated by the
primal problem are such that their total value equals total profits. Thus, if the firm had to pay U for the
resources, zero profits would resuilt.
4.2.5 Finding the Dual Solution Information

When you have solved the dual, you have solved the primal. Thus given the optimal B, the optimal

dual variables are the primal shadow prices C;B™ without any need for solution. In general, one can show that

the following correspondence holds (see Hadley (1962) or Bazaraa et al.).

Primal Solution Information Corresponding Dual Solution Information
Objective function Objective function

Shadow prices Variable values

Slacks Reduced costs

Variable values Shadow prices

Reduced costs Slacks

For example, if one wants to know the optimal values of the dual dacks, those values are the primal reduced

costs.

4.3 Duality Under Other Modd Forms

In the preceding discussion, the primal problem has always taken on standard form. We have

seen that given aLP problem
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Max L‘cjxj

%A\

b, for dli

st.  Xgx

i =

x
v

0, for dlj,

that its dual will aways be
Min  Xub,

Vv

st. _Euiqj > G, for dl i

u

[\

0, for dl j.

Note that if the primal problem contains n variables and m constraints, the dual problem has m
variables and n constraints. The dual for problems which are not in standard form can be written in two ways.
One may convert a problem in non-standard form to reformulate it into standard form then write the dual, or
one can learn primal-dual relationships for alternative primal problem forms. We discuss the second approach

first.

The form of the primal constraints determines the restrictions on the sign of the associated dua
variable. If the primal objective isto maximize, each < constraint has a corresponding non-negative (>0) dual
variable. Each > constraint has a corresponding non-positive (<0) dual variable. Why? If a(>) constraint is
binding in a maximize primal, it follows that reducing the RHS of the constraint would make the constraint
less binding and could only improve or leave unaffected the optimal objective function value. Thus, the
objective function value is unchanged or decreasesif the RHS of the constraint isincreased and the associated
dua variable is non-positive. An equality constraint in a primal problem gives adual variable whichis

unrestricted in sign. The optimal solution to the primal problem must lie on the equality constraint. An
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outward shift in the constraint could either increase or decrease the objective function, thus the corresponding
dual variable is unrestricted in sign. These relationships are summarized in the first part of Table 4.1.

In regards to the primal variables, if the primal objective isto maximize, then each non-negative
primal variable givesriseto a> constraint in thedua. If aprimal variableis restricted to be non-positive, the
corresponding dual constraint isa < inequality. Similarly, unrestricted primal variables lead to dual equalities.
These results are summarized in the lower part of Table 4.1.

Table 4.1 may aso be used to develop relationships for a minimization problem by reading the
information from left to right. Suppose the objectiveis to minimize and a < constraint is present. The
corresponding dual variable in a maximization dual would be non-positive.

A second approach can also be followed; i.e., dways transform the problem to standard form then
writeitsdua. To illustrate, consider the LP problem

Max 3x;, - 2X, + X,
st. X, + X o+ 2, = 20
-2X;, + X, + Xy > 10

X - unrestricted

IA
o
X

N
v
o
X
w

1

Let uswrite the dua to this problem using the two approaches outlined above. Firgt, let's convert the
problem to standard form. To do this, the equality constraint must be replaced by two constraints:

x+x2+2x33 20

-20

IN

(X, + X+ 2X)
In addition the second primal constraint should be multiplied through by -1, the first variable is replaced by its
negative (X, = -X;’) and the third variable x5 is replaced by x;" - x;. Making these substitutions and

modifications gives

copyright Bruce A. McCarl and Thomas H. Spreen 4-10



st X, + X, + X, - 2% < 20
X; = X - 23 + Xy < -20
2%, - X, - X3 + X3 < -10
X\ , X , X3 , X = 0

The dud to this problem is

st -w, o+ W, - 2w, > -3
w, - w, - w, > -2
2w, - 2w, - w, > 1
2w, + 2w, + 0 w, > -1
w, w, w, > 0

Note that: @) the last two constraints can be rewritten as an equality, b) variables w; and w, can be
combined into variable w, = w;, - w, which is unrestricted in sign, and ¢) we may subgtitute w, = -w; and we

may revise the inequality of the first constraint yielding

Min 20w + 10w,
st. w - 2w; < 3
w + W > -2
2w +  owy, = 1
w unrestricted ,  w; < O

which isthe final dual.
This result can also be obtained from the use of the primal-dua relationshipsin Table 4.1. The primal

objective is to maximize, so the dua objectiveisto minimize. The primal problem has 3 variables and 2
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congtraints, so the dual has 2 variables and 3 constraints. The first primal constraint is an equality, so the first
dual variable is unrestricted in sign. The second primal constraint isa (>) inequality so the second dua
variable should be non-positive. Thefirst primal variable is restricted to be non-positive, so the first dual
constraint isa (<) inequality x, is restricted to be non-negative, thus the second dua constraint is >; X5 is

unrestricted in sign. Thus, the third dual constraint is an equality. Then, the dual can be written as

Min 20u, + 10u,
st. u, - 2u, < 3
u, U, > -2
2u, + u, = 1
u, unrestricced , u, < O

which if one substitutes u=w, and u, = w5 isidentical to that above.

4.4 The Character of Dual Solutions
If the primal problem possesses a unique nondegenerate, optimal solution, then the optimal solution to
the dua isunique. However, dual solutions arise under a number of other conditions. Several of the cases
which can arise are:
1) When the primal problem has a degenerate optimal solution, then the dual has multiple
optimal solutions.
2) When the primal problem has multiple optimal solutions, then the optimal dual solution is
degenerate.
3) When the primal problem is unbounded, then the dud isinfeasible.

4) When the primal problem is infeasible, then the dual is unbounded or infeasible.
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4.5 Degeneracy and Shadow Prices
The above interpretations for the dual variables depend upon whether the basis still exists after the
change occurs. As shown in the previous chapter, there is aright hand side range over which the basis remains
optimal. When abasic primal variable equals zero, the dual has alternative optimal solutions. The cause of
this situation is generally that the primal constraints are redundant at the solution point and the range of right
hand sidesis zero. This redundancy means one does not need a full basic solution, so one of the basic
variablesis set to zero with the other basic variables likely to be nonzero. The best way to explain the

implications of this situation is through an example. Consider the following problem

Max 3X, + 2X,

X, + X, < 100
X, < 50

X, < 50
X X, > 0

Notice that at the optimal solution, X, =50, X, =50, the constraints are redundant. Namely, either the
combination of the last two congtraints or the first two constraints would yield the same optimal solution which
isX,; =X, =50. The simplex solution of this problem shows atie for the entering variable in the second pivot
where one has the choice of placing X, into the solution replacing either the dack variable from the first or the
third constraint. If the first dack variable (S;) is chosen as basic then one gets X; = 50, X, =50, S; = 0 while
S, isbasic. The associated shadow pricesare 0, 3, and 2. On the other hand, if S; were made basic one gets
X, =50, X, =50 S; = 0 with the shadow prices 2, 1, 0. Thus, there are two alternative sets of shadow prices,
both of which are optimal. (Note, the dual objective function value is the same as the optimal prima in each
case.)

The main difficulty with degeneracy is in interpreting the shadow price information. The shadow
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prices are taking on adirection (i.e., see the arguments in McCarl (1977)). Note that if one were to increase
the first right hand side from 100 to 101 this would lead to a zero change in the objective function and X, and
X, would remain a 50. On the other hand if one were to decrease that right hand side from 100 to 99 then one
would obtain an objective function which is two units smaller because X, would need to be reduced from 50 to
49. This shows that the two alternative shadow prices for the first constraint (i.e., 0 and 2) each hold in a
direction. Similarly if the constraint on X, was increased to 51, the objective function increases by one dollar
as one unit of X, would be removed from the solution in favor of X,; whereas, if the constraint was moved
downward to 49, it would cost three dollars because of the reduction in X;. Meanwhile, reducing the
constraint on X, would cost two dollars, while increasing it would return to zero dollars. Thusin al three
cases shadow prices take on a direction and the value of that change is revealed in one of the two dua
solutions. Thisis quite common in degeneracy and may require one to do a study of the shadow prices or try
to avoid degeneracy using a priori degeneracy resolution scheme as discussed in McCarl (1977); Paris (1991);

Gal, and Gal et d., or asimplemented automatically in OSL.

4.6 Primal Columns are Dual Congtraints

One final comment relative to modeling is that the columns in the primal, form constraints on the dua
shadow price information. Thus, for example, when a column is entered into a model indicating as much of a
resource can be purchased at a fixed price as one wants, then this column forms an upper bound on the
shadow price of that resource. Note that it would not be sensible to have a shadow price of that resource
above the purchase price since one could purchase more of that resource. Similarly, alowing goods to be sold
at a particular price without restriction provides alower bound on the shadow price.

In general, the structure of the columnsin aprimal linear programming model should be examined to

see what constraints they place upon the dual information. The linear programming modeling chapter extends
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this discussion.
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Table4.1.

Primal-Dual Correspondence for

problemsnot in standard form

Maximization Minimization
Primal Problem Dual Problem
Form of Primal Implication for Dual

Constraints Variables

Za”XJ Sbi U > 0

i

Yax; = b u; - unrestricted in sign
i

Za”XJ Zbi U < 0

i

Form of Primal Variables

X >0

X; - unrestricted in sign

X <0

Implication for Dual
constraints

Yau >
Yau = G

Yayu; <
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CHAPTER V: LINEAR PROGRAMMING MODELING

In this chapter we concentrate heavily on the algebraic approach to LP modeling, GAMS usage,
duality implications and some model specification issues. The chapter begins with a presentation of the
general algebraic modeling approach with GAMS.  Subsequently, we organize the presentation around
commonly modeled situations. The first problem presented is the classical resource alocation problem. This
is followed by the transportation and diet/feed mix/blending problems. Following these is a formulation that
explicitly incorporates joint products. In presenting this material, we identify different types of variables and
congtraints used in building models, as well as examples of modeling assumptions used when formulating
problems.

Applied duality is aso treated. However, the duality material is not intended to imply that the dual of
every problem must be formed when modeling. Instead, we discuss implications for the shadow prices that
arise due to primal variable structures. The empirical relationship between primal and dua solutions will also
be exhibited, which hopefully leaves no doubt that when solving the prima problem, the dud is simultaneoudy
solved.

A third theme herein is communication of the empirical issuesinvolved in LP application. Thisis
attempted through the development of examples involving coefficient calculation and deductive stepsin
modeling. We will also demonstrate the link between algebraic representations of problems and empirical
models. Thisdiscussion is designed to show readers the usefulness of algebraic models as away of
conceptualizing problems.

This particular chapter is not designed to stand alone. Additional formulations and algebraic/lGAMS
modeling techniques are presented throughout the rest of the book. Furthermore, referenceto the GAMS

manual (Brooke et al.) is essential to a thorough understanding of the material.
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5.1 Introduction to Algebraic Modeling

Now we turn our attention to the construction of agebraic mathematical programming models using
summation notation and GAMS. This section presents a brief introduction to a subset of GAMS. The GAMS
manual (Brooke et al.) provides a complete treatment. This section is also supported by the materia in
Appendix A.
5.1.1 Defining Indicesand GAM S Sets

A crucial agebraic modeling element is the identification of indices (also referred to mathematically
as asubscript, or in GAMS asa SET). The compactness with which one can specify a model depends on the
characterization of itemswith indices. However, the readability of the model depends on indices being
disaggregate enough to reveal essential features. Examples of the appropriate specification of indices appear
throughout the rest of the text.

Definition of indices in GAMS involves the definition of sets and set members. Namely, anindex in
summation notation isa SET in GAMS, and one specifies the range of the index by specifying SET

membership. Examples of such set definitions are included in the following four GAMS statements.

SETS | THE INDEX | 11,2,3,4,5/
CITIES CITY NAMES /BOSTON, PORTLAND /
YEAR MODELS YEARS /1970* 1974/
WEST (CITIES) WESTERN CITIES /PORTLAND/,

The first item entered is the label SETS which suggests that the following material contains SET
definitions. Here four sets are being defined and are called |, CITIES, YEAR and WEST. The set WEST is
defined as a subset of set CITIES. Within each set definition are three components; 1) the name of the set; 2)
averbal description of what the set stands for (which keeps arecord for future users and hel ps describe the set
in the output); and 3) alist of the set members enclosed between a pair of dashes with multiple set elements

separated by commas (this can aso contain a definition of the set element). When a set contains consecutively
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numbered elements, an asterisk (asin the YEAR set definition) can be used to denote all elementsin a numeric
range (i.e., 1970* 1974 means include 1970, 1971, 1972, 1973, and 1974). Finally, note that a semicolonis
used to end the SET statement after all sets have been defined. Set elements can be defined using numbers,
characters, or a mixture of both.

In GAMS, one can define subsets. A subset such as WEST (CITIES) identifies selected elements
identifying such things as the western cities. Brooke, et. al. present information on more complex
specifications.

5.1.2 Writing Equations

The obvious purpose of agebraic modeling is to write general algebraically based equations which
encompass awide variety of situations. Two fundamental classes of algebraic equations exist. Thefirst class
encompasses all single equations which are not defined with respect to any kind of index. A scaler caculation
falsinto this class. The second class involves equations which are defined according to indices. This class
involves families of smultaneous equations. For example, similar equations may be defined for each location,
land class, and time period.

5.1.2.1 Unindexed Equations

A summation notation version of an unindexed equation is
Z = jE3 a X
This equation depicts the sum across all the members of the index set j where threetimes g is
multiplied times x; and the resultant sum is placed into the value of Z. A related exampleis
Q = XXrly, No
i
tice in both equations that all indices areincluded in thJe sum, and the result is a scaler number. Thiswill
always be true with unindexed or scaler equations. There cannot be indices or sets within the equation which

are not summed over. The GAMS statements equivalent to the above two equations are
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Z=SUM (J, 3*A)*X(J);
Q=SUM (1,9, R(LI/Y (1,9);?

The elements, of these GAMS equations, merit discussion. First, both equations equate a scaler to a
sum. Indoing this, the set or sets to be summed over are specified as the parameters to be used in forming the
equation. Note, after the summation operator (SUM), the index or indices are named, followed by a comma,
with the parameters separated by mathematical operators. Parentheses must be balanced. Finally, each
expression is ended by a semicolon.

Although these examples are consistent with the algebraic models, they are poor examples of GAMS
modeling. Namely GAMS formulations can be made much more self explanatory by utilizing set and set
member names which are up to ten characterslong. For example, the following two GAMS commands
elaborate on those above, but are much easier to read;

INCOME = SUM(PRODUCT, 3* PRICE (PRODUCT) * QUANTITY (PRODUCT));

TOTALQUAN = SUM ((SOURCE, DESTINATION), TOTALCOST (SOURCE,

DESTINATION)/COSTPRUNIT(SOURCE, DESTINATION));

Here the |abels help define what the equation represents.

5.1.2.2 Indexed Equations

The other class of equations commonly used in algebraic modeling involves equations defined over a

family of indices. Consider for example::

b.

jZainj for al i

r

Y(fnQq * Zyy for al mand |
k

mj
where the "for all" statement defines the family of indices for which the equations exist. Note that in these

equations the index mentioned in the "for al" clause is not summed over. Rather, the “for all” clause indicates

2 Note that these GAMS statements show equations for numerical calculations, not equations for
inclusion as a constraint or objective function in alinear programming model. In such casesa
dightly different syntax is utilized, as defined in the next section.
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presence of these equations for each of these indices. The equivaent GAMS statements are

B(ITEM) = SUM (J, A(TEM,J*X(J)) ;
R(WHATISIT,J) = SUM (K, F(K, JWHATISIT)*Q(I,J)) + Z(JWHATISIT);

5.1.3 Data Definitions

When using algebraic modeling, data items are usualy defined symbolically. For example, g; might
be defined as the usage of the i resource per unit of the j™ product manufactured. In the development of an
application, such items need to be defined numericaly. In GAMS, raw data are entered using the SCALER,
PARAMETER and TABLE syntax.

Suppose one wishes to enter single numbers which are not referenced with respect to a SET. Inthis

case, one uses the SCALER syntax as follows:

SCALARS LAND LAND AVAILABLE /100/
HOURS MACHINE TIME 150/
PRICESTEEL STEEL PRICE 12.25/;

Again the statements contain several parts. The keyword SCALER (or SCALARS) indicates
unindexed data items are being defined. Then one enters each data item name followed by a verbal description
and a numerical value enclosed in dashes. This can be followed by entries for as many scalars as necessary
with the last definition followed by a semi-colon.

Data are also entered using the PARAMETER syntax. Parameter statements are used to enter

indexed (subscripted) datain list form. Examples are given:

PARAMETERS
PRICE (ITEM) ITEM PRICES /LABOR 4.00, COAL 100/
DISTANCE (1,J) INTER CITY DISTANCES /BOSTON.CHICAGO 20,

BOSTON.CLEVELAND 15/,
This syntax must begin with the word PARAMETER (or PARAMETERS). Subsequently, the name

of the data item, its indices description appear followed by a dash. Within the dashes the name of each data
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set index and their values are given. Commas separate set members and their values. This sequence repeats
for each set member to be specified. In the examples, LABOR and COAL are members of the set ITEM with
their associated entries in the PRICE data taking on the values 4.00 and 100 respectively. Similarly, the set |
includes BOSTON and the set Jincludes CHICAGO and CLEVELAND. Note, the syntax in the second
expression where BOSTON.CHICAGO indicates thisis the data for a pair of elements (i value then j value).
Finally, a semicolon indicates the PARAMETER statement end.

Y et another data entry possibility involvesthe TABLE syntax. This syntax is most convenient for

defining multi-dimensional parameters asillustrated by:

TABLE DISTANCE(!,J) DISTANCE BETWEEN CITIES

CHICAGO CLEVE
BOSTON 20 10
BALT 20 9 ;

TABLE MODECOST(l,JMODE) INTER CITY COST OF MOVING ITEMS

TRUCK RAIL
BOSTON.CHICAGO 10 5
BOSTON.CLEVE 8 7
BALT.CHICAGO 10 5
BALT.CLEVE 7 6 ;

or
TABLE MODECOST(l,JMODE) INTER CITY COST OF MOVING ITEMS
CHICAGO.TRUCK  CHICAGO.RAIL CLEVE.TRUCK  CLEVE.RAIL
BOSTON 10 5 8 7
BALT 10 5 7 6

The sets appear in the table structure in the order they arelisted. Thus, for the above table the two
dimensional item DISTANCE (1,J) is defined over the sets | and J with the names of the members of the set |

appearing vertically down the left-hand side of the table while the member names for J are identified
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horizontally. Data values appear underneath the names of the members of the J set.

The second and third example present aternative ways of entering a set with more than two
dimensions. Inthefirst case the first two sets are handled in the vertical column, and in the second case the
last two sets are handled across the top. 1n both cases, the two sets are handled by identifying the member of
the first indexed set followed by a period then the member name from the second set.

5.1.4 Entering Data Through Calculation

One may aso calculate data. In this case, the set dependence of a parameter and a verbal description
is specified without data. Then an equation is specified to define the data. For example, suppose the cost of
transporting items was a known linear function of mode and distance. A procedure to implement this would be
asfollows:

PARAMETER MODECOST (I,J, MODE) COMPUTED COST OF SHIPPING BY MODE;

TABLE COSTUNIT (TERM, MODE) COST DATA FOR SHIPPING MODE
TRUCK  RAIL
CONS 1 12
PERMILE 5 25

MODECOST (I, J, MODE) = COSTUNIT ("CONS',MODE) + COSTUNIT ("PER
MILE",MODE)*DISTANCE (I,J);
DISPLAY MODECOST;

In this example the PARAMETER statement does not contain data. Rather, calculations define the
variable MODECOST based on data in the tables DIST and COSTUNIT from the previous page which give
distance and the dependence of transport cost on distance. After MODECOST is calculated, it is copied to the
output using aDISPLAY statement. The data calculation feature is powerful as one can enter raw data and
then do calculations of model parameters, and record the assumptions made in calculating the data.

One aso can do simple replacements. For example, the statement

MODECOST(1,J,MODE) =5,
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would result in having al elements of MODECOST egual to 5.
5.1.5 Specification of Variables

In linear programming models, the variables will have nonnegativity or other sign conditions. In
GAMSthisisidentified by denoting POSITIVE VARIABLES, NEGATIVE VARIABLES, VARIABLES
which are free variables, and later BINARY or INTEGER VARIABLES. For example

POSITIVE VARIABLES

VOLUME (ITEM) AMOUNT PRODUCED BY ITEM

QUANTITY (CITY1, CITY2) AMOUNT SHIPPED BETWEEN CITIES;
NEGATIVE VARIABLES

LOSS AMOUNT OF MONEY LOST;
VARIABLES

OBJ OBJECTIVE FUNCTION VALUE;

Note that the variable and its sign restriction are smultaneoudy defined. A POSITIVE specification
means that the variable is restricted to be greater than or equal to zero, NEGATIVE means less than or equal
to zero, and the word VARIABLE means unrestricted in sign. After these statements, the name of each
variable along with its set dependence appears, and may be followed by a short description of the variable.
The statement lists each variable with the particular sign restriction, followed by a semicolon. Every variable
used in a GAMS model must be defined and the model must contain at least one unrestricted variable which is
the item optimized.

5.1.6 Equations

The set of equations which appear in the model are specified through the EQUATIONS statement.

EQUATIONS
OBJECTIVE OBJECTIVE FUNCTION
AVAILABLE (RESOURCEYS) RESOURCE AVAILABILITY CONSTRAINTS
SUPPLY (PLANT) SUPPLY AVAILABLE AT A PLANT
LIMIT (RESOURCES, PLANT) RESOURCES AVAILABLE BY PLANT;

These expressions include the name of the equation, an indication of the sets for which this equation
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exists and a verbal description. Entries appear for each of the model equations followed by a semicolon.
5.1.7 Writing Modd Equations

After the model equations have been defined, then they are defined algebraically. The algebraic

specification differs somewhat depending on whether the abjective function or the constraints are being
entered.

5.1.7.1 Objective Function Equations

The objective function equation is typically of the form:

Max X¢; X
i
However, GAMS forces the modeler to rewrite the equation so that the objective function expression is set

equal to an unrestricted variable, and that variable is named in the solve statement. Thus we ater the problem

to become

where Z is avariable which is unrestricted in sign (named in the GAMS VARIABLES list).

Specifying the objective function equation in GAMS requires the specification of an equation name
followed by an algebraic representation. Suppose we label the objective function equation OBJECTIVEF.
The resultant GAMS statement is:

Objectivef..  Z =E=SUM (J, c(I)*X(J));

Note the structure, first the equation is named followed by two periods. Then the algebraic statement

appears where the unrestricted variable that is maximized is set equal to an expression for the objective

function following the rules for equation writing as discussed above with one exception. That is, here the
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equality iswritten =E=. Finadly, the expression isfollowed by a semicolon.

5.1.7.2 Constraint Equations

The constraint equations are entered in essentially the same form as the objective function. First the
equation is named. In this naming any indices(sets) over which the equations are defined are named. Then this
is followed by two periods and the algebraic equation for the constraint. Subsequently, an indication of the
form of the inequality appears (=L= for less than or equal to; =G= for greater than or equal to; and =E= for
equa to). Findly, thisisfollowing by the expression for the right-hand-side and a semi-colon. Consider for

exampl e the constraints:

b. for dl i

IN

qujxj

X7, > d, for dl |
k

Q) + Zw = 4 fordlm
o

Il
o

EEEEQ) ¢ Z)
m j i

where the "for al" statement defines the family of indices for which the equations exist. Suppose we label the
first constraint RESOURCE indexed over the set ITEM. Similarly, we call the second constraint DEMAND
indexed over PLACE, the third constraint SOMEITEM indexed over WHAT and the fourth ADDIT. The
resultant GAMSS statements are:

RESOURCE(ITEM).. SUM (J, A(ITEM,J)*X(J)) =L= B(ITEM);

DEMAND(PLACE).. SUM (K, Z(K,PLACE)) =G= D(PLACE);

someitem(what).. Sum(j,sum(i,f(i.j,what)*q(i,j))+z(j,what)) =e=4;

addit.. Sum((m,j),sum(i,f(i,j,what)*q(i,j))+z(j,what)) =e=0;
The equations follow the equation writing conventions discussed above and in Appendix A. The only

exception is that one may mix constants and variables on either side of the equation. Then one could write the

copyright Bruce A. McCarl and Thomas H. Spreen 5-10



first equation as:

RESOURCE(ITEM).. B(ITEM) =G= SUM (J, A(ITEM,J)*X(J));
5.1.8 Specifying Bounds

Upper and lower bounds on individua variables are handled in a different fashion. For example, if the

variables VOLUME and QUANTITY had been defined, and were to be bounded, then the bounds would be
defined through statements like the following

VOLUME.UP (ITEM) = 10.;

QUANTITY.LO(CITY1, CITY2) = MINQ (CITY1, CITY2);

VOLUME.UP ("TREES") = 200. + LIMIT ("TREES").
In the first example, upper bounds are specified for the variable VOLUME across al members of the set
ITEM equaling 10. In the second example, the bound is imposed through a prespecified parameter data. In
the third example, the bound is cal cul ated.
5.1.9 Forming and Solving a Model

After specifying sets, variables, data, and other appropriate input, one enters statements which define

the modd and invoke the solver. The MODEL definition can be of two forms. In the first form, the
expression

MODEL RESOURCE /ALL/;
gives the model a name (RESOURCE), and specifies that ALL equations are incorporated. Alternatively, the
statement

MODEL COSTMIN /OBJECTIVE,SUPPLY ,DEMAND/;
gives the model name and the names of the equations to include. In this case the model name is COSTMIN
and the equations included are OBJECTIVE, SUPPLY and DEMAND.

In turn, the SOLVE statement is

SOLVE COSTMIN USING LP MINIMIZING OBJ;
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where the general syntax is SOLVE "modelname” USING LP MAXIMIZING [OR MINIMIZING] "objective
function variable name.” The objective function variable name is the variable added and set equal to the
mathematical expression for the objective function one may aso solve mixed integer problems by atering the
using phrase to "usingmip" and nonlinear problems with "using NLP".
5.1.10 Report Writing

GAMS has useful features which allow solution results to be used in calculations to compute various
items of interest or do various result summaries. One can, a any time after the SOLVE statement, use: a) a
variable name followed by a .L to obtain the value of the solution for that variable; b) a variable name
followed by a.M to get the reduced cost associated with that variable; ¢) an equation name followed by .L to
get the value of the left hand side of that equation; and d) an equation name followed by .M to get the shadow
price associated with the equation. Slack variables can be computed by taking an equation right hand side
minus the associated .L value. The DISPLAY statement can be used to print out calculation results.
5.1.11 Additional GAM S Topics

Two additional GAMS topics are worth mentioning. These involve the use of conditiona statements
and the use of loops. Conditional statements are utilized to indicate that there are cases where particular items
should not be defined when doing a calculation and involve a syntax form using a $.
Two examples are

DEMAND(REGION)$DEMANDQ(REGION)..

SUM (SUPPLY, QUAN(SUPPLY, REGION)) =G= DEMANDQ(REGION);

OBJECTIVE.. OBJ= SUM((1,)$(DIST(1,J) LT 20), COST(I,J)* QUAN(I,J));
In the first case, the notation SDEMANDQ(REGION) tells GAMS to generate this equation only if the
DEMANDQ term is nonzero resulting in a DEMAND equation being generated for only those members of
REGION which have nonzero demand. In the second expression, the $(DIST(1,J) LT 20) clause indicates that

one should add (i,j) pairsinto the sum only if the DISTANCE between the pair islessthan 20. In general, use
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of the $ notation allows one to impose conditions within the model setup and data cal culation procedures.

LOOP statements are also worth mentioning as they can be used to repeatedly execute a set of GAMS
statements. Examples appear in the DIET example on the disc where the LOOP is utilized to vary a price and
solve over and over again. Similarly, the EVPORTFO example uses a LOOP to solve for aternative risk
aversion parameters.

5.2 Putting GAM S and Algebraic Modeling Together -- The Resour ce Allocation Problem

The classical LP problem involves the allocation of an endowment of scarce resources among a
number of competing products so as to maximize profits. In formulating this problem algebraically let us
pursue the logical steps of: @) index identification, b) variable identification, ) constraint identification and d)
objective function identification. Parameter identification isimplicit in steps ¢ and d.

The indices necessary to formulate this problem are inherent in the problem statement. Since there are
"competing products’ we need an index for products which we define here asj. Theindex | may take on the
values of 1 through n indicating that there are n different competing products. The problem statement also
mentions "scarce resources’, so we define the index i to represent each of m possible resources (i=1,2,.....,m).

Now suppose we turn our attention to variables. Two potential variables are implicit in the above
statement. The first type involves variables indicating the allocation of resources and the second typeis
associated with the competing products. In structuring this problem we would have to know the exact amount
of each resource that is used in making each product. Thus, when we know how much of a product is made,
we know the quantity of each resource allocated to that product. This means the variable in this problem
involves the amount of each product to be made. Suppose we define a variable X; which is the number of units
of thej™ product made.

We may now define constraint equations. In this case, acongtraint is needed for each of the scarce

resources. The constraint forces resource usage across all production possihilities to be less than or equal to

copyright Bruce A. McCarl and Thomas H. Spreen 5-13



the resource endowment. An algebraic statement of this restriction requires definitions of parameters for
resource usage by product and the resource endowment. Let g; depict the number of units of the i*" resource
used when producing one unit of the j*™ product and let b, depict the endowment of the i resource. We now
can construct an algebraic form of the constraint. Namely we need to sum up the total usage of the i
resource. The total usage of resource is the sum of the per unit resource usage times the number of units

produced (a; X;). The appropriate algebraic statement of the ith constraint is

with a constraint defined for each of the resources (i) in the problem. A condition is also needed which states
only zero or positive production levels are alowed for each production possihility.
X = 0, for dl j.

Turning to the abjective function, an equation for profits earned is aso needed. This involvesthe
definition of a parameter for the profit contribution per unit of the j* product (c;). Then, the algebraic
statement of the objective function is the sum of the per unit profit contribution times the amount of each
product made or

dYcX.
which is to be maximized.
Algebraically, the LP formulation of the problemis
Max  XcX,
j
st. aninj < b for dl i

A

X, >0 for dl |

where j isindexed from 1to n, i isindexed from 1 to m, ¢; isthe profit per unit of activity j, X; is the number

Vv

of units of activity j produced, a; is the number of units of resource i required per unit of product j, and b, is

the endowment of resourcei.
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This formulation arose early in the development of LP. While the exact problem is not stated as
above, there are problems very closeto it in Koopman's 1949 symposia report. The formulation explicitly
appearsin Dorfman's 1951 book. Kantorovich aso presents an early example. Over time, this particular
formulation has been widely used. Infact, it providesthe first examplein virtually all textbooks.

5.2.1 Example and GAM S Implementation

Suppose that E-Z Chair Makers are trying to determine how many of each of two types of chairsto
produce. Further, suppose that E-Z has four categories of resources which constrain production. These
involve the availability of three types of machines: 1) large lathe, 2) small lathe, and 3) chair bottom carver; as
well as labor availability. Two types of chairs are produced: functional and fancy. A functional chair costs
$15 in basic materials and afancy chair $25. A finished functional chair sells for $82 and a fancy chair for
$105. The resource requirements for each product are shown in Table 5.1.

The shop has flexibility in the usage of equipment. The chairs may have part of their work substituted
between lathes. Labor and material costs are also affected. Data on the substitution possibilities are given in
Table 5.2. Assume the availability of time is 140 hours for the small lathe, 90 hours for the large lathe, 120
hours for the chair bottom carver, and 125 hours of labor.

This problem can be cast in the format of the resource alocation problem. Six different
chair/production method possibilities can be delineated. Let

X, = the number of functiona chairs made with the normal pattern;

X, = the number of functional chairs made with maximum use of the small lathe;

X5 = the number of functional chairs made with maximum use of the large lathe;

X, = the number of fancy chairs made with the normal pattern;

X5 = the number of fancy chairs made with maximum use of the small lathe;

X = the number of fancy chairs made with maximum use of the large lathe.
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The objective function coefficients require calculation. The basic formulaisthat profits for the j™
activity (¢) equal the revenue to the particular type of chair less the relevant base material costs, less any rele-
vant cost increase due to lathe shifts. Thus, the ¢ for X is calculated by subtracting 15 from 82, yielding the
entered 67. The constraints on the problem impose the availability of each of the four resources. The

technical coefficients are those appearing in Tables 5.1 and 5.2.

The resultant LP model in algebraic formis

Max 67X, + 66X, + 66.3X; + 80X, + 785X,  + 78.4X,
st. 08X, + 1.3X, + 02X, + 12X, + 17X,  + 05Xs < 140
05X, + 0.2X, + 13X, + 07X, + 03X, + 15X < 90
0.4X, + 0.4X, + 0.4X, + X4 + Xs + Xe < 120
X, o+ 1.05X, + 11X, + 08X, + 0.82X;  + 0.84X, < 125
X, , X, , X, , X, , Xs , Xe = 0

This problem can be cast into an algebraic modeling system like GAMS in numerous ways. Two
approaches are presented here. Thefirst isfaithful to the above agebraic formulation and the second is more
tailored to the problem. Consider the first formulation as shown in Table 5.3 and the file called RESOURCE.
The approach we employ in setting up the GAMS formulation involves a more extensive definition of both
variables and constraints than in the algebraic format. The indices are defined as GAMS sets, but instead of
using the short namesi and j longer names are used. Thus, in statement one the set j (which stands for the
different products that can be produced) is named PROCESS and the definition of the elements of j (rather
than being 1-6) are mnemonics indicating which of the products is being produced and which lathe is being
used. Thus, FUNCTNORM stands for producing functional chairs using the normal process while the
mnemonic FANCY MXLRG stands for producing fancy chairs with the maximum use of the large lathe.

Similarly, in line four, the i subscript is named RESOURCE. In turn, the parameters reflect these definitions.
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The availability of each resource (b) is specified through the RESORAVAIL parameter in lines 13-15. The
per unit use of each resource by each production process (g;) is entered through the RESOURSUSE definition
in lines 17-28. The objective function profit parameter (c)) is not directly defined but rather is calculated
during model setup. The inputs to this calculation are defined in the data with the per unit prices of the chairs
defined by processin PRICE lines 8-9 and the production cost defined in lines 11-12. In turn, the parameters
are used in computing the objective function in line 39 where price minus production cost is computed.

The variables (X;) are defined in lines 30-31 where the POSITIVE specification means greater than or
equal to zero. Note that a variable named PROFIT isdefined in line 33. This variable does not have a
counterpart in the algebraic model. This unrestricted variable is required by GAMS and will be the quantity
maximized. Subsequently, the two equations are specified. The equation for the objective function is not
indexed by any sets and is defined in line 35. The resource constraint equation indexed by the set
RESOURCE appearsin line 36. In turn then, the algebraic statement of the objective function appearsin lines
38-40 which sums net profits over al possible production processes by computing price minus the production
cost times the level produced. The resource constraints sum resource use over all the processes and hold this
less than or equal to the resource availability (lines 42-44). The final step in the GAMS implementation is to
specify the model name which contains al the equations (line 46) and then a request to solve the mode (line
47).

Another GAMS formulation of the problem appearsin Table 5.4 and file RESOURC1. Thisisless
faithful to the algebraic formulation, but is presented here since it shows more about GAMS. Here, thej
subscript definition is broken into two parts. One of which reflects the type of CHAIR being made and the
second the type of PROCESS being utilized. Thus, FUNCT.NORMAL refersto afunctional chair using the
normal process. In turn, this allows PRICE and BASECOST to be specified by CHAIR, but the

EXTRACOST from using the additional processes needs to be specified in terms of both CHAIR and
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PROCESS. The resource usage matrix now has three dimensions. one for RESOURCE, one for CHAIR, and
one for PROCESS. Also, the dimensions of the RESOURCUSE array are changed accordingly (line 20). The
model then proceeds basically as before with the PRODUCTION variable now having two indices, CHAIR
and PROCESS (line 33). The specification also means a dightly more complex expression in the objective
function in which the net return to a particular chair, using a particular process is calculated as chair price
minus production cost, minus extra cost. In turn, that is multiplied by the production level and summed (lines
41-42).

Examining and contrasting these formul ations shows some of the power of GAMS. Namely, in both
formulations, one can put in raw information such as chair prices and costs and then computations to setup the
model. Thisleaves arecord of how the numbers were calculated rather than having model coefficients
computed elsewhere. In addition, the use of longer names (up to 10 characters) in specifying the model, means
that the GAMS instructions can be written in sufficient detail so that they are easily understood. For example,
look at the objective function equation in Table 5.4. Note, that it contains production levd ties, the price of the
chair minus the cost of the chair minus the extra cost by a process. Thisis amuch more readily accessible
formulation than exists in many computational approachesto linear programming (see the material below or
treatments like that in Beneke and Winterboer).

5.2.2 Model Solution

The resultant solution under either formulation gives an optimal objective function value of 10,417.29.
The optimal values of the primal variables and shadow prices are shown in Table 5.5. This solution indicates
that 62.23 functional chairs and 73.02 fancy chairs should be made using the normal process, while 5.18 fancy
chairs should be made using maximum use of alarge lathe. This production plan exhausts small and large
lathe resources as well aslabor. The dua information indicates that one more hour of the small lathe is worth

$33.33, one more hour of the large lathe $25.79, and one more hour of labor $27.44. The reduced cost
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valuation information also shows, for example, that functional chair production with maximum use of a small
lathe would cost $11.30 achair. Finally, there is excess capacity of 16.91 hours of chair bottom carving.
5.2.3 Comments

The resource alocation problem is the most fundamental LP problem. This problem has many uses,
however, most uses involve dightly more complex problem structures which will be discussed in the remainder

of the book.

A number of modeling assumptions are implicit in this formulation. First, the price received for
production of chairsisindependent of the quantity of chairs produced. The firm would receive the same price
per unit whether it produced 5 or 500 million chairs. This may be unrealistic for large firms. Increased
production may bring either an increasing or decreasing price. Representation of decreasing returnsis
presented in the nonlinear approximation chapter and in the price endogenous modeling chapter. The integer
programming chapter contains a formulation for the case where prices increase with sales.

A second assumption of the above formulation is that the fixed resource availability does not change
regardless of itsvalue. For example, the E-Z chair problem solution placed a value on labor of $27 an hour.
However, the firm may feel it can afford more labor at that price. Consequently, one may wish to extend the
model so that more of the resources become available if a sufficiently high price would be paid. This genera
topic will be covered under purchase activities which are introduced in the joint products problem below. Itis
also covered in the nonlinear approximation and price endogenous chapters.

Finally, consider an assumption that does not characterize the above formulation. Many people
ordinarily regard the resource allocation problem as containing a fixed coefficient production process where
thereis only asingle way of producing any particular product. However, we included multiple ways of

producing a product in this example problem to show that a LP model may represent not only one way of
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producing a product, but also different ways involving different combinations of inputs.

5.3 The Transportation Problem
The second problem covered is the transportation problem. This problem involves the shipment of a
homogeneous product from a number of supply locations to a number of demand locations. This problem was
originaly formulated by Kantorovich in 1939 and Hitchcock in 1941. Koopmans (1949) restated the model

and spurred research in the area.

Setting this problem up algebraically requires definition of indices for: @) the supply points which we
will designate as i, and b) the demand locations which we will designate asj. In turn, the variables indicate the
quantity shipped from each supply location to each demand location. We define this set of variables as X;;.

There are three genera types of condtraints, one allowing only nonnegative shipments, one limiting
shipments from each supply point to existing supply and the third imposing a minimum demand requirement at
each demand location. Definition of the supply constraint requires specification of the parameter 5 which
gives the supply available at point i, aswell as the formation of an expression requiring the sum of outgoing
shipments from the i supply point to all possible destinations ( j ) to not exceed 5. Algebraically this

expression is

Definition of the demand constraint requires specification of the demand quantity d, required at demand point j,
aswell as the formation of an expression summing incoming shipments to the jth demand point from all

possible supply points (). Algebraicaly thisyields

YX. > d.

) 1 J
i
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Finally, the objective function depicts minimization of total cost across all possible shipment routes.
Thisinvolves definition of a parameter ¢; which depicts the cost of shipping one unit from supply point i to
demand point j. In turn, the algebraic formulation of the objective function isthe first equation in the

composite formulation below.

Min 2.5 X;
i
st _52‘(”. < s fordli
J
X; = d fordlj
X: > 0 fordli,]

This particular problem is a cost minimization problem rather than a profit maximization problem.

The transportation variables (X;;) belong to the general class of transformation variables. Such variables
transform the characteristics of agood in terms of form, time, and/or place characteristics. In this case, the

transportation variables transform the place characteristics of the good by transporting it from one location to

another. The supply constraints are classical resource availahility constraints. However the demand

congtraint imposes a minimum level and constitutes a minimum requirement constraint.

Suppose we address duality before turning to GAMS and an example. The dual of the transportation
problem establishes imputed val ues (shadow prices) for supply at the shipping points and demand at the
consumption points. These values are established so that the difference between the value of demand and the

cost of supply is maximized. The dua problem is given by?

3 Thisformulation follows after the supply equation has been multiplied through by -1 to transform
it to a greater-than constraint.
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Max - XsU; + XdV,
i i
st. - U ~+ \

IN

C; for dl i, |

0 for dl i, j

<
v

where U is the marginal value of one unit available at supply point i, and V; is the margina value of one unit

demanded at demand point j.

The dua problem is best explained by first examining the constraints. The constraint associated with
X;; requires the value at the demand point (V) to be less than or equal to the cost of moving the good from
point i to point j (c;) plusthe value at the supply point (U;). Consequently, the model requires the marginal
value of supply at the supply point plus the transportation cost to be no smaller than the value at the demand
point. This also requires the differences in the shadow prices between demand and supply points to be no
greater than the transport cost. This requirement would arise in a highly competitive market. Namely if
someone went into the transportation business quoting delivery and product acquisition prices, one could not
charge the demanders of the good more than the price paid for a good plus the cost of moving it, or
competitors would enter the market taking away business. This also shows the general nature of the dual

congtraint imposed by a primal transformation variable. Namely, arestriction isimposed on the difference in

the shadow prices. The dual objective function maximizes profits which equal the difference between the value
of the product at the demand points (d\V;) and the cost at the supply points (sU;).
5.3.1 Example

ABC Company has three plants which serve four demand markets. The plants arein New Y ork,

Chicago and Los Angeles. The demand markets are in Miami, Houston, Minneapolis and Portland. The
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quantity available at each supply point and the quantity required at each demand market are

Supply Available Demand Required
New York 100 Miami 30
Chicago 75 Houston 75
Los Angeles 90 Minnesapolis 90
Portland 50

The assumed distances between cities are

Miami Houston Minnesapolis Portland
New York 3 7 6 23
Chicago 9 11 3 13
Los Angeles 17 6 13 7

Assume that the firm has discovered that the cost of moving goodsis related to distance (D) by the

formula-- Cost =5 + 5D. Given these distances, the transportation costs are

Miami Houston  Minneapolis  Portland

New Y ork 20 40 35 120
Chicago 50 60 20 70
Los Angeles 90 35 70 40

The above data allow formulation of an LP transportation problem. Let i denote the supply points
wherei=1 denotes New York, i=2 Chicago, and i=3 Los Angeles. Let | represent the demand points where
j=1 denotes Miami, j=2 Houston, j=3 Minneapolis, and j=4 Portland. Next define X;; as the quantity shipped

fromcity i to city j; eg., X,3 stands for the quantity shipped from Chicago to Minneapolis. A formulation of
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this problem is given in Table 5.6. This formulation may aso be presented in a more compact format as

20 40 35 120 50 60 20 70 90 35 70 40 Minimize
1 1 1 1 100

1 1 1 1 < 75
90
30

IN

[
[
[
[
IN

+1 +1 +1
+1 +1 +1 75

+1 +1 +1 90

+1 +1 +1 > 50

v

v

v

This shows the common incidence in LP formulations of sparsity. Although there is room for 84 coefficients
in the body of the constraint matrix only 24 of these are non-zero. Thus, the problem is only 24/84ths dense,
revealing alarge number of zeros within the body of the matrix. The right hand sides illustrate endowments of
supply through the first three constraints, and minimum requirements in the next four constraints. The
variables involve resource usage at the supply point and resource supply at the demand point. These activities
transform the place utility of the good from the supply point to the demand point.

The GAMS implementation is presented in Table 5.7 and in the file TRNSPORT. Two sets are
defined (lines 1-4) one identifies the supply plants, the other defines the demand markets. Subsequently,
supply availahility and demand requirements are specified through the parameter statementsin lines 6-10. The
distance between the plantsis specified in lines 12-17. Following this, unit transport costs are computed by
first defining the parameter for cost in line 20, and then expressing the formula of $5.00 fixed cost plus $5.00
timesthe distance in line 21. Next, the nonnegative shipment variables are specified (X;;). The unrestricted
variable called TCOST equals the objective function value. Then, three equations are specified, one equates
the objective value to TCOST and the other two impose the supply and demand limitations as in the algebraic

model. Thesein turn are specified in the next few statements, then the model is specified using al the
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equations and solved minimizing the TCOST variable.

The solution to this problem is shown in Table 5.8. The optimal value of the objective function value
iS7,425. The optimal shipping pattern is shown in Table 5.9. The solution shows twenty units are left in New
York's potential supply (since constraint 1 isin dack). All units from Chicago are exhausted and the
marginal value of additional unitsin Chicago equals $15 (which is the savings realized if more supply were
available at Chicago which alowed an increase in the volume of Chicago shipments to Minneapolis and
thereby reducing New Y ork-Minneapolis shipments).

The solution also shows what happens if unused shipping routes are used. For example, the
anticipated increase in cost that would be necessary if one were to use the route from New Y ork to Portland is
$75, which would indicate a reshuffling of supply. For example, Los Angeles would reduce its shipping to
Portland and increase shipping to somewhere else (probably Houston).

The associated dua problem is:

Max -100U, - 7BU, - 90U, + 30V, + 75V, + POV, + 50V,
st. -U, + V, < 20
-U, + V, < 40
-U, + V, < 35
-U, + VvV, < 120
-U, + V, < 50
-U, + V, < 60
-U, + V, < 20
-U, + vV, < 70
U, + V, < 90
-Ug + V, < 35
-Ug + V, < 70
-U, + V, < 40

The constraints of this problem are written in the less than or equa to, for requiring the value at
demand point to be no more than the value at the shipping point plus the transportation cost. The solution to
the dual problem yields an objective function of 7,425 with the optimal values for the variables shown in Table

5.10.
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A comparison of Table 5.8 and Table 5.10 reved s the symmetry of the primal and dual solutions.
The values of the X;; in the primal equal the shadow prices of the dual, and vice versa for the shadow prices of
the primal and the U; and V; in the dual.

5.3.2 Comments

The transportation problem is a basic component of many LP problems. It has been extended in many
ways and has been widely used in applied work. A number of assumptions are contained in the above model.
First, transportation costs are assumed to be known and independent of volume. Second, supply and demand
are assumed to be known and independent of the price charged for the product. Third, there is unlimited
capacity to ship across any particular transportation route. Fourth, the problem deals with a single commaodity
or an unchanging mix of multiple commodities.

These assumptions have spawned many extensions, including for example, the transshipment problem
(Orden), wherein transshipment through intermediate cities is permitted. Another extension allows the quantity
supplied and demanded to depend on price. This problemis called a spatia equilibrium model (Takayama and
Judge(1973)) and is covered in the price endogenous chapter. Problems also have been formulated with
capacitated transportation routes where simple upper bounds are placed on the shipment from a supply point
to ademand point (i.e., X;; less than or equal to UL;;). These problems are generally in the purview of network
theory (Bazarra et. al., Kennington). Multi-commodity transportation problems have also been formulated
(Kennington). Cost/volume relationships have been included as in the warehouse location model in the second
integer programming chapter. Finally, the objective function may be defined as containing more than just
transportation costs. Ordinarily one thinks of the problem wherein the ¢; is the cost of transporting goods
from supply point i to demand point j. However, modelers such as Barnett et al. (1984) have included the sup-
ply cost, so the overall objective function then involves minimizing delivered cost. Also the transport cost may

be defined as the demand price minus the transport cost minus the supply price, thereby converting the
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problem into a profit maximization problem.

The transport model has interesting solution properties. The constraint matrix possesses the
mathematical property of unimodularity (see Bazaraa et a. (1984) for explanation) which causes the solution
to be integer-valued when the right hand sides are integers. Also, when the sum of the supplies equas the sum
of the demands, then the problem is degenerate, and the dua will have multiple optimal solutions. That is, the
supply and demand prices will not be unique.

The transportation problem has been the subject of considerable research and application. The
research has led to specia solution approaches including the Ford and Fulkerson out of kilter algorithm, and
specializations of the primal simplex agorithm. Discussion of such topics can be found in Dantzig (1951),
Bradley et a., and Glover et d. (1974). It isworthwhile to point out that the algorithms allow the problem to
be solved at a factor of 100 times faster than the use of the general smplex method. Readers attempting to
solve transportation problems should consult the network literature for efficient solution procedures.

There have been many applications of different versions of the transportation problem. For example,
it has been used to study the effect of railroad regulatory policy (Baumel et a.), grain subterminal facility
location (Hilger et a.), and port location (Barnett et al.(1984)). The assignment and/or contract award
problems are transport problems which arose early in the development of LP (see the assignment and contract

awards sections in Riley and Gass). There also are related formulations such as the caterer problem.

5.4 Diet/Feed Mix/Blending Problem
One of the earliest LP formulations was the diet problem along with the associated feed mix and
blending variants. The diet context involves composing a minimum cost diet from a set of available
ingredients while maintaining nutritional characteristics within certain bounds. Usually, atota dietary volume

congtraint is also present. Stigler studied the problem before LP was developed. However, he noted that tastes
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and preferences cause a disparity between observed and minimum cost human diets. Basically the human diet
form of this problem takes alargely expository role with few applications. However, Waugh applied LP to the
livestock feed formulation problem, and it has become one of the most widely used LP applications. The
formulation has also been applied to the blending of ice cream, sausage, and petroleum (Riley and Gass).

The basic model is formulated as follows. Defineindex (i) representing the nutritional characteristics
which must fall within certain limits (protein, calories, etc.). Defineindex ( j ) which represents the types of
feedstuffs available from which the diet can be composed. Then define a variable ( F; ) which represents how
much of each feedstuff isused inthe diet. The constraints of the problem include the normal nonnegativity
restrictions plus three additional constraint types: one for the minimum requirements by nutrient, one for the
maximum requirements by nutrient and one for the total volume of the diet. In setting up the nutrient based
condtraints parameters are needed which tell how much of each nutrient is present in each feedstuff aswell as
the dietary minimum and maximum requirements for that nutrient. Thus, let a; be the amount of the i
nutrient present in one unit of the j™ feed ingredient; and let UL, and LL; be the maximum and minimum
amount of the i™ nutrient in the diet. Then the nutrient constraints are formed by summing the nutrients
generated from each feedstuff (a;F;) and requiring these to exceed the dietary minimum and/or be less than the

maximum. The resultant constraints are

YaF < UL
i

Vv

YaF > LL

A condtraint is also needed that requires the ingredientsin the diet equal the required weight of the diet.
Assuming that the weight of the formulated diet and the feedstuffs are the same, this requirement

can be written as
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Finally an objective function must be defined. This involves definition of a parameter for feedstuff

cost (¢) and an equation which sumsthe total diet cost across al the feedstuffs, i.e.,

jEchj
The resulting LP formulation is
Min _ECJ.FJ.
J
st. _quFj < UL, fordli
J
YgF > LL; fordli
J
_EFJ. = 1
J
F > 0 for dl |

This formulation depicts a cost minimization problem. The F; activities provide an example of

purchase variables, depicting the purchase of one unit of feed ingredients at an exogenoudly specified price

which, in turn, provides the nutrient characteristics in the mixed diet. The constraints are in the form of
resource limits and minimum requirements.
The dud of this problem contains variables giving the marginal value of the nutrient upper

and lower limits, as well as the value of the overall volume constraint. Thedual is
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Max -yUL, + MLL +«
i i

A

st. —_Z‘(iaij + _Xilqj +a < ¢ foral]j

Vv

Yio B > 0 for dli
o unrestricted

The dual variables are y;, the marginal value of the i™ nutrient upper limit constraint; g;, the marginal value of
the i nutrient lower limit congtraint; and «, the marginal value of the total volume constraint. The dual
congtraints require that the imputed cost of each ingredient plus the cost of the volume constraint to be no
greater than the cost of any ingredient. The variables y; and g; are nonnegative, but « is unrestricted in sign.
Since the primal constraints impose nutrient requirements, the dual objective function demonstrates how the
costs of the diet are alocated to individual nutritional requirements. For further economic interpretation of the
dua objective function, see Thomas et al.
5.4.1 Example

Suppose we use the model in a setting where we value a potential new ingredient in the diet. Suppose
that cattle feeding involves lower and upper limits on net energy, digestible protein, fat, vitamin A, calcium,
salt and phosphorus. Further, suppose the feed ingredients available are corn, hay, soybeans, urea, dica
phosphate, salt and vitamin A. In addition, a new product, potato durry, is available. One kilogram of the
feed isto be mixed. The costs of the ingredients per kilogram (excluding durry) are shown in Table 5.11. The
nutrient requirements are given in Table 5.12.

The nutrient requirements give the minimum and maximum amounts of each nutrient in one kilogram
of feed. Thus, there must be between 0.071 and 0.130 kg of digestible protein in one kg of feed. The volume
of feed mixed must equal one kilogram. The nutrient compositions of one kg of each potential feed are shown

in Table 5.13. The formulation is shown in Table 5.14. The reader should aso note that the potato slurry
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activity has been inserted with aprice of P. This price will be varied.

First, suppose we specify the price of potato surry to be one cent per kilogram, then the GAMS
formulation is given in Table 5.15 and the file DIET. Three sets are involved, the first two are equivaent to
the subscripts for ingredients and nutrients. The third one is one for convenience in data input and simply tells
whether a minimum or maximum is being defined. In turn, the cost, minimum, maximum, and the nutrient
content of each of the feedstuffs are defined. The variables identify the use of each feedstuff and atotal cost
variable for the objective function. The nutrient upper and lower limits, nutrients and the weight constraint are
defined in lines 39-45. Then the model solve statements appear. In addition, there are instructions which
appear between the ontext and offtext statements that run the model repeatedly through a LOOP statement to
generate a series of related solutions for increasing potato surry prices. This section also contains an example
of report writing. Namely, 30 durry price scenarios are defined, and then a set is defined where the results of
the 30 price runs are kept. The solution printout is suppressed (by the OPTION statement) and only the
summary result isreported. Inside the LOOP a calculation sets the ingredient cost equal to the previous price
plus a half cent for each scenario. Inturn, the model is solved for each price level, with durry use and shadow
price recorded in the table. After the loop isfinished, the table with all the resultsis displayed. Note the
report writing features in line 55 where the .L parameter on the end of the feed use variable indicates that the
optimal value of the FEED variable for durry isrecorded in atable.

The solution at a durry price of 0.01 yields an objective value of 0.021 with the variable and con-
straint solutions as shown in Table 5.16. The optimal solution indicates that the least cost feed ration is 95.6
percent dlurry, 0.1 percent vitamin A, 1.5 percent salt, 0.2 percent dicalcium phosphate, 1.4 percent urea, 1.1
percent soybeans and 0.1 percent hay. The shadow prices indicate that the binding constraints are the net
energy, vitamin A, salt, and calcium minimums along with the phosphorous maximum and the weight

constraint. The shadow price on the weight constraint is 1.08 cents.
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The results using the code in lines 49-57 show that the above solution would hold for prices of potato
slurry between 0 and +11 cents. A second ration with 87% dlurry would hold for prices between roughly 11
and 12 cents. A ration with 18% Slurry would hold for prices around 12.5 cents, and for any price greater
than 13 cents no potato slurry would be used. The resultant demand schedule for potato durry is graphed in
Figure5.1.

The empirical dual formulation is given in Table 5.17 and the file DUALDIET. Thisformulation,
with P equal to 0.01, leads to a dual solution with the same objective function value asin the primal. The
optimal dual solution isshown in Table 5.18. The dual is degenerate.

5.4.2 Comments

There are three assumptions within the feed formulation problem. First, the nutrient requirements are
assumed constant and independent of the final product (e.g., livestock) price. Second, the quality of each feed
ingredient isknown. Third, the diet is assumed to depend on only feed price and nutrients.

The diet problem iswidely used, especidly in formulating feed rations. Animal scientists use the term
"ration-balancing”, and severa software programs have been specifically developed to determine least cost
rations. LP models of the ration problem were used by Prevatt, et d., to evaluate fed cattle production in
Florida and by Thomas et al. (1992) who examined nutrient values in dairy production. Other references and
discussions are given in Dorfman et a., Ashour and Anderson, and Beneke and Winterboer.

5.5 Joint Products

Many applied LP models involve production of joint products. An example would be a petroleum
cracking operation where production yields multiple products such as oil and naphtha.  Other examples
include dairy production where production yields both milk and calves, or forestry processing where trees yield
sawdust and multiple types of sawn lumber. Here, we present aformulation explicitly dealing with joint

products.
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Suppose we articulate the problem as follows. Consider a profit maximizing firm who wishes to
maximize total profits derived from the available production possihilities. Furthermore, suppose each of the
production possibilities yields multiple products, uses some inputs with a fixed market price, and uses some
resources that are available in fixed quantity.

Formulation of this model requires indices which depict the products which could be produced

(p), the production possihilities (] ), the fixed price inputs purchased ( k ), and the resources which are
available in fixed quantity ( m). Three types of variables need to be defined. The first ( X, ) defines the total
quantity of the p™ product sold; the second (Y;) identifies the quantity of jth production possibility utilized;
and the third (Z,) is the amount of the k™ input purchased.

Other than nonnegativity, three types of constraints are needed. The first relates the quantity sold of
each product to the quantity yielded by production. Algebraic specification requires definition of a parameter
(9) which gives the yield of each product ( p) by each production possibility. The
expression

X, - JE]ijj <0

isa supply demand balance. Here demand, in the form of sales of p™ product, is required to be less than or
equal to supply which is the amount generated across the production alternatives. Further, since production
and sales are endogenous, thisis written as sales minus production and is less than or equal to zero.

The second type of constraint relates the quantity purchased of each fixed price input to the quantity
utilized by the production activities. The parameter r,; gives the use of the k™ input by thej™ production
possibility. In turn, the constraint sums up total fixed price input usage and equates it to purchases as follows:

jX]’ijj -Z, < 0.

This constraint is another example of a supply demand balance where the endogenous demand in this case, use

of the k™ input, is required to be less than or equal to the endogenous supply which is the amount purchased.

copyright Bruce A. McCarl and Thomas H. Spreen 5-33



Thethird type of constraint is a classical resource availability constraint which insures that the
guantity used of each fixed quantity input does not exceed the resource endowment. Specification requires
definition of parameters for the resource endowment (b,,,) and resource use when the production possibility is
utilized. The constraint which restricts total resource usage across all possibilitiesis

jXéij i < by
where s, isthe use of the mth resource by Y;.
For the objective function, an expression is needed for total profits. To agebraically expressed the

profits require parameters for the sales price (c,), the input purchase cost (g,), and any other production costs

associated with production (d;). Then the objective function can be written as

chpxp B J.Zdej B kZeka

Theindividua terms do not reflect the profit contribution of each variable in an accounting sense,
rather this occurs across the total model. Thus, the production variable term (d;) does not include either the
price of the products sold or the cost of al the inputs purchased, but these components are included by terms

on the sales and purchase variables. The resultant composite joint products model is

Max chpxp - jZdeJ. - 2,
st. X, - thijj < 0 for dl p
g, - Z, < 0 fordlk
J
3s,Y, < b, fordlm
J
Xy Y, Z > 0 fordl p,jk

Several features of this formulation are worth mention. First, note the explicit joint product

relationships. When activity Y is produced, a mix of joint outputs (g, p=1, 2, ...) is produced while
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simultaneously consuming the variable inputs both directly priced in the objective function (d) and explicitly
included in constraints (ry;), along with the fixed inputs (s,;). Thus, we have a multi-factor, multi-product
production relationship.

Another feature of this problem involves the types of variables and constraints which are used. The
variables X, are sales variables which sell the available quantities of the outputs. The variables Z, are

purchase variables which supply the inputs utilized in the production process. The variables Y; are production

variables. In this case, the production variables show production explicitly in the matrix, and the product is

sold through another activity. The first two constraints are supply-demand balances. The reason for the use

of inegualities in supply/demand balances is discussed in Chapter VII. Thelast constraint is a resource

endowment.

The dua to thisLP problemis

Min U b,
m
st. Vp > ¢ for dl p
- E:qupl + kX}NkrkJ + r%ZUmst > -d for al |
- W, > -6 for dl k
Vo o W, , U, = 0 for dl p,k,m

where V,, is the marginal value of product p; W, the marginal cost of the k™ variable input; and U, is the

marginal value of the m™ fixed resource.
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The dual objective function minimizes total marginal value of the fixed resources. The first constraint
insures that the marginal value of each product is at least as great as the sales price. This relationship
demonstrates the dual implication of a sales variable; namely, alower bound is imposed on the shadow price
for the commodity sold. The third constraint insures that the marginal value of each input is no more than its
purchase price and reflects the dual implication of a purchase variable, i.e., an upper bound isimposed on the

shadow price of the item which can be purchased. The second constraint is alied with the production variable

and insures that the total value of the products yielded by a processis less than or equal to the value of the
inputs used in production, where the input valuation involves the direct costs in the objective function plus the
imputed costs due to variable and fixed inputs.
5.5.1 Example

Consider afarm which produces both wheat and wheat straw using seven production processes. The
basic data for these production processes are given in Table 5.19. The production process involves the joint
production of wheat and straw using land, seed and fertilizer.

The relevant prices are wheat - $4.00 per bushel, wheat straw - $.50 per bale, seed - $.20/1b., and
fertilizer - $2.00 per kilogram. Also thereisa$5 per acre production cost for each of the processes and the

farm has 500 acres. Thisleads to the empirical formulation

Max 4X, + 5X, - 5Y, - 5Y, - 5Y; - 5Y, - 5Y; - 5Y, - 5Y, - 2Z, - 2Z,
st. X, - 30Y, -50Y, - 65Y; - 75Y, - 80Ys - 80Y, - 75Y, < 0
X, - 10Y, - 17Y, - 22Y, - 26Y, - 29Y: - 31Y, - 32Y, < 0
+ b5Y, + 10Y, + 15Y, + 20Y; + 25Y, + 30Y, Z, < 0
10y, + 10y, + 10Y,; + 10Y, + 10Ys + 10Y¢ + 10Y, Z, < 0
Y, o+ Y, + Yi + Y, + Ys + Y + Y, < 500
X, v Xs v Yy o, Yo o Ys oo Y& o Ys v Ye . Y. ., Z, Z, > 0

The variables X; and X, are the sales of wheat and straw, respectively. The variables 'Y, through Y,

are the production of whest via the seven different input usage/output production possibilities. The variables
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Z, and Z, are purchases of fertilizer and seed, respectively. The first two constraints balance product sale with
production; the third and fourth constraints require purchases of seed and fertilizer when production is
undertaken. The fifth constraint limits land availability. Note that the Y variables produce the multiple pro-
ducts using multiple inputs. This problem exhibits seven different ways of producing the two products. Each
of these seven different ways uses a different input combination. Also note that by increasing the fertilizer
input one obtains decreasing returns in terms of the production of wheat and straw.

The GAMS formulation for this problem is given in Table 5.20 and the file JOINT. Thisformulation
relies on four sets. One for the products; one for the purchased inputs; one for the fixed inputs; and one for the
possible production processes. In turn, parameters are specified for the product prices, input costs, the
production process costs, and fixed resource availability. These data are entered conventionally except for the
congtant production cost which is entered algebraically in line 11.

Variables and constraints are defined as associated with the above algebraic formulation, with the net
income variable specified to equa the objective function. Similarly, the objective function, yield balance, input
balance and available resource constraints are defined. Then the mode! is defined indicating al constraints and
solved.

The solution to this problem is shown in Table 5.21. The solution implies that 40,000 bushels of
wheat and 14,500 bales of straw are produced by 500 acres of the fifth production possibility using 10,000
kilograms of fertilizer and 5,000 Ibs. of seed. The reduced cost information shows a $169.50 cost for the first
production possibility if undertaken. Under this production pattern, the marginal value of land is $287.50.
The shadow prices on the first four rows are the sale and purchase prices of the various outputs and inputs
depicted in those rows.

The dud of the joint product example is given in Table 5.22. Note the action of the constraints. The

first two insure that the shadow prices associated with the balance row for each product are at least as great as
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the product prices. Thisisaclear condition for optimality. If the shadow price fell below this, it would be
rational to sell more of the product. The last two constraints insure that the values of the inputs are less than
or equal to their purchase prices. If the input was worth more than its purchase price, it would make sense to
purchase more until the value fell to the purchase price. The middle constraints, under re-arrangement, insure
that the total imputed value of al the products from any one production method is less than or equal to the
value of the fertilizer, seed and land used arising through the terms involving W,, W, and U. The optimal
solution to the dual problem is given in Table 5.23 and corresponds exactly to the optimal primal solution.
5.5.2 Comments

Thejoint products problem illustrates: 1) the proper handling of joint products and 2) production
variables where the returns from production are not collapsed into the objective function but explicitly appear
in the constraints.

The formulation also illustrates the possible complexity of LP. In this case product balance
congtraints are incorporated in amodel aong with resource constraints. Also note that X, and X,, givesthe
sum of total output, and that Z, and Z, give the sum of total input usage on the farm which may be convenient
for model interpretation. It is possible to exclude the X and Z variables by adjusting the objective function
coefficientson Y so they reflect the value of the products (Y) less the costs of the inputs (Z). The larger
formulation used above may be superior if model use demands easy alteration of prices or summary accoun-
ting on total production. Thisisdiscussed in the Purposeful Modeling section of the Toward Proper Modeling
chapter.

Another observation is the action of the primal variables asreflected in the dual. Note that the
purchase activities provide upper bounds for the dual variables associated with the output balance constraint,
while the sales activities provide lower bounds for the dual variables associated with the input balance

congtraints, and the production activities provide relationships between the dual variables relating to inputs and
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outputs.

Joint product formulations have arelatively long history. It isdifficult to cite many exact
applications; rather such a structure is common and implicit in many models throughout the literature.
Hildreth and Reiter presented an early joint products example, Beneke and Winterboer provide examples of

joint products, (e.g. p. 46), and many other examples are available.

5.6 Commentson GAM S and Algebraic M odeling
It is beneficia to examine the advantages and disadvantages of this book's orientation toward
algebraic modeling and GAMS usage. Thisisdonein this section.
5.6.1 Why Use Algebraic M odeling?

Algebraic modeling refers to the formulation of optimization problems in summation notation. Why is
algebraic modeling desirable and what are its inherent shortcomings? The maor advantages involve the ability
to concisely state problemsin an abstract general fashion, largely independent of the data and exact
application context while making general duality implication statements. One can produce an algebraic
formulation independent of the problem size which initially can be used to consider moving products from two
plants to two regions and later to consider moving products from fifty plants to a hundred regions. Such an
approach is particularly useful in the textbook presentation herein. Furthermore, familiarity with algebraic
modeling allows the use of formulations from the literature.

Nevertheless, these advantages are accompanied by several disadvantages. Algebraic modeling and
summation notation are difficult for some users. Some people will always desire to deal with the exact
problem context, not an abstract general formulation. This does lead to a strategy most modelers use when
employing algebraic modeling. Namely, algebraic modeling exercises are usualy supported by small tableau

based sample models which capture problem essence and serve as an aid in algebraic model formulation. Dua
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model setup and interpretation can also be difficult. Empirically based duals are usually easier to construct
than algebraic duals.

Algebraic modeling can be quite cumbersome when dealing with small, one time problems. In such
cases, the generality of the presentation may not be worth the effort. Clearly, the gains to using algebraic
modeling rise with problem size. When amodeler deals with large problems, the algebraic statement is
probably the only thing that is thoroughly understood. Often the numerical formulation has grown out of
control. Another problem when using algebraic modeling is that certain tableau based formulation structures
aredifficult to express algebraicaly. Thisisillustrated by the sequencing example of Chapter 7.

Algebraic modeling is not the tool of choice for small, infrequently solved problems, but rather it is
best employed for medium or large sized models (more than 30 rows and/or columns) although the GAMS
report writing and computation features may make it attractive for small models. In such cases, agebraic
modeling can alow the modeler to gain generd insights into the problem. Furthermore, coupling algebraic
modeling with a modeling system like GAMS permits gains in modeling efficiency and efficacy.

5.6.2 Why Use GAM S to Support Modeling?

Now, why use GAMS? GAMS generally requires algebraic modeling and thus, has many of algebraic
modeling's advantages and disadvantages. However, GAMS iseasier to tailor to the problem, so its use
introduces additional advantages and overcomes some of the disadvantages.

The crucia point when considering whether to use GAMS involves a comparison with traditional
linear programming formulation techniques. Here we compare GAMS usage with: @) direct specification of
equation-based tableaus as used in LINDO (Schrage); b) direct specification of full tableaus asin McMillan;
and ¢) MPS-based input asin the stand aone version of MINOS (Murtaugh and Saunders).

First, let us deal with datainput. Given, the resource allocation problem, alternative formulations for

GAMS, atableau-based approach asin McMillan, a LINDO input stream (Schrage (1985)), a MPS input
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stream (Murtaugh and Saunders(1987)) and an alternative simplified GAMS input stream appear in Table
5.24.

Severa features appear in these input streams. First, the algebraic GAMS is the most complex.
Second, GAMS can be used in a much simpler fashion becoming competitive with LINDO. Third, GAMSis
more readable than the tableau or MPS. Fourth, the versatility of GAMS is shown by the fact that the
structure of the resource allocation problem from the earlier example is maintained with a different data set (in
Panel a).

Now let us dea with GAMS disadvantages. Specification of a small model amost aways takes a
larger file in GAMS than when using traditional equation or tableau-based methods. Namely, the LINDO or
McMillan code specification of the resource allocation example takes three to five lines of input, whereas the
GAMS specification takes the better part of a page. However, GAMS can be used smplistically yielding
amost the same as LINDO (Panel d). Furthermore, a higher level of computer skill is required with GAMS as
abatch input file, a compiler and a 250 page users guide are involved. However GAMS is generally easier to
use than MPS-based methods, as an inspection of the treatment in Beneke and Winterboer or Orchard-Hays
revedls.

There are d'so model formulation characteristics which constitute disadvantages. GAMS generally
requires everything to be written algebraically which makes some potential users uncomfortable. Also some
problem structures are difficult to write algebraicaly (i.e., see the sequencing problem in chapter VII).

Finally, there are shortcomings due to alack of capabilitiesin GAMS. GAMS does not contain a set
of well-developed modd debugging aids as are present in many MPS-based installations. One can add custom
diagnostic aids only with difficulty (The GAMS 10O Library document explains how to interface FORTRAN,
PASCAL and C programs through a special programming job). It isalso difficult to construct an extremely

problem-tailored computer implementation as can be done using FORTRAN-based computer implementation
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(i.e., see McCarl et d.(1977) or McCarl and Nuthall).

Aid with Initia Problem Formulation and Changes in Problem Formulation

GAMS aids both ininitially formulating and subsequently revising formulations. GAMS facilitates
specification and debugging of an initial formulation by alowing the modeler to begin with a small data set,
then after verifying correctness expand to a much broader context. For example, one could initialy specify a
small transportation model with afew suppliers and demanders. Then after that model is debugged one could
respecify the problem to encompass fifty shipping origins and two hundred destinations without needing to
change the algebraic model.

Second, GAMS makes it easy to alter the model. Historically large models have been difficult to
modify. Namely when using traditional MPS-based modeling approaches it is difficult to add new congtraints
or variables. On the other hand, GAMS allows one to add model features much more simply. Generaly,
modelers do not try to make a complete formulation the first time around, rather one starts with a small
formulation and then adds structural features as demanded by the analyst. GAMS also enforces consistent
modeling, allowing models to be transferred between problem contexts (i.e., code from the transport exampleis
used in the warehouse location example in the second integer programming chapter).

Automated Computational Tasks

Many of the tasks that would traditionally have required a computer programmer are automated. As
such, GAMS automatically does coefficient cal culation; checks the formulation for obvious flaws; chooses the
solver; formats the programming problem to meet the exact requirements of the solver; causes the solver to
execute the job; saves and submits the advanced basis when doing related solutions; and permits usage of the
solution for report writing. Also GAMS verifies the correctness of the algebraic model statements and allows
empirical verification. Furthermore, since GAMS has been implemented on machines ranging from PCs to

workstationsto CRAY super computers, it allows portability of a model formulation between computer
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systems. Switching solversis also very smple requiring changing a solver option statement or changing from
using LPto using NLP. Linksto spreadsheets have aso been developed. Finally, GAMS does not require
programming using languages like C or FORTRAN as does traditional MPS-based matrix generators and
report writers.

Facilitates Documentation and Later Use of Models

One of the other convenient features of GAMS is its self-documenting nature. Perhaps the largest
benefit GAMS has over traditional modeling techniques is that modelers can use longer variable, equation and
index names as well as comments, data definitions etc., allowing a more adequate and readable problem
description. Model structure, assumptions, and any calculation procedures used in the report writing are
documented as a byproduct of the modeling exercise in a self-contained file. Comment statements can be
inserted by placing an asterisk in column one, followed by text identifying data sources or particular
assumptions being used (i.e., in some of the authors models, comments identify data source publication and
page). Under such circumstances GAMS alows either the origina author or others to alter the model
structure and update data.

Allows Use by Varied Personndl

Modeling personnel are often rare. For example, in international development contexts, detailed
GAMS applications have been set-up by modeling experts but subsequently, the mode! is utilized by policy-
makers with minimal, if any, assistance from the modeling experts. Often, given proper interna

documentation and a few instructions, clerical labor and nontechnical problem analysts can handle an anaysis.

Supported by Libraries of Applications

GAMS israpidly becoming a defacto industry standard. Many examples are provided by the model

library, Thompson and Thore; Kendrick; Zenios and their material.
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Table5.1. Resour ce Requirementsfor the E-Z Chair Makersfor the Normal Pattern

Hours of Use per Chair Type

Functional Fancy
Small Lathe 0.8 12
Large Lathe 0.5 0.7
Chair Bottom Carver 0.4 1.0
Labor 1.0 0.8
Table5.2. Resour ce Requirements and I ncreased Costsfor Alternative M ethods to Produce

Functional and Fancy Chairsin Hours of Use per Chair and Daollars

Maximum Use of Small Lathe Maximum Use of Large Lathe
Functional Fancy Functional Fancy
Small Lathe 1.30 1.70 0.20 0.50
Large Lathe 0.20 0.30 1.30 1.50
Chair Bottom Carver 0.40 1.00 0.40 1.00
Labor 1.05 0.82 1.10 0.84
Cost Increase $1.00 $1.50 $0.70 $1.60
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Table5.3. First GAM S Formulation of Resour ce Allocation Example

1 SET  PROCESS TYPES OF PRODUCTION PROCESSES
2 /FUNCTNORM , FUNCTMXSML , FUNCTMXLRG

3 ,FANCYNORM , FANCYMXSML , FANCYMXLRG/

4 RESOURCE TYPES OF RESOURCES

5 /SMLLATHE , LRGLATHE , CARVER, LABOR/ ;

6

7  PARAMETER PRICE(PROCESS) PRODUCT PRICES BY PROCESS

8 /FUNCTNORM 82, FUNCTMXSML 82, FUNCTMXLRG 82
9 ,FANCYNORM 105, FANCYMXSML 105, FANCYMXLRG 105/
10 PRODCOST(PROCESS) COST BY PROCESS

11 /FUNCTNORM 15, FUNCTMXSML 16 , FUNCTMXLRG 15.7
12 ,FANCYNORM 25, FANCYMXSML 26.5, FANCYMXLRG 26.6/
13 RESORAVAIL(RESOURCE) RESOURCE AVAILABLITY

14 /SMLLATHE 140, LRGLATHE 90,

15 CARVER 120, LABOR  125/;

16

17  TABLE RESOURUSE(RESOURCE,PROCESS) RESOURCE USAGE

18

19 FUNCTNORM  FUNCTMXSML FUNCTMXLRG
20 SMLLATHE 0.80 1.30 0.20
21 LRGLATHE 0.50 0.20 1.30
22 CARVER 0.40 0.40 0.40
23 LABOR 1.00 1.05 1.10
24+ FANCYNORM ~ FANCYMXSML FANCYMXLRG

25 SMLLATHE 1.20 1.70 0.50

26 LRGLATHE 0.70 0.30 1.50

27 CARVER 1.00 1.00 1.00

28 LABOR 0.80 0.82 0.84;

29

30  POSITIVE VARIABLES

31 PRODUCT ION(PROCESS) ITEMS PRODUCED BY PROCESS;

32 VARIABLES

33 PROFIT TOTALPROFIT;

34  EQUATIONS

35 0BJT OBJECTIVE FUNCTION ( PROFIT )

36 AVAILABLE(RESOURCE) ~ RESOURCES AVAILABLE ;

37

38  OBJT.. PROFIT =E=

39 SUM(PROCESS,, (PRICE(PROCESS)-PRODCOST (PROCESS))
40 * PRODUCTION(PROCESS)) ;
a1
42 AVAILABLE(RESOURCE). .
43 SUM(PROCESS , RESOURUSE (RESOURCE , PROCESS)*PRODUCT 10N (PROCESS))
a4 =L= RESORAVAIL(RESOURCE);
45
46  MODEL RESALLOC /ALL/;
47  SOLVE RESALLOC USING LP MAXIMIZING PROFIT;
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Table 5.4.

Second GAM S Formulation of Resour ce Allocation Example

©CoO~NOOUODWNEPE

PRRRPRRRERRER
©CONOUNWNERO

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

SET CHAIRS TYPES OF CHAIRS /FUNCTIONAL,FANCY/
PROCESS TYPES OF PRODUCTION PROCESSES
/NORMAL , MXSMLLATHE , MXLRGLATHE/
RESOURCE TYPES OF RESOURCES

/SMLLATHE, LRGLATHE,, CARVER,LABOR/ ;

PARAMETER PRICE(CHAIRS) PRODUCT PRICES BY PROCESS
/FUNCTIONAL 82, FANCY 105/
COST(CHAIRS) BASE COST BY CHAIR

/FUNCTIONAL 15, FANCY 25/
EXTRACOST(CHAIRS,PROCESS) EXTRA COST BY PROCESS
/ FUNCTIONAL.MXSMLLATHE 1.0 ,
FUNCTIONAL .MXLRGLATHE 0.7
,FANCY . MXSMLLATHE 1.5,
FANCY . MXLRGLATHE 1.6/
RESORAVAIL(RESOURCE) RESOURCE AVAILABLITY
/SMLLATHE 140, LRGLATHE 90,
CARVER 120, LABOR 125/7;

TABLE RESOURUSE(RESOURCE,CHAIRS,PROCESS) RESOURCE USAGE
FUNCTIONAL .NORMAL FUNCT IONAL . MXSMLLATHEFUNCT IONAL . MXLRGLATHE

SMLLATHE 0.80 1.30 0.20
LRGLATHE 0.50 0.20 1.30
CARVER 0.40 0.40 0.40
LABOR 1.00 1.05 1.10
+ FANCY . NORMAL FANCY .MXSMLLATHE FANCY .MXLRGLATHE
SMLLATHE 1.20 1.70 0.50
LRGLATHE 0.70 0.30 1.50
CARVER 1.00 1.00 1.00
LABOR 0.80 0.82 0.84 ;

POSITIVE VARIABLES
PRODUCTION(CHAIRS,,PROCESS) ITEMS PRODUCED BY PROCESS;
VARIABLES
PROFIT TOTAL PROFIT;
EQUATIONS
0OBJT OBJECTIVE FUNCTION ( PROFIT )
AVAILABLE(RESOURCE) RESOURCES AVAILABLE ;

OBJT.. PROFIT =E= SUM((CHAIRS,PROCESS),
(PRICE(CHAIRS)-COST(CHAIRS) -EXTRACOST(CHAIRS , PROCESS))
* PRODUCTION(CHAIRS,PROCESS)) ;

AVAILABLE(RESOURCE) . .
SUM((CHAIRS, PROCESS),
RESOURUSE (RESOURCE , CHAIRS , PROCESS)*PRODUCT ION(CHAIRS , PROCESS))
=L= RESORAVAIL(RESOURCE);

MODEL RESALLOC /ALL/;
SOLVE RESALLOC USING LP MAXIMIZING PROFIT;
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Table5.5. Optimal Solution to the E-Z Chair Makers Problem

Variable Value Reduced Cost Equation Slack Shadow Price
X, 62.23 0 1 0 33.33
X, 0 -11.30 2 0 25.79
Xs 0 -4.08 3 16.91 0
X, 73.02 0 4 0 27.44
Xs 0 -8.40
Xg 5.18 0

Table 5.6.Formulation of Transportation Example

Min 20X, + 40X, + 35X, + 120Xy, + 50X, + 60X, + 20X, + 70X, + 90Xs + 35X, + 70Xg + 40Xg,

100
75

S.t. Xun + Xp + Xz + X1a

IN

Xog + Xy + Xy + Xy

IN
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Table5.7. GAM S Statement of Transportation Example

1 SETS PLANT  PLANT LOCATIONS
2 /NEWYORK, CHICAGO, LOSANGLS/
3 MARKET ~ DEMAND MARKETS
4 /MIAMI,  HOUSTON, MINEPLIS, PORTLAND/
5
6 PARAMETERS  SUPPLY(PLANT) QUANTITY AVAILABLE AT EACH PLANT
7 /NEWYORK 100, CHICAGO 75, LOSANGLS 90/
8 DEMAND(MARKET) ~ QUANTITY REQUIRED BY DEMAND MARKET
9 /MIAMI 30, HOUSTON 75,
10 MINEPLIS 90, PORTLAND  50/;
11
12  TABLE  DISTANCE(PLANT,MARKET)  DISTANCE FROM EACH PLANT TO EACH MARKET
13
14 MIAMI HOUSTON MINEPLIS PORTLAND
15 NEWYORK 3 7 6 23
16 CHICAGO 9 11 3 13
17 LOSANGLS 17 6 13 7;
18
19
20  PARAMETER COST(PLANT,MARKET)  CALCULATED COST OF MOVING GOODS ;
21 COST(PLANT,MARKET) = 5 + 5 * DISTANCE(PLANT,MARKET) ;
22
23 POSITIVE VARIABLES
24 SHIPMENTS(PLANT,MARKET) AMOUNT SHIPPED OVER A TRANPORT ROUTE;
25  VARIABLES
26 TCOST TOTAL COST OF SHIPPING OVER ALL ROUTES;
27  EQUATIONS
28 TCOSTEQ TOTAL COST ACCOUNTING EQUATION
29 SUPPLYEQ(PLANT) LIMIT ON SUPPLY AVAILABLE AT A PLANT
30 DEMANDEQ(MARKET) MINIMUM REQUIREMENT AT A DEMAND MARKET;
31
32  TCOSTEQ.. TCOST =E= SUM((PLANT,MARKET), SHIPMENTS(PLANT,MARKET)*
33
COST(PLANT,MARKET)) ;
34
35  SUPPLYEQ(PLANT)..  SUM(MARKET, SHIPMENTS(PLANT, MARKET)) =L= SUPPLY(PLANT);
36
37  DEMANDEQ(MARKET).. SUM(PLANT, SHIPMENTS(PLANT, MARKET)) =G=
DEMAND(MARKET) ;
38
39  MODEL TRANSPORT /ALL/;
40  SOLVE TRANSPORT USING LP MINIMIZING TCOST;

5-51
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Table5.8. Optimal Solution to the ABC Company Problem
Variable Vaue Reduced Cost Equation Slack Shadow Price
Xy 30 0 1 20 0
X 35 0 2 0 -15
X3 15 0 3 0 -5
X 0 75 4 0 20
Xy 0 45 5 0 40
Xoy 0 35 6 0 35
Xos 75 0 7 0 45
Xos 0 40
Xa 0 75
Xz 40 0
Xz 0 40
X 50 0
Table5.9. Optimal Shipping Pattern for the ABC Company
Dedtination
Origin Miami Houston Minneapolis Portland
Units | Variable] Units | Variable| Units | Variable| Units | Variable
New York 30 Xy 35 X 15 X3
Chicago 75 Xoa
Los Angeles 40 X 50 Xay
Table5.10. Optimal Dual Solution to the ABC Company Problem
Variable Value Reduced Cost Equation Level Shadow Price
U, 0 -20 1 -20 30
U, 15 0 2 40 35
U, 5 0 3 35 15
V, 20 0 4 45 0
V, 40 0 5 5 0
V, 35 0 6 25 0
V, 45 0 7 20 75
8 30 0
9 15 0
10 35 40
11 30 0
12 40 50
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Table5.11. Ingredient Costsfor Diet Problem Example per kg

Corn $0.133
Dical $0.498
Alfafahay $0.077
Salt $0.110
Soybeans $0.300
Vitamin A $0.286
Urea $0.332

Table5.12. Required Nutrient Characteristics per Kilogram of Mixed Feed

Nutrient Unit Minimum Amount Maximum Amount

Net energy Mega calories 1.34351 --

Digestible protein Kilograms 0.071 0.13

Fat Kilograms - 0.05

Vitamin A International Units 2200 -

Salt Kilograms 0.015 0.02

Calcium Kilograms 0.0025 0.01

Phosphorus Kilograms 0.0035 0.012

Weight Kilograms 1 1
Tableb.13. Nutrient Content per Kilogram of Feeds

Dicd Vitamin A Potato
Net energy 148 049 129 1.39
Digegtible protein 0.075 0.127 0.438 2.62 0.032
Fat 0.0357 0.022 0.013 0.009
Vitamin A 600 50880 80 2204600
Salt 1
Calcium 0.0002 0.0125 0.0036 0.2313 0.002
Phosphorus 0.0035 0.0023 0.0075 0.68 0.1865 0.0024
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Table 5.14. Primal Formulation of Feed Problem
Corn Hay Soybean Urea Dica Salt Vitamin A Slurry
Min 133X+ 077X, + X+ 332X, + 498X, + .110Xgq; + 286Xy, + PX o
S.t. 075X + 127X, + 438X+ 2.62X, + .032Xg < .13
Max |.0357X¢ + 022X, + 013X g + .009Xg < .05
Nut Xat < .02
.0002X. + .0125X,, + .0036Xg + .2313X4 + .002Xg < .01
.0035X. _+ .0023X,, +  .0075Xy + 68X, + .1865X, + .0024Xg < .012
148X, + 49X, + 129X + 139X > 1.34351
075Xc  + 27X, + CTS) SO 2.62X, + .032Xgq > .071
Min  |600X. +  50880X, + 80X + 2204600X > 2200
Nut Xar > 015
.0002X. + .0125X,, + .0036Xg + .2313X4 + .002Xg > .0025
.0035X. + .0023X,, + .0075Xyg + 68X, + .1865X, + .0024Xg > .0035
\Volume Xc + Xy + Xg + Xy + Xy + Xq1 + Xya + Xqg =1
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Table5.15 GAM S Formulation of Diet Example

1 SET INGREDT NAMES OF THE AVAILABLE FEED INGREDIENTS
2 /CORN, HAY, SOYBEAN,UREA,DICAL,SALT,VITA,SLURRY/
3 NUTRIENT NUTRIENT REQUIREMENT CATEGORIES
4 /NETENGY, PROTEIN, FAT, VITALIM, SALTLIM, CALCIUM, PHOSPHRS/
5 LIMITS TYPES OF LIMITS IMPOSED ON NUTRIENTS /MINIMUM, MAXIMUM/;
6 PARAMETER INGREDCOST(INGREDT) FEED INGREDIENT COSTS PER KG PURCHASED
7 /CORN -133, HAY .077, SOYBEAN .300, UREA .332
8 , DICAL -498,SALT .110, VITA -286, SLURRY .01/;
9 TABLE NUTREQUIRE(NUTRIENT, LIMITS) NUTRIENT REQUIREMENTS
10 MINIMUM MAXTMUM
11 NETENGY 1.34351
12 PROTEIN .071 -130
13 FAT 0 .05
14 VITALIM 2200
15 SALTLIM .015 .02
16 CALCIUM .0025 .0100
17 PHOSPHRS .0035 .0120;
18 TABLE CONTENT(NUTRIENT, INGREDT) NUTRIENT CONTENTS PER KG OF FEED
19 CORN HAY SOYBEAN UREA DICAL SALT VITA SLURRY
20 NETENGY 1.48 .49 1.29 1.39
21 PROTEIN .075 .127 .438 2.62 0.032
22 FAT .0357 .022 .013 0.009
23  VITALIM 600 50880 80 2204600
24 SALTLIM 1
25 CALCIUM .0002 .0125 .0036 .2313 .002
26 PHOSPHRS .0035 .0023 .0075 .68 .1865 .0024;
27
28 POSITIVE VARIABLES
29 FEEDUSE(INGREDT) AMOUNT OF EACH INGREDIENT USED IN MIXING FEED;
30 VARIABLES
31 COST PER KG COST OF THE MIXED FEED;
32 EQUATIONS
33 0OBJT OBJECTIVE FUNCTION ( TOTAL COST OF THE FEED )
34 MAXBD(NUTRIENT) MAXIMUM LIMITS ON EACH NUTRIENT IN THE BLENDED FEED
35 MINBD(NUTRIENT) MINIMUM LIMITS ON EACH NUTRIENT IN THE BLENDED FEED
36 WEIGHT REQUIREMENT THAT EXACTLY ONE KG OF FEED BE PRODUCED;
37
38 OBJT.. COST =E= SUM(INGREDT, INGREDCOST(INGREDT) * FEEDUSE(INGREDT))
39 MAXBD(NUTRIENT)$NUTREQUIRE(NUTRIENT, "MAXIMUM™) . .
40 SUMCINGREDT,CONTENT(NUTRIENT , INGREDT) * FEEDUSE(INGREDT))
41 =L= NUTREQUIRE(NUTRIENT, "MAXIMUM™);
42 MINBD(NUTRIENT)$SNUTREQUIRE(NUTRIENT, "MINIMUM™) . .
43 SUMCINGREDT, CONTENT(NUTRIENT, INGREDT) * FEEDUSE(INGREDT))
44 =G= NUTREQUIRE(NUTRIENT, "MINIMUM™);
45 WEIGHT. . SUMCINGREDT, FEEDUSE(INGREDT)) =E= 1. ;
46 MODEL FEEDING /ALL/;
47 SOLVE FEEDING USING LP MINIMIZING COST;
48
49 SET VARYPRICE PRICE SCENARIOS /1*30/
50 PARAMETER SLURR(VARYPRICE,™*)
51 OPTION SOLPRINT = OFF;
52 LOOP (VARYPRICE,
53 INGREDCOST(*'SLURRY*)= 0.01 + (ORD(VARYPRICE)-1)*0.005;
54 SOLVE FEEDING USING LP MINIMIZING COST;
55 SLURR(VARYPRICE,"SLURRY") = FEEDUSE.L(**SLURRY");
56 SLURR(VARYPRICE,"PRICE™) = INGREDCOST (**SLURRY*™") )
57 DISPLAY SLURR;
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Table 5.16.

Optimal Primal Solution to the Diet Example Problem

Variable Vaue Reduced Cost Equation Slack Price
Xc 0 0.095 Protein L Max 0.059 0
Xy 0.001 0 Fat Max 0.041 0
Xep 0.011 0 Salt Max 0.005 0
Xur 0.014 0 Cacium Max 0.007 0
X4 0.002 0 Phosphrs 0.000 -2.207
Xgr 0.015 0 Net Engy Min 0.000 0.065
Xya 0.001 0 Protein Min 0.000 0.741
Xg 0.956 0 VitaLim Min 0.000 0
Salt Lim Min 0.000 0.218
Cacium Min .000 4.400
Phosphrs 0.008 0
Weight 0.000 -0.108
Table5.17. Dual Formulation of Feed Mix Example Problem
Y1 Y2 Y3 Ya ¥s Bs B2 Bs Ba Bs Pe
Max -.13 - .05 - .02 - .01- .12 + 134351+ 071 + 2200 + .015 + .0025 + .0035
-.075 - .0357 00- 0035+ 148 + 075 + 600 + .0002 + .0035 < 133
-.127 - 022 01- 0023+ .49  + .127 + 50880 + 0125 + .0023 < 077
- 438 - 013 00- 0075+ 129 + 438 + 80 + .0036 + .0075 < 3
-2.62 68 + 262 68 < 332
23 - .1865 + 2313 + .1865 < 498
1 1 < 110
+ 220460 < .286
-.032 - .009 00- .0024+ 139 + .032 + .002 .0024 < P
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Table5.18. Optimal Solution to the Dual of the Feed Mix Problem

Variable Vaue Reduced Cost Equation Slack Shadow Price
Y1 0 -0.059 Corn 0.095 0
Yo 0 -0.041 Hay 0 0.001
Y3 0 -0.005 Soybean 0 0.011
Ya 0 -0.007 Urea 0 0.014
Ys 2.207 0 Dicd 0 0.002
B4 0.065 0 Salt 0 0.015
B, 0.741 0 Vita 0 0.001
B3 0 0 Slurry 0 0.956
Bs 0.218 0
i 4.400 0
Ps 0 -0.008
o -0.108 0

Table5.19. Data for the Wheat and Straw Example Problem

Outputs and Inputs Per Acre

Wheat yield in bu. 30 50 65 75 80 80 75
Wheat straw yield/bales 10 17 22 26 29 31 32
Fertilizer usein Kg. 0 5 10 15 20 25 30

Seed in pounds 10 10 10 10 10 10 10
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Table 5.20. GAMS Formulation of the Joint Products Example

1 SET PRODUCTS LIST OF ALTERNATIVE PRODUCT  /WHEAT, STRAW/

2 INPUTS PURCHASED INPUTS /SEED, FERT/

3 FIXED FIXED INPUTS /LAND/

4 PROCESS POSSIBLE INPUT COMBINATIONS  /Y1*Y7/;

5

6 PARAMETER PRICE(PRODUCTS) PRODUCT PRICES  /WHEAT 4.00, STRAW 0.50/

7 COST(INPUTS) INPUT PRICES /SEED 0.20, FERT 2.00/

8 PRODCOST(PROCESS) PRODUCTION COSTS BY PROCESS

9 AVAILABLE(FIXED) FIXED INPUTS AVAILABLE / LAND 500 /;

10

11 PRODCOST(PROCESS) = 5;

12

13 TABLE YIELDS(PRODUCTS, PROCESS) YIELDS FROM THE PRODUCTION
POSSIBILITIES

14 Y1l Y2 Y3 Y4 Y5 Y6 Y7

15 WHEAT 30 50 65 75 80 80 75

16 STRAW 10 17 22 26 29 31 32;

17

18 TABLE USAGE(INPUTS,PROCESS) PURCHASED INPUT USAGE BY PRODUCTION
POSSIBLIITIES

19 Y1l Y2 Y3 Y4 Y5 Y6 Y7
20 SEED 10 10 10 10 10 10 10
21 FERT 0 5 10 15 20 25 30;
22

23 TABLE FIXUSAGE(FIXED,PROCESS) FIXED INPUT USAGE BY PRODUCTION
POSSIBLIITIES

24 YL Y2 Y3 YA Y5 Y6 Y7
25 LAND 1 1 1 1 1 1 1;
26
27 POSITIVE VARIABLES
28 SALES(PRODUCTS) AMOUNT OF EACH PRODUCT SOLD
29 PRODUCT ION(PROCESS) LAND AREA GROWN WITH EACH INPUT
PATTERN
30 BUY (INPUTS) AMOUNT OF EACH INPUT PURCHASED ;
31 VARIABLES
32 NETINCOME NET REVENUE (PROFIT);
33 EQUATIONS
34 0BJT OBJECTIVE FUNCTION (NET REVENUE)
35 YIELDBAL(PRODUCTS) ~ BALANCES PRODUCT SALE WITH PRODUCTION
36 INPUTBAL(INPUTS) BALANCE INPUT PURCHASES WITH USAGE
37 AVAIL(FIXED) FIXED INPUT AVAILABILITY;
38
39  OBJT.. NETINCOME =E=
40 SUM(PRODUCTS , PRICE(PRODUCTS)  * SALES(PRODUCTS))
a1 - SUM(PROCESS , PRODCOST(PROCESS) *
PRODUCT ION(PROCESS))
42 - SUM(INPUTS , COST(INPUTS)  * BUY(INPUTS));
43 YIELDBAL(PRODUCTS). .
a4 SUM(PROCESS, YIELDS(PRODUCTS,PROCESS) * PRODUCTION(PROCESS))
45 =G= SALES(PRODUCTS);
46 INPUTBAL(INPUTS) . .
47 SUM(PROCESS, USAGE(INPUTS,PROCESS) * PRODUCTION(PROCESS))
48 =L= BUY(INPUTS) ;
49  AVAIL(FIXED)..
50 SUM(PROCESS, FIXUSAGE(FIXED,PROCESS)*PRODUCTION(PROCESS))
51 =L= AVAILABLE(FIXED);
52

53 MODEL JOINT /ALL/;
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54 SOLVE JOINT USING LP MAXIMIZING NETINCOME;
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Table 5.21.

Optimal Solution of the Wheat and Straw Example Problem

Objective Function Value 143,750

Variable Vaue Reduced Cost Equation Slack Shadow Price
X, 40,000 0 Whesat 0 -4
X, 14,500 0 Straw 0 -0.5
Y, 0 -169.50 Fertilizer 0 2
Y, 0 -96.00 Seed 0 0.2
Y, 0 -43.50 Land 0 287.5
Y, 0 -11.50
Y 500 0
Y 0 -9.00
Y, 0 -38.50
Z, 10,000 0
Z, 5,000 0

Table5.22. Dual Formulation of Example Joint Products Problem

Min 500U
st. V, > 4
V, > 5
-30V, 10V, +  10W, u = -5
-50V, 17V, +  5W, + 10W, u = -5
-65V, 22V, + 10W, + 10W, u = -5
75V, 26V, + 15W, + 10W, u = -5
-80V, 29V, + 20W, + 10W, u = -5
-80V, 31V, + 25W, + 10W, u = -5
75V, 32V, + 30W, + 10W, u = -5
-W, > -2
W, > -0.2
V, vV, , w, W, u > 0
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Table5.23. Optimal Dual Solution of the Wheat and Straw

Objective Function Value 143,750

Variable Value Reduced Cost Equation Slacks Shadow
V, 4 0 Whesat 0 40,000
V, 0.5 0 Straw 0 14,500
W, 2 0 Prod 1 169.5 0
W, 0.2 0 Prod 2 96 0

U 287.5 0 Prod 3 435 0
Prod 4 11.5 0
Prod 5 0 500
Prod 6 9 0
Prod 7 38.5 0
Fertilizer 0 10,000
Seed 0 5,000
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Table 5.24

Simple GAMS Input File

Alternative Computer Inputsfor a Mode

POSITIVE VARIABLES X1, X2, X3

VARIABLES Z

EQUATIONS 0BJ, CONSTRAIN1 , CONSTRAINZ;
0OBJ.. Z =E= 3 * X1 + 2 * X2 + 0.5* X3;
CONSTRAINL.. X1 + X2 +X3=L= 10;

CONSTRAINZ2. . X1 - X2 =L= 3;

MODEL PROBLEM /ALL/;
SOLVE PROBLEM USING LP MAXIMIZING Z;

LINDO Inpuf file

MAX 3 * X1 + 2 * X2 + 0.5* X3;

ST

X1 + X2 +X3 < 10
X1 - X2 < 3

END

GO

Tableau Input File

5 3

3. 2. 0.5 0. 0.

1. 1. 1. 1. 0. 10.
1. -1. 0. 0. 1. 3.

MPS Input File

NAME CH2MPS
ROWS
N R1
L R2
L R3
COLUMNS
X1 RO 3. R1 1.
X1 R3 1.
X2 RO 2. R1 1.
X2 R1 -1.
X3 RO 0.5 R1 1.
RHS
RHS1 R1 10. R1 3.
ENDDATA
More Complex GAMS input file
SET PROCESS TYPES OF PRODUCTION PROCESSES /X1,X2,X3/

RESOURCE TYPES OF RESOURCES /CONSTRAIN1,CONSTRAIN2/
PARAMETER
PRICE(PROCESS) PRODUCT PRICES BY PROCESS /X1 3,X2 2,X3 0.5/
PRODCOST (PROCESS) COST BY PROCESS /X1 0 ,X2 0, X3 0/

RESORAVAIL(RESOURCE) RESOURCE AVAILABLITY
TABLE RESOURUSE(RESOURCE,PROCESS) RESOURCE USAGE

/CONSTRAIN1 10 ,CONSTRAIN2 3/

X1 X2 X3
CONSTRAIN1 1 1 1
CONSTRAIN2 1 -1
POSITIVE VARIABLES PRODUCT ION(PROCESS) ITEMS PRODUCED BY PROCESS;

VARIABLES PROFIT TOTALPROFIT;
EQUATIONS OBJT OBJECTIVE FUNCTION ( PROFIT )
AVAILABLE(RESOURCE) RESOURCES AVAILABLE ;
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OBJT.. PROFIT=E=  SUM(PROCESS, (PRICE(PROCESS)-PRODCOST(PROCESS))*
PRODUCT ION(PROCESS)) ;
AVAILABLE(RESOURCE) .. SUM(PROCESS ,RESOURUSE (RESOURCE , PROCESS)
*PRODUCTION(PROCESS))  =L= RESORAVAIL(RESOURCE);
MODEL RESALLOC /ALL/;
SOLVE RESALLOC USING LP MAXIMIZING PROFIT;

Figure5.1 Demand Schedule for Potato Slurry in Feed Mix Example
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CHAPTER VI: TOWARD PROPER MODELING

Thereis considerable role for judgment when modeling and developing data. The applied modeler
must make assumptions regarding the variables, constraints, and coefficients. These assumptions
determine model performance and usefulness.

In this chapter the identification of structural components and the development of data are
discussed. The materia presented here is reinforced by material in subsequent chapters. References are
made to this later material, and readers may wish to consult it for more detailed explanations.

Before beginning this section, the authors must acknowledge their debt to Heady and Candler's

"Setting Up Linear Programming Models' chapter and conversations with Wilfred Candler.

6.1 Structural Component I dentification

The LP problem can be expressed as

Max CX
st. AX < b
X >0

In order to formulate an applied L P problem, one must identify the constraints, variables and relevant
numerical parameter values.
6.1.1 Development of Model Constraints

Heady and Candler categorize L P constraints as technical, institutional, and subjective.
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Congtraints a so arise because of convenience or model formulation requirements. Technical constraints

depict limited resources, intermediate products, or contractual requirements. Technical constraints also
express complementary, supplementary, and competitive relationships among variables. Collectively, the
technical congtraints define the production possibilities and provide links between variables. Ingtitutional
congtraints reflect external regulations imposed on the problem. Examples include credit limits or farm

program participation requirements. Subjective constraints are imposed by the decision maker or modeler.

These might include a hired labor limitation based on the decision maker's willingness to supervise labor.

Convenience constraints facilitate model interpretation and may be included to sum items of interest.

Model formulation constraints aid in problem depiction. These include constraints used in conjunction with

approximations. Within and across these groupings, constraints can take on a number of different forms.
A more extensive definition of these formsiis presented in the LP Modeling Summary chapter.

Generadly, the congtraints included should meaningfully limit the decision variables. The modeler
should begin by defining constraint relations for those production resources and commitments which limit
production or are likely to do so. Thisinvolves consideration of the timing of resource availability. Often,
problems covering seasonal production or utilizing seasonally fluctuating resources will contain time
desegregated constraints. Heady and Candler argue that multiple constraints are needed to depict
availability of aresource whenever the marginal rate of factor substitution between resource usage in
different time periods does not equal one. Constraints must be developed so that the resources available
within a particular constraint are freely substitutable. Cases of imperfect substitution will require multiple
constraints.

Two other points should be made regarding constraint definition. First, an LP solution will include
no more variables at a nonzero level than the number of constraints (including the number of upper and

lower bounds). Thus, the number of congtraints directly influences the number of nonzero variablesin the
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optimal solution. However, one should not simply define additional constraints as: 1) this usualy resultsin
additional nonzero dack variables without substantially atering the solution; and 2) one must not impose
nonsensical constraints.

Second, subjective constraints should not be imposed before determining their necessity. Often,
subjective constraints "correct” model deficiencies. But the cause of these deficienciesis frequently missing
either technical constraints or omitted variables. For example, models often yield excessively specialized
solutions which force variables into the solution. Thisis often combated by imposing "flexibility" con-
straints as suggested by Day (1963), or discussed in Sengupta and Sfeir. Often, however, the redl
deficiency may be the depiction of the time availability of resources (Baker and McCarl). In such acase,
the subjective constraints give an inadequate model a"nomina™ appearance of redlity, but are actually
causing the "right" solution to be observed for the wrong reason.

6.1.2 Avoiding Improper Constraint Specifications

LP model congtraints have higher precedence than the abjective function. The first mgjor effort by
any LP solver isthe discovery of afeasible solution. The solver then optimizes within the feasible region.
This has severa implications for identification and specification of constraints.

First, the modeler must question whether a constraint should be established so it aways restricts
the values of the decision variables. Often, it may be desirable to relax a constraint allowing resource
purchases if the value of aresource becomes excessively high.

Second, modelers should be careful in the usage of minimum requirement constraints
(e.g.,.X;+X,>10). Minimum requirements must be met before profit seeking production can proceed. Often
purchase variables should be entered to alow buying items to meet the requirements.

Third, judicious use should be made of equality constraints. Modelers should use the weakest form

of acondraint possible. Consider the following example:
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Max 3X + 2Y
st X - Y ?20
X < 10
Y < 15

Where ?isthe constraint type (either = or <), X depictssalesand Y production? Further, suppose we have
made a mistake and have specified the cost of production as arevenue item (i.e., the +2Y should be -2Y).
Now, if the relation is an equality, then the optimal solutionis X =Y = 10 (seefile SIXEQ), and we do not
discover the error (although the dua variable on the first constraint is -2). On the other hand, if the relation
is < then we would produce Y = 15 units while salling only X = 10 units (seefile SIXLT). Thus, the
weaker inequality form of the constraint allows an unrealistic production pattern indicating that something
iswrong with the model.

6.1.3 Variable I dentification

LP variables are the unknowns of the problem. Variables areincluded for either technical,

accounting or convenience reasons. Technical variables change value in response to the objective function and
congtraints. Convenience variables may not always respond to the objective function. Rather, they may be
congtrained at certain levels. These might include variables representing the number of acres of land used for
houses and buildings. Accounting variables facilitate solution summarization and model use.

It is critically important that the technical variables logically respond to the objective function within the
range of valuesimposed by the constraints. For example, one could setup a farm problem with variables
responding to an objective of minimizing soil erosion. However, farmers choosing acreage may not primarily
try to minimize erosion; most farmers are aso profit oriented.

Many types of technical variables are possible. A taxonomy is discussed in the LP Modeling Summary
chapter.

Variables must be in consistent units. Actually, there are no strict LP requirements on the variable
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units. However, the intersection of the variable and constraint units impose requirements on the g;'s as
discussed below. Now, when can multiple variables be handled as one variable and when can't they?
There are several cases when multiple variables must be defined:

@ When more than one process can be used to produce the same output using different

resource mixes, e.g., the production of an item using either of two different machines.

(b) When different processes produce different outputs using common resources, i.e., one can

use essentially the same resources to produce either 2 x 4 or 4 x 4 sawn lumber.

(© When products can be used in severa ways, e.g., selling chickens that can be quartered or

halved.

Collectively, different variables should be used where their coefficients differ (i.e., the objective function
or g; coefficients differ across production possihilities). However, the coefficients should not be strictly
proportional (i.e., one variable having twice the objective function value of another while using twice the
resources).

Criteriamay also be developed where two variables may be treated as one. The simplest case occurs
when the coefficients of one variable are smple multiples of another (3; = Ka,,, and ¢; = Kc,). The second case
occurs when one variable uniquely determines another; i.e., when n units of the first variable always implies
exactly m units of the second.

6.1.4 Objective Function

Once the variables and constraints have been delineated, then the objective function must be specified.
The variables and constraints jointly define the feasible region. However, the objective function identifies the
"optimal" point. Thus, even with the proper variables and constraints, the solution is only as good as the
objective function. Ordinarily, the first objective function specification is inadequate. Most situations do not

involve strict profit maximization, but also may involve such things as risk avoidance or |abor/leisure tradeoffs.
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Multiple objective models are discussed in the multi-objective and risk chapters. Also, ranging analysis can be
used to discover whether the solution will change with alterations in the objective function.
6.1.5 Development of Model Structure

Model definition is an iterative process. Consider a smple example where a profit maximizing firm
produces four crops subject to land and labor limitations. Suppose that the crops are grown at different times of
theyear. Crop 1isplanted in the spring and harvested in the summer; crops 2 and 3 are planted in the spring
and harvested in the fall; and crop 4 is planted following crop 1 and is harvested in the fall.

Thefirst step in developing amodel isto lay out a table with potential variables across the top and
constraints/objective function down the side. In this case we start with the layout in Table 6.1 where the
variables are crop acreages and the constraints are land and |abor availability. We then begin to define
coefficients. Suppose ¢; gives the gross profit margins for crop i. Simultaneously, land use coefficients and the
land endowment (L) are entered. However, the land constraint only has entries for crops 1, 2 and 3, as crop 4
uses the sameland as crop 1. Thus, asingle land constraint restricts land use on an annual basis. We aso need
a constraint which links land use by crop 4 to the land use by crop 1. Thus, our formulation is atered as shown
in Table 6.2, where the second constraint imposes this linkage.

Now we turn our attention to labor. In this problem, labor is not fully substitutable between all periods
of the year, i.e, the dadticity of substitution criterion is not satisfied. Thus, we must devel op time-specific labor
constraints for spring, summer and fall. The resultant model is shown in Table 6.3. Subsequently, we would
fill in the exact labor coefficients; i.e.; the d's and right hand sides.

This iterative process shows how one might go about defining the rows and columns. 1n addition, one
could further disaggregate the activitiesto allow for different timing possibilities. For example, if Crop 1
produced different yields in different spring planting periods, then additional variables and constraints would

need to be defined.
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6.2 The Proper Usage of Variables and Constraints

Students often have difficulties with the definition of variables and constraints. This section is intended
to provide insight by presenting a number of proper and improper examples.

The applied LP modeler needs to recogni ze three concepts when forming constraints and variables.
First, the coefficients associated with a variable reflect a ssmultaneous set of commitments which must occur
when avariable is nonzero. All the resources used by a variable must be used to produceits output. Thus, if a
variable depicts cattle and calf production using inputs of land, labor, and feed; then the modd will smulta-
neously commit land, labor, and feed in order to get the simultaneous outputs - cattle and calves. One cannot
obtain calves without obtaining cattle nor can one abtain cattle and calves without using land, labor, and feed.

Second, the choice is aways modeled across variables, never within avariable. For example, suppose
there are two ways of producing cattle and calves. These production alternatives would be depicted by two
variables, each representing a s multaneous event. The model would reflect choice regarding cattle/calf
production within the constraints. These choices do not have to be mutually exclusive; the model may include
complementary relationships between variables as well as substitution relationships (i.e. the constraint X-Y=0
makes X and Y complementary).

Third, resources within a constraint are assumed to be homogeneous commodities. Suppose thereisa
single congtraint for calves with the calves being produced by two variables. In turn, suppose calves may be
used in two feeding alternatives. In such a case the calves are treated as perfect substitutes in the feeding pro-
cesses regardless of how they were produced.

While obvious, it is surprising the number of times there are difficulties with these topics (even with
experienced modelers). Thus, we will present cases wherein such difficulties could be encountered.

6.2.1 Improper and Proper Handling of Joint Products

Joint products are common in LP formulations. For purposes of illustration, we adopt the following
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simplified example.* Suppose a chicken is purchased and cut up into four component parts - breasts, legs,
necks, and giblets - following the breakdown datain Table 6.4. Also, assume that each chicken weighs three
pounds and that there are 1,500 chickens available.

Now suppose that we formulate a profit maximizing LP model. Such aLP model would involve
variables for cutting the chickens along with variables for parts sale. Two alternative formulations will be
presented: one proper and one improper. These formulations are shown in Table 6.5 and are |abeled
Formulation 6.5(a) and Formulation 6.5(b).

The models maximize the value of the chicken parts produced. A constraint is needed which limits the
number of chickens cut up to the number of chickens available. In both formulations the coefficient 1/3 in the
last constraint transforms the chickens disassembled into pounds of chicken rather than whole chickens, so the
units of the first variable are in pounds of chicken cut up. The next four variables are the quantities (pounds) of
parts sold. In formulation 6.5(a) the constraint |abeled Balance restrains the amount sold to the quantity of
chicken cut. The formulation maximizes the value of chicken parts sold. The decision is constrained by the
quantity of chicken disassembled and chickens available. In Formulation 6.5(b), the objective function and last
congtraint are the same. However, there are balances for each part.

Now which formulation isimproper? Suppose we examine what happens when Y equals one (i.e., that
we have acquired one pound of chicken for cutting up). Formulation 6.5(a) implies that variable X, could equal
two if the other variables were set to zero. Thus, from one pound of chicken two pounds of chicken breasts
could be sold. Thisisnot possible. Similarly, 3.43 pounds of legs (X,) could be sold per pound of chicken. 10
pounds of necks (X5) or 20 pounds of giblets (X,) could be sold. In formulation 6.5(b), the acquisition of one

pound of chicken would alow only .5 pounds of breasts, .35 pounds of legs and thighs, .1 pounds of necks, and

“The example is a disassembly problem, which is discussed in the More LP Modeling chapter. Readers
having difficulty with its basic structure may wish to study that section.
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.05 pounds of giblets.

Clearly, formulation 6.5(b) is the proper formulation. Formulation 6.5(a) depictsimproper
representation of the joint products allowing an improper choice between the use of all the chicken meat among
any of the four component parts. In fact, its optimal solution indicates 90,000 |bs of Giblets can be sold from
the 4,500 Ibs of chicken (see the file SIX5A on the disk). The component parts are ajoint product that should
simultaneoudly occur in the model.

6.2.2 Alternatives for the Use of a Product

Errors also occur when modeling different ways products can be used. Suppose we introduce the option
of sdlling chicken parts or deboning the parts then selling chicken meat. Assume that there are no additiona
resources involved, and that the meat yields are those in Table 6.4. Again, we will illustrate proper modeling
with aright and awrong formulation.

The first model Table 6.6(a) has three new variables and constraints. The three new variables sell meat
at $1.20. Thethree new constraints balance meat yields with sale. Thus, the coefficient in the breast quarter
meat row is the meat yielded when breast quarter is deboned (the breast quarter poundage per chicken timesthe
percentage of meat in a breast quarter).

Formulation 6.6(b) adds four variables and one row. The first three variables transform each of the
products into meat with the fourth selling the resultant meat. The new constant bal ances the amount of meat
yielded with the amount of meat sold.

Now which formulation is proper? Let us examine the implications of setting the variable Y equal to 1
in Table 6.6(a). Asin our earlier discussion the solution would have, variables X, through X, at a nonzero
level. However, in thisformulation M, M,, and M, would also be nonzero. Since both the X variables and the
M variables are nonzero, the chicken is sold twice. In Table 6.6(b), when 'Y is set to one, then either X, or M,

can be set to .5, but not both (in fact, the sum of X, + M, can be no greater than 0.5). Thus, the chicken parts
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can only be sold once.

Formulation 6.6(b) is proper. Formulation 6.6(a) contains an improper joint product specification, as it
simultaneously allocates products to mutually exclusive uses. Formulation 6.6(b) restricts any single part to
one use.

6.2.3 Improper Specification of Multiple Factor Relationships

Factor usage is often subject to misspecification in terms of multiple factor relationships. Thiscaseis
illustrated with yet another extension of the chicken example. We now wish to alow sales of a mixed quarter
pack which is composed of an arbitrary combination of breast and leg quarters. Let usintroduce two maodels.
The first model has the same constraints as Formulation 6.6(b) but introduces new variables where the breast
and leg quarters are put into the mixed quarter package (Formulation 6.7(a)).

Formulation 6.7(b) involves three new variables and one new constraint. The first two variables are the
poundage of breast and leg quarters utilized in the mixed packs. The third variable istotal poundage of mixed
quarter pack sold. The new constraint balances the total poundage of the mixed quarter packs sold with that
produced.

Now the question again becomes which isright? Formulation 6.7(a) is improper; the formulation
requires that in order to sell one pound of the mixed quarter pack, two pounds of quarters, one of each type,
must be committed and leads to a solution where no packs are made (see the file SIX7A). In Formulation 6.7(b)
the two sources of quarters are used as perfect substitutes in the quarter pack, permitting any proportion that
maximizes profits. The optimal solution shows all leg quarters sold as mixed quarter packs. Formulation 6.7(a)
illustrates a common improper specification - requiring that the factors to be used simultaneously when multiple
factors may be traded off. One should not require simultaneous factor use unless it is aways required. Multiple
variables are required to depict factor usage tradeoffs.

6.2.4 Erroneous Imperfect Substitution
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Resource substitution may also be incorrectly prevented. Consider a problem depicting regular and
overtime labor. Suppose the basic product is chairs where: a) a chair requires 10 hours of labor of which an
average of 3 hours comes from overtime labor; b) the firm has an endowment of 77 hours of regular labor at
$10 per hour and up to 27 hours of overtime labor at $15 per hour. We again introduce two formulations.

In Formulation 6.8(a) the variables indicate the number of chairs to produce and sell, along with the
amount of labor to acquire. The constraints give a balance between the chairs produced and sold; balances
between the labor/quantities hired versus used; and limits on labor time available.

Model 6.8(b) is essentially the same, however, we have aggregated our |abor use-hired balance so that
there is no distinction made between the time when labor is used (regular or overtime).

Which formulation is right? This depends on the situation. Suppose that [abor works with equal
efficiency in both time classes. Thus, one would be technically indifferent to the source of labor athough
economically the timing has different implications. Now let us examine the formulations by setting X, to one. In
6.8(a) the model hires both classes of labor. However, in 6.8(b) only regular time labor would be hired. In fact,
in 6.8(a) the overtime limit is the binding constraints and not al regular time labor can be used and only nine
chairs are made; whereasin 6.8(b) eleven chairs could be produced and al the labor isused. The second model
is the correct one since it makes no technical differentiation between |abor sources.

6.3 Smple Structural Checking
There are some simple yet powerful techniques for checking LP formulations. Two are discussed here
another in Chapter 17.
6.3.1 Homogeneity of Units
There are severa genera requirements for coefficient units. Consider the LP problem:
Max ¢ X, + CX,

st aX; + apX,
8 Xy + apX,

IN IN
o O
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Suppose that the objective function unit isdollars. Let the first row be aland constraint in acres. Let the
second row be alabor constraint in the unit hours. Further, suppose that X, represents acres of whesat and X,
number of beef animals.

What implications do these specifications have for the units within the model ? Parameter ¢, must be the
dollars earned per acre of wheat while ¢, must be the dollars earned per beef animal. Multiplying these two
parameters by the solution values of X, and X, results in the unit dollars. In turn, a;; represents the acres of
land used per acre of wheat. The parameter a,, would be the number of acres of land utilized per beef animal.
The units of the right hand side (b,) must be acres. The units of the parameters a,, and a,, would respectively be
labor hours utilized per wheat acre and labor hours utilized per beef animal. The units of the right hand side
(b,) must be hours of labor.

This example gives a hint of severa genera statements about units. First, the numerator unit of each
coefficient in an equation must be the same and must equa the right-hand side unit. Thus, a,, is the acres of
land used per acre of whest, a,, is the acres of land used per beef animal and b, the acres of land available.

Similarly, the coefficients associated with any particular variable must have a common denominator
unit, although the numerator will vary. Thus, ¢, isin the units dollars per acre of wheat, &, is acres of land per
acre of wheat, and a,, isthe hours of labor per acre of whesat. I1n addition, note that the units of the decision
variable X, are acres of wheat. The denominator unit of all coefficients within a column must be the same as
the unit of the associated decision variable.

6.3.2 Numerical Model Analysis

Another possible type of model analysis involves numerical investigation of the model. Here, one simply
mentally fixes variables at certain levels such asthe level of 1, and then examines the relationship of this
variable with other variables by examining the equations. Examples of this procedure are given in the proper

usage section above.

copyright Bruce A. McCarl and Thomas H. Spreen 6-12



Numerical debugging can aso be carried out by making sure that units are proper, and it is possible to

utilize all resources and produce all products. Finally, solvers such as OSL contain reduction procedures.

6.4 Data Development

Model specification requires data. The data need to be found, calculated, and checked for
consistency. Data development usually takes more time than either model formulation or solution. However,
thistime is essential. Good solutions do not arise from bad data.

Data development involves a number of key considerations. These include time frame, uncertainty, data
sources, consistency, calculation methods, and component specification.
6.4.1 Time Frame

Models must be established with atime frame in mind. The time frame defines the characteristics of the
data used. The objective function, technica coefficient (g;'s) and right hand side data must be mutually
consistent. When the model depicts resource availability on an annual basis, then the abjective function
coefficients should represent the costs and revenues accruing during that year. A common misspecification
involves an annua model containing investment activities with the full investment cost in the objective function.

Dynamic considerations may be relevant in the computation of objective function coefficients. It is
crucial that the objective function coefficients be derived in a consistent manner. Returns today and returnsin
ten years should not be added together on an equal basis. Issues of dynamics and discounting must be
considered as discussed in the Dynamic LP Chapter.
6.4.2 Uncertainty

The data developer must consider uncertainty. Coefficients will virtually never be known with
certainty. For example, when variables involve transport of goods from one place to another, the transport costs

are not entirely certain due to difficulties with pilferage, spoilage, adherence to shipping containers, and leskage.
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The modeler is forever facing decisions on how to incorporate data uncertainty. The risk programming chapter
presents formal methods for incorporating uncertainty. However, many modelers use average values or
conservative estimates.

6.4.3 Data Sour ces

Data may be devel oped through statistical estimation or deductive processes. Datafor coefficient
estimation can be from either cross-sectional or time series sources. Data may be developed using a case firm
(or firms) approach where a deductive, economic engineering process is used to manufacture representative
coefficient values. Data sources will vary by problem, and the modeler must apply ingenuity aswell as
problem-specific knowledge to develop consistent, reliable data.

6.4.4 Calculation Methods

Data can be calculated via economic engineering or via statistical methods. While these are only two
extremes of a continuum of possibilities, we will discuss only these two. Economic engineering refers to
coefficient construction through a deductive approach. For example, suppose we compute the profit contribution
of avariable by calculating the per unit yield times sale price less the per acre input usage times input price (i.e.,
if wheat production yields 40 bushels of wheat which sells for $5 per bushel and 20 bales of straw each worth
$.50 while input usage is $30 worth for seed and 6 sacks of fertilizer, which cost $4 each; then, the objective
function coefficient would be $156.)

At the other extreme, one could devel op multiple observations from time series, cross-sectional or
subjective sources and use averages, regression or other data summarization techniques. Such data might in
turn be transformed using an economic engineering approach to generate relevant coefficients. For example, one
might estimate a function statistically relating yield to fertilizer use and labor use. Then one might set alevel of
fertilizer use, calculate the yield, and use an economic engineering approach to devel op the objective function

coefficients.
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6.4.5 Consistency

Coefficients in amodel must be mutually consistent. The most common causes of inconsistency are
dynamic inconsistencies and inconsistencies in coefficient units (e.g., atechnical coefficient in hours and a
right-hand side in thousands of hours). The homogeneity of units rules above must be followed.
6.4.6 Specification of Individual Components

L P problems require right hand side, objective function, and technical coefficient specification. There
are comments that can be made pertinent to the specification of each.

6.4.6.1 Objective Function Coefficients

Ordinarily, the objective function coefficients should be the value that the decision maker expects. This
is particularly important when using time series data as the decision maker will not necessarily expect the series
average. Rather, some extrapolation of the trend may be appropriate. Brink and McCarl encountered
difficulties when attempting to validate a LP model because of differences in expectations between the time the
model was developed and the time actua decisions were made.

Severa other comments are relevant regarding the objective function. First, multiplication of aLP
objective function by a positive constant always leads to the same solution in terms of the decision variables.
Thus, one does not need to be extremely concerned about the absolute magnitude of the objective function
coefficients but rather their relative magnitudes.

Second, the coefficients must reflect the actual prices received or paid for the product. If aproduct is
being sold, one should not use prices from distant markets but rather prices adjusted to include marketing costs.
Input prices often need to be adjusted to include acquisition costs.

Finally, each objective function coefficient should be developed in harmony with the total model
structure. Often, students try to insure that each and every objective function coefficient in a profit maximizing

model isthe per unit profit contribution arising from that particular variable. This often |eads to mistakes and
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great confusion. Consider the model

X
<
IN IN
H
®© o

Suppose X represents the sale of a commaodity and X, the purchase of inputs. In order to sell X, one must
purchase X, as reflected by the first constraint. One could use the equality constraint to collapse X, and X, into
asingle variable, but this may not be desirable. The contribution of X, isfully represented in the above model.
The objective function should collectively represent the net margin and one does not need to compute each varia-
ble's coefficient so that it isthe per unit net contribution.

6.4.6.2 Right hand Side Coefficients

Right hand side coefficients are not always easily specified. For example, consider the amount of |abor
available. One could think that thisis the number of employees times the hours they work aweek. However,
the nominal and real availability of resources often differs. In the labor context, there are leaves due to sickness,
vacation, and alternative assignments diverting labor to other enterprises. Weather can aso reduce effective
availability. Findly, the right hand sides need to be developed on the same time frame as the rest of the model.

6.4.6.3 Technica Coefficients

The g; (technical) coefficients within the mode! give the resource use per unit of the variables. In
developing technical coefficients, one usually uses economic engineering. For example, per unit labor use might
be calculated by dividing the total hours of labor by the number of units produced. Such a calculation
procedure by its nature includes overhead labor usages such as setup time, cleaning time, etc. However, one

needs to be careful in handling fixed usages of labor which do not vary with production.
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6.5 Pur poseful M odeling

The purpose of amodeing exercise influences how amodel isimplemented. Some variables and
congtraints become relevant or irrelevant depending upon what exactly isto be done with the model. For
example, when studying short-run operating decisions one can omit investment variables and capital constraints.
On the other hand, if the focus of the study is investment one may be able to smplify the short-run operating
model and come up with an approximation of how investments should be utilized if acquired. Model purpose
also has important implications for the specific way a model answer is given to a decision maker.

6.5.1 Model Structure

Any problem can be formulated in a number of different ways. Modelers almost aways have the option
of collapsing items into the objective function or entering them explicitly in the constraints. Often the purpose of
amodeling exercise influences model structure (although thisis less true when using GAMS than with using
conventional methods).

Y ears ago when LP models were solved by hand or with early LP solvers, it was desirable to construct
the smallest possible representation for a particular situation. Today, model condensation is not as desirable
because of increased computer and solver capability. Rather, modelers often introduce size increasing features
which reduce modeler/analyst interpretation and summarization time. This section discusses ways which study
purpose may change formulations (although the discussion is not entirely consistent with our GAMS focus).

Consider a case in which products (X;) are sold at an exogenously fixed price, p;. Suppose production
utilizes a number of inputs, Z,,, purchased at an exogenoudly fixed price, r,. Each unit of the production
variable (Y,) incurs adirect objective function cost, g, yields (g,) units of thej™ product and uses by, units of

the m™ input. Also, there are constraints on unpriced inputs (i). A formulation is:
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This formulation contains a constraint for each product and each input. One could utilize the first two

congtraint equations to eliminate X; and Z, from the model yielding the formulation:

Max Xg, Y,
k

%A\

st. Ecik Y, < e fordli
k

Y 0
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k

wherethe g,'s are given by

9 = ij ay - mem b — G
i

Suppose the study involves examination of the implications of input and output prices. In the second
formulation, these prices are compacted into the objective function coefficients. In the first problem, however,
these prices are explicitly included in the objective function. This difference gives a reason why one might prefer
the first as opposed to the second formulation. If the prices were to be repeatedly changed, then only one
coefficient would have to be changed rather than many. Further, one could easily use cost-ranging features

within LP agorithms to study the effects of changesin r,, In addition, the solution would report the optimal
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production (X;) and input usage (Z,) levels. Post-solution summarization of total yield and input usage would
require many calculations under the condensed model, but with Z,,, explicitly included in the formulation, only
one number would need to be recorded.

Usage of modeling systems like GAMS places allittle different twist on the discussion above as one can
easily use GAMS to do post solution report writing and since GAM S computes the whole model every time,
changing one or many coefficients makes little difference.

6.5.2 Report Writing

A very important aspect of model use is properly summarizing the output so that understandable
information is generated for the decision makers involved with the modeling exercise. This introduces the
genera topic of report writing.

Linear programming solution reports are generally inadequate for conveying the essence of the solution
to the decision maker. It ishighly desirable to develop reports which summarize the solution as part of the
computer output, possibly an autonomous part. Such reports can be designed to trand ate the model solution
into decision maker language using both the solution results and the input parameters. An example of such
report writing is presented in Table 6.10 which gives summary reports on the transportation model from the last
chapter. These reports are broken into five tables. Thefirst Table entitted MOVEMENT gives the quantity
moving between each pair of cities along with the total movement out of a particular plant and into a particular
market. The elements of thistable are largely optimal levels of the decision variablesin the solution. The
second table (COSTY) gives a summary of commodity movements cost by route telling the exact cost of moving
between pairs and then the total costs of moving goods out of plants or into markets. This set of outputs is not
directly from the linear programming solution, but rather is the cost of movement between a particular city pair
times the amount moved. The only number in the table directly from the linear programming output is the

objective function value. The third gives a supply use report for each supply point giving the available supply,
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the amount shipped out, and the marginal value of that shipment (which is the shadow price). The fourth table
gives similar information for the demand markets. Finaly, thereisthe table CMOVEMENT which givesthe
cost of changing the commodity movement pattern which is areformat of the reduced costs of the decision
variables. In genera, the function of areport writer is to summarize the essence of the solution, making it more
readable to decision makers. In many applied studiesit is valuable to develop a report format ahead of time,
then structure the model and model experiments so that the report data are directly generated. The use of
computerized report writing instead of hand summariesis a great advantage and can save hours and hours of

modeler time. Thisis particularly facilitated when one uses a computerized modeling system such as GAMS.
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Table6.1. Initial Schematic for Example Farm Planning Problem

Crop 1 Crop 2 Crop3 Crop4 RHS
Objective C C Cs Cy
Land 1 1 1 <L
L abor
Table 6.2. Revised Schematic for Example Farm Planning Problem

Crop 1 Crop 2 Crop3 Crop4 RHS
Objective C C Cs Cy
Land 1 1 1 <L
Land After Crop 1 -1 1 <0
L abor
Table 6.3. Final Tablefor Example Farm Planning Problem

Crop 1 Crop 2 Crop3 Crop4 RHS
Objective C C Cs Cy
Land 1 1 1 <L
Land After Crop 1 -1 1 <0
Labor -Spring d; ds ds <sp
Labor - Summer d, d, < su
Labor - Fall d, dy dy <f
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Table 6.4. Composition of a Chicken and Sales Prices for the Component Parts

Percent of Chicken Sale Price Percentage Chicken
Body Weight of Part Meat
Ibs. part/Ibs. chicken $b. Ibs. meat/Ib. part
Breast Quarter 50 1.00 75
Leg Quarter 35 .80 60
Neck 10 .20 20
Giblets 5 .70 0
Table6.5. Alternative Formulations of Chicken Processing Problem
Formulation 6.5(a)
Chickens Breast Leg Neck Giblets Maximize
(Ibs)) Quarter Quarter (Ibs)) (Ibs))
(Ibs.) (Ibs.)
Objective function ($) + 1.00X; + 080X, + 020X, + 0.70X,
Balance (Ibs.) -Y + 050X, + 035X, + 01X; + 0.05X, < 0
Chickens Available 3y < 1500
(birds)
Formulation 6.5(b)
Chickens Breast Leg Neck Giblets Maximize
(Ibs)) Quarter Quarter (Ibs)) (Ibs))
(Ibs.) (Ibs.)
Objective Function ($) + 1.00X; + 080X, + 020X, + 0.70X,
Breast Quarter -0.50Y + X, < 0
Leg Quarter -0.35Y + X, < 0
Neck -0.10Y + X, < 0
Giblets -0.05Y + X, < 0
Chickens 3y < 1500
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Table 6.6. Formulationsfor Processing Chickenswith the Option of Deboning

Formulation 6.6(a)

Breast Leg
Breast Leg Qtr. Qtr. Neck
Chicken Qtr. Qtr. Neck Giblet Meat Meat Meat
Objective 10X, + 08X, +02X; + 07X, + 12M; +12M, + 1.2M,
Breast -0.5Y + X, < 0
Qtr.
Leg Qtr. -0.35Y + X, < 0
Neck -0.1Y + X, < 0
Giblets -0.5Y X, < 0
Chickens  1/3Y < 1500
BQMeat  -(0.05)(0.75)Y + M, < 0
LQMeat -(0.35)(0.6)Y + M, < 0
N Meat -(0.2)(0.1)Y + M, < 0
Formulation 6.6(b)
Breast Leg Total
Breast Leg Qitr. Qtr. Neck Meat
Chicken  Qtr. Qitr. Neck Giblet Meat Meat Meat Sold
Objective 1.0X, +0.8X +0.2X  +0.7X +
2 3 4 1.2M,
Breast Qtr.  -0.5Y + X, +M, < 0
Leg Qtr. -0.35Y + X, +M, < 0
Neck -0.1Y + X5 +M, < 0
Giblets -0.05Y + X, < 0
Chickens 1/3Y < 1500
Meat - -0.6M, -02M; +M, < 0
0.75M,
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Table 6.7. Formulations of the Chicken Assembly-Disassembly Problem

Formulation 6.7(a)

BQ LQ Neck Giblet BQMeat LQMeat Neck Total MQ Sold
Chicken Meat Meat Sold
Objective 10X, + 08X, ., 02X, + 0.7X, + 12M, + 0.95Q
BQ 05 + X, + M, + 05Q =<0
LQ -0.35Y + X, + M, + 05Q =<0
Neck -0.1Y + X + M, <0
Giblets -0.05Y + X, <0
Chickens 13y < 1500
Meat - 075M, - 06M, - 02M, + M, <0
Formulation 6.7(b)
Chicken  BQ LQ Neck Giblet BQMeat LQMeat Neck Total BQ LQ MQ
Meat Meat included include Sold
Sold inMQ din
MQ
Objective 10X, + 08X, + 02X, + 0.7X, + 1.2M, 0.95Q
3
BQ 05 + X, + M, + Q, < 0
LQ -0.35Y + X, + M, + Q, < 0
Neck -0.1Y + X + M, < 0
Giblets -0.5Y + X, < 0
Chickens 13y < 1500
Meat - 075M, - 06M, - 02M, + M, < 0
Qtr. Pack - Q - Q 0Q, < 0
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Table 6.8. Alternative LP Formulations of Chair Production Example

Formulation 6.8(a)
Chair Regular Overtime Chair
Production Labor Labor Sale
Objective - 10 - 15 + 220
Chairs -1 + 1 < 0
Regular Labor 7 - 1 < 0
Overtime Labor 3 - 1 < 0
Regular Labor Constraint 1 < 77
Overtime Labor Constraint 1 < 27
Formulation 6.8(b)
Chair Regular Overtime Chair
Production Labor Labor Sale
Objective - 10 - 15 + 220
Chairs -1 + 1 < 0
Regular Labor 10 - 1 - 1 < 0
Regular Labor Constraint 1 < 77
Overtime Labor Constraint 1 < 27
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Table 6.9 Example of GAM S Report Writing

53 PARAMETER MOVEMENT

COWODI TY MOVEMENT

M AM HOUSTON M NEPLI S PORTLAND TOTAL
NEWYORK 30 35 15 80
CHI CAGO 75 75
LOSANGLS 40 50 90
TOTAL 30 75 90 50 245
---- 61 PARAMETER COSTS COWODI TY MOVEMENT COSTS BY ROUTE
M AM HOUSTON M NEPLI S PORTLAND TOTAL
NEWYORK 600 1400 525 2525
CHI CAGO 1500 1500
LOSANGLS 1400 2000 3400
TOTAL 600 2800 2025 2000 7425
---- 68 PARAMETER SUPPLYREP SUPPLY REPORT
AVAI LABLE USED  MARGVALUE
NEWYORK 100. 00 80. 00
CHI CAGO 75. 00 75. 00 15. 00
LOSANGLS 90. 00 90. 00 5.00
---- 75 PARAMETER DEMANDREP DEMAND REPCRT
REQUI RED RECEI VED MARGCOST
M AM 30. 00 30. 00 20. 00
HOUSTON 75. 00 75. 00 40. 00
M NEPLI S 90. 00 90. 00 35. 00
PORTLAND 50. 00 50. 00 45. 00
---- 80 PARAMETER CMOVENMENT COSTS OF CHANG NG CaOvMODI TY MOVEMENT
PATTERN
M AM HOUSTON M NEPLI S PORTLAND
NEWYORK 75. 00
CHI CAGO 45. 00 35. 00 40. 00
LOSANGLS 75. 00 40. 00
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CHAPTER VII: MORE LINEAR PROGRAMMING MODELING

In this chapter we continue our concentration on LP modeling. However, we lessen our concentration on
GAMS’ and duality. This presentation is organized around common LP problems. The first problem involves
product assembly where component parts are assembled into final products. Thisis followed by problems which
cover: a) raw products disassembled into component parts; b) simultaneous raw product disassembly and
component assembly processes; ¢) optimal operation sequencing; d) commodity storage; €) input output analysis;
and f) block diagonal problems.

7.1 Assembly Problem

An important LP formulation involves the assembly or blending problem. This problem deals with
maximizing profit when assembling fina products from component parts. The problem resembles the feed
formulation problem where mixed feeds are assembled from raw commaodities; however, the assumption of known
component mixturesis made. This problem appears in Dano, who presents a brief literature review.

The problem formulation involves k component parts which can be purchased at afixed price. The
decision maker is assumed to maximize the value of the final products assembled less the cost of ¢
components. Each of the fina products uses component parts via a known formula. Also, fixed resources

congtrain the production of fina products and the purchase of component parts. The formulationis

Max chij - kdeQk
Ya X, - wQ < h for al k
J
jZeljxJ + kaika < b for al i
X, > g for al |
X, Q =0 for all k , j

where: j isthefinal product index; ¢ isthe return per unit of final product j assembled; X; is the number of units of
final product j assembled; k isthe component part index; d, isthe cost per unit of component part k; Q, isthe
quantity of component part k purchased; a; is the quantity of component part k used in assembling one unit of
product j; w, isthe number of units of the component part received when Q, is purchased; | is the index on resource
limits; g; is the use of limited resource | in assembling one unit of product j; f; is the use of the i" limited resource

when acquiring one unit of Qy; by is the amount of limited resource | available; g; is the amount of j* product which

®> The GAMS formulations are included on the attached disk in the CH7 subdirectory.
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must be sold; and h, isthe firm'sinventory of ingredient k.

In this formulation the objective function maximizes the return summed over all the fina products produced
less the cost of the component parts purchased. The first constraint equation is a supply-demand balance and
congtrains the usage of the component parts to be less than or equal to inventory plus purchases. The second
congtraint limits the resources used in manufacturing final products and purchasing component parts to the
exogenous resource endowment. The last constraint imposes a minimum sales requirement on final product
production. All of the variables are assumed to be nonnegative. This problem contains production variables which
produce the j™ product (X;) and purchase variables (Q,).

The dual problem is not very much different from those before, thus, suppose we only look at the dual

constraint associated with Q,. That constraint

-w U, o+ izfik Z, > -d,

where U, is the return to one unit of component part k; and Z; is the return to one more unit of limited resource I.
This constraint is more easily interpreted if it is rewritten as follows
Xf.Z + d. > wU,
or, equivaently, !
2, Z; + dy
'T > U,
Thisinequality says that the internal value of a component part unit is less than or equal to its purchase price plus
the cost of the resources used in its acquisition. Therefore, the internal value of a component part can be greater
than the amount paid externally.
7.1.1 Example
The assembly problem example involves PC compatible computer assembly by Computer Excess (CE).
CE is assumed to assemble one of six different computer types: XT, AT, 80386-25, 80386-33, 80486-SX, and
80486-33. Each different type of computer requires a specific set of component parts. The parts considered are
360K floppy disks, 1.2 Meg floppy disks, 1.44 Meg floppy disks, hard disks, monochrome graphics setups, color
graphics setups, plain cases, and fancy cases. The component part requirements to assemble each type of computer

aregivenin Table 7.1. The table aso contains component parts prices, aswell as sales, inventory and resource

(Iabor and shelf space) requirements. The resource endowment for labor is 550 hours while there are 240 units of
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system space and 590 units of shelf space. The problem formulation is given in Table 7.2 while the solution is
givenin Table 7.3. The GAMS implementation of this formulation is called ASSEMBLE.

There are no particularly unique features of the empirical formulation or solution, so interpretation isleft to
the reader.
7.1.2 Comments

The assembly problem is related to the feed formulation problem. Namely, the assembly problem assumes
that known least cost mixes have been established, and that one wishes to obtain a maximum profit combination of
these mixes. There are numerous assumptionsin this problem. For example we assume all prices are constant and
the quantity of fixed resources is constant. One could extend the model to relax such assumptions.

7.2 Disassembly Problems

Another common LP formulation involves raw product disassembly. This problem is common in
agricultural processing where animals are purchased, daughtered and cut into parts (steak, hamburger, etc.) which
aresold. The problem isaso common in the forest products and petroleum industries, where the trim, cutting stock
and cracking problems have arisen.  In the disassembly problem, a maximum profit scheme for cutting up raw
productsis devised. The prima formulation involves the maximization of the component parts revenue less the raw
product purchase costs, subject to restrictions that relate the amount of component parts to the amount of raw pro-

ducts disassembled. The basic formulation is

Max - X¢X; + XdQ,
i k
- XgX; + Q < O for al k
i
YeX; + Xf,Q < b for al r
i k
X, < g for al |
Q. < h, for al k
Q, = M, for al k
Xj, Q = 0 for al k , j

where j indexes the raw products disassembled; k indexes the component parts sold; r indexes resource availability
limits; ¢ is the cost of purchasing one unit of raw product j; X; isthe number of units of raw product j purchased;
d, isthe selling price of component part k; Q, is the quantity of component part k sold; g isthe yield of component

part k from raw product j; e; is the use of resource limit r when disassembling raw product j; f, is the amount of
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resource limit r used by the sale of one unit of component part k; b, is the maximum amount of raw product limit r
available; g; is the maximum amount of component part | available; and h, is the maximum quantity of component
k that can be sold, while M, is the minimum amount of the component k that can be sold.

The objective function maximizes operating profit, which is the sum over al final products sold (Qy) of the
total revenue earned by sales less the costs of all purchased inputs. The first constraint is a product balance -
limiting the quantity sold to be no greater than the quantity supplied when the raw product is disassembled. The
next constraint is aresource limitation constraint on raw product disassembly and product sale. Thisisfollowed by
an upper bound on disassembly as well as upper and lower bounds on sales.

The X; are production variables indicating the amount of the j* raw product which is disassembled into the
component parts (the items produced) while using the inputs g,. The Q, are sales variables indicating the quantity
of the k™ product which is sold.

7.2.1 Example

The disassembly praoblem example involves operations at Jerimiah's Junk Yard. The firm is assumed to
disassemble up to four different types of cars : Escorts, 626's, T-birds, and Caddy's. Each different type of car
yields a unique mix of component parts. The parts considered are metal, seats, chrome, doors and junk. The
component part yields from each type of car are given in Table 7.4 as are data on car purchase price, weight,
disassembly cogt, availability, junk yard capacity, labor requirements, component part minimum and maximum
sales possibilities, parts space use, labor use, and sales price.  The resource endowment for labor is 700 hours
while there is 42 units of junk yard capacity and 60 units of parts space. We also extend the basic problem by
requiring parts to be transformed to other usages if their maximum sales possihilities have been exceeded. Under
such acase, chrome is transformed to metal on a pound per pound basis, while seats become junk on a pound per
pound basis, and doors become 70% metal and 30% junk. The problem formulation is given in Table 7.5 while the
solution isgiven in Table 7.6. The GAMS implementation of this formulation is called DISSASSE.

Note the empirical formulation follows the summation notation formulation excepting for the addition of
the parts transformation activities and the equality restrictions on the parts balance rows. Thisisreflected in the
solution where, for example, the excess seats are junked making more seats worth the junk disposal cost.

7.2.2 Comments
It isdifficult to find exact examples of the disassembly problem in literature. Thisformulation is arather

obvious application of LP which, while having been studied a number of times, is not formally recognized.
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A number of observations are possible. First, raw products are assumed to be separable into the
individual component parts. While this assumption is not restrictive here, it is more important in the
assembly-disassembly problem as discussed below. Second, the product demand curve reflects an finitely inelastic
demand at the minimum, then an infinitely elastic portion at the price up until the maximum is met, then zero
demand. Thisisvery common in LP, although inventories or minimum requirements would yield dightly different
setups. Third, thisis an example of the joint product formulation where multiple products are created by the
acquisition of the raw products.

7.3 Assembly-Disassembly

A unification and extension of the above two models involves the assembly-disassembly problem. In that
problem, one purchases raw products, disassembles them and reassembles the component parts into finished
products. Thistype of problem would be most applicable for vertically integrated processing facilities. One

example is meat packing, where animals are purchased, disassembled into parts, and then reassembled into such

Max - X¢X; + XdQ, + XsT; - XpZ
j k i [
- Ea].jxj X Qe v T, - Z <0 for al i
j k
Zel'ixj " Eferk * ZgriTi + Zhrizi <0 for al r
j k i [
X < B for all |
Qy < 8 for al k
T, < 0 for all i
Z < X for all i
X Qe T, Z >0 forali,j,k

composite products as sausage, ham, processed meats, etc. A similar example would be given by a furniture manu-
facturer that bought raw logs, cut them up, then used the sawn lumber in a furniture manufacturing business. The
basic formulation is

where: j indexes raw product; k indexes manufactured product; i indexes component parts; r indexes resource
limits; ¢ is the cost per unit of raw material; X; isthe number of units of raw product purchased; d, is the return per
unit of manufactured product k; Q, isthe number of units of manufactured product k which are assembled; s isthe
return the firm realizes from selling one unit of component part i; T, is the number of units of component partsi

which are sold; p, isthe per unit purchase price for acquiring component part i; Z; is the number of units of
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component part i purchased; g; isthe yield of component part i from one unit of raw product j; by is the use of
component part i to produce one unit of manufactured product k; g, is the use purchasing one unit of the X; raw
product makes of the r' resource; f,, is the use manufacturing one unit of Q, product makes of the r' resource; g, is
the use that one unit of T, makes of the r' resource; h;; is the use one unit of Z, makes of the r'" resource; and «, is
the availability of the r'" resource. In addition each of the four types of variables are bounded above and
nonnegative.

Thismode! covers the disassembly of raw products (X;), the assembly of final products (Q,), the sale of
component parts (T;), and the purchase of component parts (Z;). The objective function maximizes the revenue
from final products and component parts sold less the costs of the raw products and component parts purchased.
Thefirst constraint is a supply-demand balance, and balances the use of component parts through their assembly
into final products and direct sale, with the supply of component parts from either the disassembly operation or
purchases. The remaining equations impose resource limitation constraints and upper bounds. The problem
contains production (X;, Qy), sale (T;) and purchase variables (Z;).

7.3.1 Example

Charles Chicken Plucking and Sales Company purchases chickens, cuts them and repacks them into
chicken meat packages. All chickens are available for $1.00, have the same weight and breakdown identically in
terms of wings, legs, etc. Charles can, however, cut up the chickens in severa different manners. Chickens may
be cut into parts, meat, quarters, halves, or breast, thigh, and leg cuts. From these Charles gets wings, legs, thighs,
backs, breasts, necks, gizzards, meat, breast quarters, leg quarters and halves. Chickensyield 1 Ib. of meat, 80
percent of which isin the leg-thigh and breast region. The cutting patterns and yields, labor requirements, and sale
pricesare shownin Table 7.7.

Charles sells parts individually or sells packs which contain: a) a cut-up chicken with al parts from one
chicken except gizzards; b) 4 breast quarters; ) 4 leg quarters; d) 2 chicken halves; and e) two legs and two thighs.
Charles also sells gizzard packs with 10 gizzards in them. The individual parts séll at prices shown in Table 7.7.

Production capacity allows 1,000 chickens to be cut up per day. The company may purchase wing, leg, or
thighs from other suppliers; however, no more than 20 units of each part are available. The price of purchasing is
$0.02 above the market sales price. The firm has 3,000 units of labor available.

To formulate this problem four classes of variables must be defined: 1) chicken disassembly variables

depicting the number of chickens cut viathe patterns for - Parts (X), Halves (X,), Quarters (X,), Meat (X,,), and
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Leg-Breast-Thigh (X,); 2) assembly variables for the packs A - E (X, - X,) and the gizzard pack (X,); 3)
raw-product sales variables; and 4) raw product purchase variables. These variables are set subject to constraints
on part supply, chicken availability, labor and purchase limits. The formulation is shown in Table 7.8. The
GAMS implementation is called ASSDISSM.

There are severa features of this formulation which merit explanation. First, negative coefficientsin the
supply and demand rows depict supplies of component parts from either purchase or raw product disassembly,
while the positive coefficients depict usages. Examining the thigh row, thighs can be obtained if one cuts a chicken
into parts, or into the leg-breast-thigh pattern. Thighs may also be acquired through external purchase. Demand
for these thighs comes from the sale of packs of A and E, aswell asthe direct sale of thighs. Second, the last three
congtraints give the resource limit constraints on purchases. However, these constraints limit a single variable by
placing an upper bound on its value. Constraints which limit the maximum value of a single variable are called
upper bound constraints.

The solution to this problem is shown in Table 7.9. This solution leads to an objective function value of
$1362.7 where 1000 chickens are bought, cut by the Leg-Breast Thigh Pattern and sold as 1010 units of pack E.
In addition, 2000 breasts, 1000 necks, 200 Ibs. meat, 20 thighs and 20 legs purchased. The resultant margina
value of products of the resources are given by the shadow prices.

7.3.2 Comments

There are several important assumptions embodied in the Charles Chicken problem. One of these involves
separability -- that the parts can be disassembled and assembled freely. While this assumption appears obvious, let
us illustrate an example wherein this assumption is violated. Suppose that one wishes to solve a blending problem
mixing two grades of grain (A,B) from two batches (G,, G,). Suppose that moisture and foreign matter are the
component parts, and the relevant parameters are given in Table 7.10. Further, suppose there are 20 units of each
of two batches of grain available, and that grade A grain sells for $3.00 per unit, and grade B grain for $2.00 per

unit.
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Now suppose this problem is formulated as an assembly-disassembly problem. This formulation

Max 3A + 2B

stt. ~-A - 2B + 2G, + G, < O
-A - 2B + G + 2G, < O

A + B G, G, = 0

G, < 20

G, <20

A, B, G G, > 0

iswhere A isthe quantity of grade A grain made, B the quantity of grade B grain made, G, the quantity of batch 1
grain used, and G, the quantity of batch 2 grain used (see file GRAIN1). The model balances the maximum
moisture, foreign matter, and weight with the amount in each grain. The resultant solution gives an objective
function value equal to 100. The variable values and shadow prices are presented in Table 7.11.

Thereis aproblem with this solution. 1t isimpossible, given the data above, to make amix 20 units each
of grade A and grade B grain. The requirement for maximum moisture and foreign matter is 1 percent in grade A
grain, so neither of the grain batches could be used to produce grade A, as they both exceed the maximum on this
requirement. The solution above, however, implies that we could make 20 units of grade A grain and 20 units of
grade B grain. The model uses excess moisture from grain batch 1 in grade B grain, while the excess foreign
material from grain batch 2 isaso put in the grade B grain. Thisis clearly impossible, as moisture and foreign
matter are not separable (Ladd and Martin make this mistake as pointed out in Westgren and Schrader). Thus, this
situation violates the separability assumption; the itemsin arow cannot be used fregly in either of the two blends.

The proper formulation of the blending problem is
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Max 3A + 2B

st. -A + 2G, + G, < 0
-A + G, + 2G, < 0

A - Gy G, =0

- 2B + 26, + G, < O

- 2B + G, + 2G, < 0

B - Gy G, = 0

G, + Gy, < 20

G, + G, < 20

A, B, G G G G, > 0

11’ 21 12 22

The optima solution gives an objective function value of 80 (see file GRAIN2). The optimal value of the variables
and equation information is shown in Table 7.12.
Here, note that all the grain goes into grade B, and the objective function is smaller. Separability isan

important assumption, and one must be careful to insure that it holds in any assembly-disassembly problem.

7.4 Sequencing Problems

Often, production entails multiple intermediate processes and requires that each process be completed
before the next oneis started. Furthermore, the intermediate processes often compete for resources. A farming
example of this situation involves the requirement that plowing be done before planting and that planting be done
before harvest. However, plowing and planting may go on at the same time on different tracts of land. Thus,
plowing and planting could draw from the same labor and machinery pools. Similarly, plowing could be donein
the fall during the harvesting period, thus harvesting and fall plowing compete for the same resources.

A prablem which explicitly handles such a situation involves sequencing. Sequencing models insure that
the predecessor processes are completed before the successor processes can begin. In LP models the sequencing
considerations generally take one of two forms. Sequencing may be controlled within a variable or between
variables using constraints. Sequencing within a variable is done whenever the occurrence of one event implies that
another event occurs a fixed time afterward, or whenever the timing of events influences their economic returns. In
this case both the predecessor and successor tasks are embedded in avariable. Sequencing between variablesis

done whenever the successor process follows the predecessor process an indefinite amount of time later, but the
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economic return to the successor is not a function of when the predecessor was done. For example, one may plant a
crop and not care when it was plowed; on the other hand, if one harvests a crop and the yield of the crop depends on
both the planting and harvesting dates, then this would require sequencing within a variable. Both cases will be
illustrated.

Sequencing considerations are hard to write algebraically and the result is often confusing to students.
Thus, we will alter our presentation style and use an example before the algebraic formulation. Suppose afirm
produces an output using two tasks. Further suppose that production process occurs somewhere in a three week
period, and that the successor or predecessor can be done in any of those three weeks. However, the predecessor
task must be completed before the successor task. Two cases can arise. First, the successor/predecessor date could
jointly determine economic returns and/or resource use. Second, the yield, returns, etc., could be independent of
timing as long as the predecessor occurs first.

Let us consider the latter case first. Suppose we denote X4, X, and X as the amount of the predecessor
doneinweeks 1, 2, and 3, and Y,, Y, and Y ; as the amount of the successor doneinweeks 1, 2, and 3. Inweek 1
the level of the successor activity (Y ;) must be less than or equal to the amount of the predecessor activity (X,)
completed. Algebraicaly, thisimplies

Y, <X, or =X, +Y, <0

In week 2, the amount of the predecessor activity which could be completed by thenis X;+X,. The total
amount of the successor activity at that time would be that used this week (Y ), plus that used last week Y;. The
sequencing requirement isthat Y, must be less than or equa to X; plus X, minus what was used in Period 1 or,
algebraically

ngX +X27Yloer

1 X+Y+Y230

1 2 1

The intersection of this constraint with that above alows no more of the successor activity to be nonzero in
the first week than is present at that time. However, more of the predecessor may be produced than used in the first
week; with the extra carried over into later weeks for usage.

In the third week, the amount of the successor activity (Y ;) islessthan or equa to the amount of
predecessor activity that could be supplied up to that period (X, + X, + X;) lessthat used in periods 1 and 2 (Y, +
Y),).

Yo Xp + Xy + Xy =Y, =Y, o X, =X, - X+ Y, +Y,+¥Y;<0

Algebraically, the action of this set of constraints is such that X; could equa 500, while Y;=100, Y ,=100
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and Y ;=300, indicating that the predecessor activity was completely undertaken in the first week but the successor
activity dowly used up the inventory during the life of the model. However, the successor cannot get ahead of the

predecessor. A complete tableau of this setup is given by

Weekl - X, + Y, < 0
Week2 -X, - X, + Y+ Y, < 0
Week3 -X;, - X, - X3 + Y, + Y, + Y; < 0
Weekl aX; + dY, < T,
Week2 bX, + evY, < T,
Week3 cX, + fY, < T,

The first three constraints are discussed above. The others are resource limitations. Week 1 resources are
used by X, and/or Y ;; Week 2 resources by X, and/or Y ,; and Week 3 by X, and/or Y 5. The sequencing constraints
insure that successor activities will not be undertaken until the predecessors are complete.

The sequencing restraints may aso be explained in terms of the variables. Suppose X, and Y, are
variables for acres of land. X, suppliesland for usein time periods 1, 2 and/or 3. Y, requires land for usein
period 1 and precludes use in periods 2 and 3. Variable X, suppliesland in periods 2 and 3 while Y, usesland in
period 2 and precludes use in period 3.

The above formulations assume that returns and resource usage are independent of activity timing. This
may not always be true. Returns to the successor activities may depend on the timing of the preceding activities.
Such aformulation involves changing the variable definitions so that the week of the predecessor and successor
define the variable. 1n the above example, thisyields six variables - the first involving the successor and
predecessor both carried out in week 1; the second, the predecessor in week 1 and the successor in week 2, etc. A
tableau of this situation is

Predecessor Wk 1 Wk 1 Wk 1 Wk 2 Wk 2 Wk 3
date
Successor Wk 1 Wk 2 Wk 3 Wk 2 Wk 3 Wk 3
date
Wk 1 aZ,, + bz, + dZ,, < T,
Wk 2 cZ,, + fZ,, + 0Z, < T,
Wk 3 €z, + hz,, + iZy < T,

The variables represent the amount of predecessor and successor activities undertaken during
specific times (ie. Z,; involves the predecessor in week 1 and the successor in week 3). The constraints
restrict resource usage by week. Resource use or objective function coefficients would differ from activity

to activity, indicating that features of the model are dependent on the sequencing.
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Max

st

Given this background, we may now introduce a general formulation. Suppose we have three
phases, X, Y and Z, each of which must be completed in sequence. Further, we will alow a set of

aternatives for each of X, Y, and Z. A general summation model embodying sequencing considerationsis

- chjxjtl - Zdethz + ZZeSZSt3
it k t, sty
- _EE thl + D thz < 0 fortet,
jty<t k ty<t
- XX Y, o+ 7, < O fortet,
kt,<t 2 st 2
+ jZa]. Xy = kij Y SZfSZSt < Oy for al m, t
th, thz, ZStz > 0 for al j, k, s, t,

The variables are thl, the j™ alternative for the completion of task X in time period t;; thz, the
k™ alternative for the completion of task Y in time period t,; and ZStz the s" alternative for the completion
of task Z intime period t;. The first two constraints depict sequencing as in the first example where the
predecessor activities are summed as long as they precede the period over which the constraint is defined
(denoted by t,< t). These constraints are defined for the time periods in which the successor activities
begin. The third constraint depicts resource availability.

A formal definition of notation is: t designates time periods; j indexes the technologies by which the
first task can be done; k indexes the technologies by which the second task can be done; sindexes the
technol ogies by which the third task can be done; t, gives the periods in which the first task can be done; t,
gives the periods of the second task; t; gives the periods of the third task; ¢ is the cost of a unit of first task
I thl is the number of units of first task j performed in time period t,; d, isthe cost of a unit of second
task k; th2 is the number of units of second task k performed in period t,; €, isthe revenue of a unit of
third task version s; ZSt3 is the number of units of third task version s performed in period t; 3, isthe
number of units of resource m used by the | aternative for X; b, is the number of units of resource m
used by the k™ alternative for Y, g, is the number of units of resource m used by the s" alternative for Z;
Om 1S the endowment of resource m in period t.

There are no particularly new features to this formulation in terms of types of constraints and/or
variable. All the variables are some form or another of a production variable. The first two constraints are

supply/demand balances on the intermediate products passed between the predecessor and successor
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variables, and the last constraint is a resource limitation constraint.

Due to the complexity of the above formulation, two examples will be given, one straight forward
but of limited realism, the other more complex.
7.4.1 Example 1

Suppose that a farmer plows, discs, plants, cultivates, and harvests land and that yield does not
depend on activity timing. Assume plowing isdonein April, May and June. The principal resources are
land and plowing labor. Plowing labor usage is 0.2 hours of labor per acre with a cost of $100 per acre.
Discing follows plowing. Suppose that discing is done in May, June and July, requiring 0.3 hours of |abor
per acre while costing $20 per acre. Planting is donein May, June and July, requiring 0.3 hours of |abor
per acre and costing $25 per acre. Cultivation is done in each of the three months following planting, and
harvesting must be done in the fourth month. Cultivation requires 0.1 hours of labor per acre with no
added cost, while harvesting uses 0.5 hours of labor per acre plus a cost of $75 per acre. Further, suppose
that the crop yield is worth $500 an acre. Also, the farm's resource endowment is 600 acres of land and
160 hours of labor in each of the months of April through November.

A LP formulation of this situation is given in Table 7.13 and the GAM S implementation of this
formulation is called SEQUEN. The activities X represent the plowing possibilities and are defined for
April, May and June. The activities'Y represent the discing possibilities and are defined for May, June and
July. The activities Z represent the planting-harvesting possihilities and are defined by beginning month -
May, June, and July. The second three constraints give the link between plowing and discing. Note these
congtraints are defined for the periods in which discing can be started - May, June and July. The next three
congtraints are the link between discing and planting and are again defined for May, June and July. The
next eight constraints are labor constraints which are defined for each of the months during which farm
activity can be done. Thelast constraint is the land constraint.

The planting variable Z encompasses the sequencing between planting, cultivating and harvesting
since those activities are done in fixed sequence. This variabl€'s coefficients require resources committed in
May be accompanied by acommitment in June, July and August for cultivating and in September for
harvesting. The objective function for these activitiesis calculated as margin between the cost of planting
and harvesting and the value of the crop sold. Thus, the return is $400 per acre. The solution to this model
isgivenin Table 7.14.
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This solution depicts 600 acres of plowing in April followed by 407.41 acres of discing in May and
192.59 acresin July. Finally, 125.93 acres are planted in May, 281.48 in June and 192.59 in July. The
sequencing constraints allow the predecessor to occur initially faster than they are used by the successor,
although the successor eventually catches up. Labor has no shadow prices. Land isthe only binding
resource constraint.

7.4.2 Example 2

The second example is more complex and does not closely follow the summation notation.
However, it does contain the sequencing considerations reflected above. This example again reflects afarm
planning situation and illustrates what needs to be done when planting and harvesting date influence yield.
Assume that a farm grows two crops. The crops are plowed in March through June. Plowing is done the
same way regardless of the crop, and the plowing rate is four acres per hour. In addition, the farmer needs
one hour of maintenance for each 20 acres of plowing, and the plowing cost is $5.00 an acre. Both crops
arethen disced. Discing can be donein April-June for crop 1 and March-June for crop 2. The farmer can
disc five acres an hour of either crop. Crop 2 is aways disced exactly one month preceding planting.
Discing of crop 1 can be done any time before planting. Discing costs $3.00 per acre.

Both crops are planted in April-June. The farmer figures it takes 0.22 hours of labor to do one
acre. The planting cost for crop 1 is $40 per acre, and the cost for crop 2 is $20 per acre. Both crops are
cultivated exactly one month after planting. The farmer can cultivate 10 acres in one hour, the cost for
cultivation is $10 per acre.

The yield achieved depends on the crop planting and harvest dates and is given in Table 7.15.
Harvesting takes 0.7 hours per acre for crop 1 and 0.6 hours for crop 2. Harvesting costs are $10 per acre.

The farm has 1500 acres and 300 hours of |abor available in each month. Labor can be hired for
$10 an hour. The objective of the model isto maximize profits. Crop 1 sells for $3.00 per unit, Crop 2 for
$8.70 per unit.

A formulation of this problem is given in Table 7.16. The GAMS implementation of this
formulation is called FARM2. Thetableau isformed with plowing variables defined in March through
June. These variables use land and supply plowed land for the subsequent discing activities. The discing
operation is modeled in two different ways, depending on crop. For crop 1 there are explicit discing

variables; for crop 2, the discing activities are embedded into the planting activity because of the one month
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sequencing requirement. Crop 1 planting variables are defined for April, May and June. We aso add the
harvest time to the variable definition. Cultivating resource usages are also included. Thus, the variable
for acrop planted in April and harvested in September includes resource use for April planting, May
cultivating, and September harvest. Plowing resource usage is computed as 1/(acres per hour) +
1/(maintenance time per acre) = 0.25 + 0.05 or 0.3 hours for the total. Similarly, the discing timeis
1/(acres per hour) = 0.20

The crop 2 planting and harvesting activities reflect a dightly different setup. Here, discing is also
included. Thus, the resources use accounts for discing, planting, cultivation, and harvest. Also note that
the yields are entered in the bottom of the tableau and are sold through the selling activities.

The resultant solution to this problem is given in Table 7.17 and indicates that $449,570 is made
from the farm with 775 acres planted to crop 1 and remainder planted to crop 2. Labor ishired only in
October. The value of land is $292.50 per acre; labor isworth $10 an hour in March, April, and October,
which means the labor is fully exhausted up until the point at which it will need to be hired. Labor isin
slack in June and July and worth $3 in May and September.

7.4.3 Comments

The above sequencing problem is a special case of amuch larger class of sequencing problems.
The particular problem we present has the predecessor followed by only one type of successor task. There
have been many differently setup sequencing problems. For example the PERT/CPM project scheduling
problems allow multiple following activities to occur (see Bradley, Hax and Magnanti). Job shop
scheduling problems are related (Bradley, Hax and Magnanti). Most of the scheduling problems, however,
are integer programming problems. In addition, numerous sequencing problems have been formulated and
solved which involve sequencing between years. Such problems are examined in the dynamics chapter.

The second example illustrates an important general point. That is, in applied modeling, we often
should not reflect annual resource congtraints (i.e. 1abor for the year) but, rather, period by period resource
congtraints within ayear. Often resourcesin some periods of the year are not perfect substitutes with
resources in other periods of the year (Heady and Candler). Farming provides an obvious example where
labor during the winter is not substitutable with labor during the harvest or planting periods. Similarly,

labor during the planting periods is not usually substitutable with labor during the harvest period.
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7.5 Storage Problems

Problems can involve storage where a product resource or input can be retained between time
periods. LP has been used to analyze such problems virtually since its inception, (see Dantzig [1963] and
Gass (1985) for a historical perspective). This section reviews a general formulation of arelatively smple
storage problem. Ordinarily, a storage problem would not be solved aone but, rather would be a model
subcomponent.

Assume a decision maker is planning over atime horizon involving T periods and has asingle item
in inventory which can be stored or sold in period. Let us assume that the decision maker incurs a storage
cost in carrying the item from one time period to the next. The decision problem involves maximizing the
value of the sales less storage costs subject to storage capacity. Thus, the problem is to determine the
optimum sale and holding policy. We will aso include constraints on maximum storage capacity and the
maximum/minimum amount which can be sold in any time period. Further, it will be assumed that the
inventory is not increased at any time during the time horizon. Thus, the storage constraint is only active in

the first time period. The formulation of the problemis

Max thtXt - tE csH,
t=T
s.t. X, + 1 < S
X, - H, + H < 0 foradl1<t<T
Xy - T-1 < 0
X, < U, foralt
X, > L, foralt
, < S
X > 0 fordlt

t? t

X, stands for the amount sold in the t™ period; H, stands for the amount held over from time period t to time
period t+1; ¢, stands for returns from sales of the item in time period t; cs stands for the cost of storing
from period t into period t+1; 5, the amount of inventory available in the first time period; U, is the upper
limit on the sales possibility in timet; L, isthe lower limit on the sales possibility in time period t; Sisthe
total storage capacity limit which only is binding on the amount stored in the first time period during which

the greatest amount would be stored.
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Thefirst equation in the mode is the objective function. It involves summation across al the
periods of the revenues from the sales of the good less the costs of storage of the good. We only include
storage from the time periods 1 through T-1, assuming that everything must be sold in the last time period.
The first congtraint limits the quantity sold in the first period plus the quantity stored into the second period
to be lessthan or equal to theinitia inventory available. The next constraints are activein al time periods
excepting 1 and T. Thislimits the anount sold in each period plus the amount stored into the next period
to not exceed the amount held over from the period before. The third congtraint gives the inventory con-
dition for the last time period requiring that sales not exceed inventory carried over from the time period
before. This constraint precludes outgoing storage because we are assuming everything has to be sold by
the last period. Similarly, the first constraint does not include incoming storage except as an exogenous
guantity on the right hand side. The next two constraints impose upper and lower limits on the amount that
can be sold during any time period. The last constraint imposes an upper limit on storage in the first
period. Additional constraints on storage capacity are not needed for the subsequent periods as stored
amount cannot increase.

This problem does not contain new types of constraints and variables. However, it does use a new
form of the transformation variable. The H variables transform the time utility of an item by moving it
from one time period to another at acost. The X variables are again sales activities. The constraints are a
mixture of resource limitations and supply demand balances.

Insight can be gained into the model solution properties considering the dual. The dual constraint
associated with the variable X, states that the value of the item in time period t must be greater than or
equa to the revenue from selling it less the costs of the upper bound plus the costs of the lower bound.
Assuming there are no bounds, this constraint then would require that the value of grain be no less than the
price at which it could be sold. The dual constraints associated with the storage activities insure a
relationship between the marginal values of grain in adjacent periods where they state that the vaue of
grainin time period t+1 must be less than or equal to its value in time period t plus the cost of storing it
between the periods. This occurs at optimality since, if the sale price of grain in time period t+1 is greater
than or equal to the sale price of grain in timet by more than the storage costs, then it would be economical
to store. The only exception comesin relation to period 1, where storageis limited. If storageis binding

there may be alarger wedge between the first two shadow prices than the cost of storage.
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7.5.1 Example

Suppose afarmer has 100 bushels of a crop available to sell over four time periods. The farmer
expects the price in the first time period to be $2.30; in the second, $2.50; in the third, $2.70; and in the
fourth, $2.90. The farmer expects the cost of holding grain from time period 1 to time period 2 to be $.10
abushel; from time period 2 to time period 3, $.20 a bushel; and from time period 3 to time period 4, $.30
abushel. The farmer cannot sell any more than 50 bushelsin any onetime period. Also, the farmer must
(for cash flow reasons) sell at least 15 bushelsin the first time period and at least 5 in the second. Finally,
the farmer has no more than 75 bushels of storage capacity available. A formulation of thisis presented in
Table 7.18. The GAMS implementation of this formulation is called STORE.

The solution to this problemis given in Table 7.19. The solution has 25 bushels of grain sold in
time period 1; these are sold because there is not enough capacity to store into the second time period as
reflected by the $.10 shadow price on the overall storage constraint. Then, 50 bushels of grain are sold in
the second time period limited by the upper limit on the ability to sell in the time period. Subsequently, 25
bushels are sold in the third time period. The inventory pattern shows 75 bushels carried from the first to
the second period with 25 carried from the second to the third. The first four shadow prices show the
marginal values of grain in each time period. The fifth equation exhibits dack of 25 bushelsindicating 25
more bushels could be sold in the first time period.

7.5.2 Comments

Several assumptions could be relaxed in this formulation. One could alow inventory to be
replenisned. Storage costs could be made a function of volume and/or one could alow acquisition of
storage capacity. The model is commonly used in conjunction with a planning problem to develop an
overall aggregate plan (as discussed in Holt et a.), wherein production and storage decisions are jointly
determined. More examples of storage and dynamic carry-over will be presented in the dynamic modeling
chapter.

Another comment involves the nature of the dua relationships that a transformation variable
imposes. Transformation variables bound the maximum difference between the shadow prices. Thisisan
absolute property in any LP solution containing such variables. Thisis exhibited in our solution where the

storage variables cause the shadow prices to differ by no more than the storage cost.

7.6 Input Output Analysis
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Another application of linear programming involves the use of Leontiefs (1951) input output (10)
formulation. However, 10 formulations are not used alone in an LP context as there is specialized software
for IO models. Rather 10's are used in conjunction within larger LP models (i.e. see Penn et al.).

Leontief formulated the IO model and it has been utilized in a number of different contexts since
then (Miernyk). The IO model fundamentally deals with the development of the economy wide implications
of changes in the export level and/or production practices within the economy.

The fundamental datain setting up an 10 model involvesthree things. First, thereisan
identification of the sectors. These sectors are divided into endogenous and exogenous sectors. The
endogenous sectors are integral parts of the economy which purchase and sell items to other sectors within
the economy. The exogenous sectors are those from which imports are made or those to which goods and
services flow or export. Given identification of these, one devel ops the transaction matrix which tells how
the endogenous sectors within the economy dispose of the revenue that they receive for production. These
endogenous sectors completely dispose of the revenue that they receive across the endogenous and
exogenous sectors. Thus, the model data accounts for the full distribution of earnings including that to
exogenous sectors and retained earnings. The third dataitem is the final demand vector. Thistellsthe
value of goods that flow outside the local economy.

Suppose we identify four components of an economy. There are endogenous sectors. 1)
manufacturing, 2) services, and 3) agriculture with an exogenous sector for other uses of funds which
includes imports and retained earnings. The transaction matrix gives the distribution of revenue by sector.
For example, in the manufacturing sector, that matrix would tell how much was spent: a) within the
manufacturing sector on manufactured goods from other producers; b) on the service sector for purchasing
services used in the manufacturing process; ¢) on agricultural goods; and d) on acquisitions from or
distributions to exogenous parties. In turn, this would aso be done for the service and households sectors.
The household sector data gives the household consumption function showing how the gross household
income is distributed across purchases of manufactured goods, services and other household activities as
well as flows into the exogenous category which accounts for savings and purchases from outside the
economy. Findly, find demand gives the money flow from outside the economy into the manufacturing,
service, and agricultural sectors.

After formation of the transactions matrix one then turns to forming the technical coefficients

matrix. Thistellsthe proportion of revenue spent by sector. The parameters of the technical coefficient
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matrix (a&;) given the transaction matrix t; equal:
g =t EtKj
The denominator term istotal revenue to the j™ sector. All the coefficients will be less than or equal to one
indicating the proportion spent within each sector.
In turn then, given this technical coefficients matrix one can form the fundamental equation of
input output analysis which states that
X =Y + AX
where Y isfinal demand, A isthe technical coefficients matrix, and X is avector giving the amount of total
activity in the economy. Thisindicates that the total economic activity is equal to the amount of fina
demand plus the value of the intermediate products that are necessary in order to produce that final
demand. In turn, this equation can be manipulated to say
X - AX = Y
which indicates the total production minus the intermediate use needed to support that total production
equals exports or
@ - AX =Y.
Now | - A in this case is a square matrix with one positive entry for each of the sectors of the economy.
Providing | - A isinvertible then the solution is
X = (I - AY'Y
Thisisthe computational procedure in conventional Input Output analysis. However, in alinear
programming context one utilizes the fundamental equation and an objective function to abtain input output
solutions. We use the objective function recommended by Brink and McCarl (1977) which maximizes the

sums of the activity across all sectors. The resulting formulation is

Max XX,
j
st. X(l; - ApX; < Y, fordli
j
X. > 0 for al ]

]

where X, A and Y are as defined before and I;; isan identity matrix (possessing entries of 1if | = and
zero otherwise). This particular formulation should lead to all the X's being nonzero with the dual
variables equaling the total amount of activity induced in the sector from a change in the right hand side

(final demand). This duality property can be argued asfollows: if al the X's are nonzero then the LP basis
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inverse should equal (1 -A)™ and since all the objective function coefficients of the basic variables are ones,

then the dual variables will equal

(- Ay

or should equal the total induced activity inside the model by one unit of additional exports the classic
output multiplier (Miernyk).
7.6.1 Example

Consider an example with four sectors: manufacturing, agriculture, finance, households and
imports. Suppose that the relevant transaction matrix is given in Table 7.20 asis the final demand vector.
Under these circumstances the technical coefficient matrix is Table 7.21 and one sets up the linear
programming model with the first three sectors as endogenous as in Table 7.22. The GAMS
implementation of thisformulation is called INOUT. The solutionisgivenin Table 7.23. This solution
shows that sectoral activity is $250 for manufacturing, $122 for agriculture, $75 for finance and $230 for
services, but that this activity is used to supply alesser amount of final demand. Namely, there is $250 of
production by manufacturing to directly deliver $75 of final demand. Acrossall sectors, $677 of total
production is needed to satisfy the $145 of final demand. Thus, there is $532 worth of intermediate
production. Also, notice that the values of the shadow prices on the manufacturing balance row is 4.615.
Thisimpliesthat in order to meet one dollar worth of demand, $ 4.615 worth of total manufactured
products need to be created.
7.6.2 Comments

Input-Output models have been used in many contexts (See Miernyk for areview).

7.7 Block Diagonal
Many of the early LP problems involved a "block diagonal" structure (see Dantzig (1963) for a
historical perspective). Models depicting production in severa different locations and/or time periods
exhibited such a structure. The name arose since the models contained blocks of constraints and activities
which did not overlap with other sets of constraints and other activities. The blocks arise when individual
production units utilize immobile resources. The problem also depicts some usage of unifying resources at

the overal firmlevel. The primal formulation of the block diagonal problem is given by

Max Ye X, o+ Xd Y,
k L

]
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st. Ya, X, + Xg, Y. < b, foralll
2 .
e Y. < fu foralLandM
X "y, = 0 fordlk,jandL

where: k indexes variables for the overall firm; j indexes variables for the separate entities; L indexes
entities; | indexes overal resources;, M indexes separate entity resources; ¢, isthe per unit return of overal
firm variable k; X, isthe number of units produced of overal firm variable k; d isthe per unit return of
separate entity L's j*" production variable; Y, is the number of units produced of separate entity L'sj"
production variable; a, isthe use of overal firm resource | by X,; g;, isthe use of overall firm resource |
by Y;.; b isthe endowment of overall firm resourcel; g, isthe use of the m™ resource at location L by
Y., and f,, isthe endowment of resource M at location L.

The decision variables X, reflect actions at the unifying level of the problem, whilethe Y, reflect
actions at the sublevels of the problem. Generaly, the sublevels arise because of spatial, temporal or
functional separations. The first constraint is the overall unifying set of constraints. The second set of
congtraints deal with each sub-unit. The problem maximizes profit summed over the global and sub-unit
activities subject to an overall linking constraint and individual sub-unit constraints. Note that the second
set of constraints do not involve sums across L, thus only one sub-unit isinvolved in any constraint. Thus,
the second set of constraints is independent across the sub-units. This particular problem is called block

diagonal because of the structure of the second constraint. An overview of this problem is given below

cX + dY, + dY, . . . + dY, max
AX + gY, + gY, . . . +9Y, < b
eY, < f

&Y, < f,

eY, < f

All the cdlls in this matrix which do not have entries or dots are O's and the name "block
diagona" comes from the diagonal blocks representing each of the subcomponent resource constraints and
activities. This formulation also illustrates the phenomena of sparsity. Linear programming often possesses

large blocks of zero coefficients. This particular one is famous for it. Sparsity is commonly exploited in
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LP agorithms.
7.7.1 Example

The block diagona problem will be illustrated using the data from the resource allocation example
above, adding features regarding multiple plants and the making of tables. Suppose the firm from the
resource allocation example has expanded and now possesses 3 plants. At these plants they fabricate and
sell chairs and tables which are sold individually or together as dinette sets. Plant 1 makes only tables,
plant 2 only makes chairs, and plant 3 can make chairs and tables. The costs and input usages for the
chairs and tables are the same across al three plants, and the chair data is in the above example. Making
functional tables requires three hours of labor and one unit of top capacity. It takes five hours of labor to
make fancy tables and one unit of top capacity. Functional tables involve direct costs of $80 per unit and
fancy tables $100 per unit. Chairs can be sold either at their point of production or can be transported to
an overall assembly point which islocated at plant 1. Chairs cost $5 to transport to the assembly point
from plant 2 and $7 from plant 3. Tables cost $20 to ship in from plant 3 to the assembly point.
Functional tables sell for $200 when sold alone and fancy tables sell for $300. The firm can sell functional
sets containing four chairs and one table for $600 and fancy sets containing six chairs and one table for
$1100. Resource endowmentsin plant 1 are 175 units of labor and 50 units of top capacity. Plant 2 has
140 units of small lathe capacity, 90 units of large lathe capacity, 120 units of chair bottom capacity, and
125 units of labor. Plant 3 has 130 units of small lathe capacity, 100 units of large lathe capacity, 110
units of chair bottom capacity, 210 units of labor, and 40 units of top capacity.

This problem'’s objective is to maximize net returns to the total firm operation subject to the overall
firm linking considerations and the various constraints arising at the plants. The resultant formulation isin
Table 7.24. The GAMS implementation is called BLOCKDIA. Note the block diagonal structure
involving the resources a plants 1, 2, and 3. Also note the linking considerations on tables and chairs.

The solution to this problem isgiven in Table 7.25. Thevariables Y, and Y, arethetable
fabrication activitiesfor plant 1. VariablesY 5 - Y 4 are the transportation and fabrication activities for
plant 2, and the variables Y 4, - Y 55 are the transportation and fabrication activities for plant 3. The
objective function value is $36,206.9. The firm manufactures tables and chairs in plants across the various
locations as the reader may determine by investigating the solution.

7.7.2 Comments

This type of formulation appearsin many placesin the literature, usually linking other
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formulations. In the example, we have used elements of the transportation, resource allocation, and
assembly prablems. Generaly, many LP problemslook like this where multiple formul ations are combined
together in the analysis of a particular problem. Other classes of block diagonal structures appear in the
integer programming and dynamic model sections. Dynamic models can be made block diagonal by
incorporating the transfer activities from one period to the next into the overall structure. However,
dynamic models generally contain a second type of block angular structure where there is some overlap; for
example, production in period t is carried into period t+1 using storage.

The final comment involves the solution to this problem. Dantzig and Wolfe observed that one
could solve the block diagonal problem as a set of independent problems providing one had an estimate of
the shadow prices on the overal linking constraints. This led to the Dantzig-Wolfe decomposition
algorithm which formally exploits problem structure.

7.8 Concluding Comments

A number of LP formulations have been presented in this and the preceding chapter. These have
all been simplified and are not easily applicable to any actual case. However, we hope the materia
increases the reader's familiarity with common usages of LP and shows how formulations may be combined
in the analysis of empirical problems. There are a number of other additional comments which arise out of
the above.

First, we hope the reader gained appreciation for empirical modeling issues. Data are never
directly available rather, they must be calculated. Weillustrate thisin our examples where, for example,
the coefficients required calculation through economic engineering or deductive accounting. Readers
should also gain an appreciation for sparsity, as many LP problems contain few non-zero coefficients.
Thisis exploited in the modern implementations of the smplex method where only nonzeros are stored, and
fancy re-inversion schemes are utilized to solve the problems exploiting matrix sparsity (Orchard and Hays;
Murtaugh).

In addition, we hope the reader has devel oped an appreciation for the implications of the particular
primal variable structures on the shadow prices as arise through duality. Generally, the dual restraints
require that the marginal cost of any variable be greater than or equal to the marginal revenue arising under
that variable. Specific forms of this for any problem can be discovered by examining the dual. Often, such
an exercise clears up confusion regarding shadow price values.

Another important point involves the role of summation notation. In many of the examples we
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were able to generate summation notation representations which later exactly trandated into empirical
models. This provides an important way of thinking about the problem and getting its structure right. Sub-
sequently, one can easily check the properness of the structure and the properties of the dual variables. We
believe this isimportant for modelers, as they can utilize summation representations to generate small
example problems which are typical of larger structures. This allows oneto try out structures in small
empirical problems and aso provides guidelines from which computer implementations may be written. It
also provides an important way of thinking about and analyzing the overall structure of the problem
without concentrating a great deal on the particular empirical numbers involved.

Finally, we would like to mention that the coverage above is by no means comprehensive. We will
present many LP problems in the subsequent chapters. There are dso LP problems such asthe
input/output problem (Dorfman, Samuelson and Solow), the trim problem (Eisemann and Golden), and the
caterer problem (Jacobs), along with many others which will not be included in this book. The reader
should see: @) the literature cited in Riley and Gass, Day and Sparling, and Assad and Golden; b) the
presentations and literature cited in such texts as Hillier and Lieberman; Gass (1985); Wagner (1969),
Williams (1985); Bradley, Hax, and Magnanti; or Salkin and Saha, along with many others; and c) the

many articles appearing in such journals as Management Science, Operations Research, Decision Sciences,

Mathematical Programming, American Journal of Agricultural Economics, Canadian Journal of

Agricultural Economics, Western Journal of Agricultural Economics, North Central Journal of Agricultura

Economics, and Southern Journa of Agricultural Economics.
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Table7.1. Data for Computer Excess Example

Components Required to Assemble a System

XT AT 386SX 38633 486SX 48633
360FL OPPY 1 1
12MFLOPPY 1 1 2 1 1 1
144MFLOPPY 1 1 1
HARDDISK 1 1 1 1 1
MONO 1 1 1
COLORVGA 1 1 1
PLAINCASE 1 1 1
FANCYCASE 1 1 1
Components Parts Acquisition Information
Shelf Space
Name Cost Inventory L abor
360K FLOPPY 35 20 0.01 0.01
12MFLOPPY 49 29 0.01 0.01
144MFLOPPY 52 32 0.01 0.01
HARDDISK 245 45 0.03 0.03
MONO 102 15 0.07 150
COLORVGA 302 45 0.10 2.00
PLAINCASE 41 11 0.15 1.70
FANCYCASE 80 12 0.12 1.70
Final Products Assembly and Sales Information
Minimum  Assembly
Name Sales Price Sales Cost L abor Space
XT 689 1 59 2.00 1
AT 992 3 102 2.05 1
386SX 1200 2 100 221 1
38633 1400 4 300 2.24 1
486SX 1500 2 400 2.18 1
48633 1800 2 700 212 1
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Table7.2. Tableau of Computer Excess Example
Assembly Buy
XT AT 386SX 38633 486SX 48633 [360k 12M 144M HARD MONO CVGA PLAIN FANCY RHS

OBJECTIVE 630 890 1100 1100 1100 1100 35 49 B2 245 102 302 -41 -80 Max
360KFLOPPY |1 1 -1 < 20
12MFLOPPY 101 2 1 1 1 -1 < 29
144MFLOPPY 1 1 1 -1 <32
HARDDISK 1 1 1 1 1 -1 < 45
MONO 101 1 -1 <15
COLORVGA 1 1 1 -1 < 45
PLAINCASE 101 1 -1 <1
FANCYCASE 1 1 1 -1 <12
LABOR 2 205 221 224 218 212 001 001 001 003 007 01 015 012 < 550
SHELFSPACE 001 001 001 003 15 2.0 17 17 <590
SYSTEMSPC |1 1 1 1 1 1 < 240
Lower Bound 1 3 2 4 2 2
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Table7.3.

Solution for Computer Excess Example

Objective 155330.097

Variable Vaue Reduced Cost Congtraint Slack  Shadow Price
XT 10 -168.4 360K FLOPPY 16 0
AT 3.0 -159.1 12MFLOPPY 0 50.9
386SX 172.9 0.0 144MFLOPPY 0 53.9
38633 41.0 0.0 HARDDISK 0 250.7
486SX 20 0.0 MONO 0 385.4
48633 20 0.0 COLORVGA 0 343.4
360K FLOPPY 0.000 -36.9 PLAINCASE 0 362.2
12MFLOPPY 365.772 0.0 FANCY CASE 0 401.2
144MFLOPPY 13.000 0.0 LABOR 10.09 0
HARDDISK 175.886 0.0 SHELFSPACE 0 188.9
MONO 161.886 0.0 SYSTEMSPC 18.11 0
COLORVGA 0.000 -336.5
PLAINCASE 165.886 0.0
FANCY CASE 33.0 0.0
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Table7.4. Data for Jerimiah Junk Yard Example

Car Data ESCORTS 6265 TBIRDS CADDIES
PURCHASE PRICE 85 <1y 115 140
WEIGHT 2300 2200 3200 3900
DISASSEMBLY COST 100 120 150 170
AVAILABILITY 13 12 20 10
Resource Use to Breakdown Cars
CAPACITY 1 1 12 14
LABOR 10 12 15 20
Proportional Breakdown of Carsinto Component Parts
ESCORTS 6265 TBIRDS CADDIES
METAL .60 55 .60 62
SEATS 10 10 .06 .04
CHROME .05 .05 .09 14
DOORS .08 10 10 .07
JUNK A7 20 15 13
Part Data MINIMUM MAXIMUM PRICE PARTSPACE LABOR
METAL 0 0.15 0 0.0010
SEATS 4000 6000 1.00 0.003 0.0015
CHROME 70 0.70 0.0014 0.0020
DOORS 2 5000 0.70 0.0016 0.0025
JUNK -0.05 0 0.0001
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Table7.5.

Tableau of Jerimiah Junk Yard Example

ESCORTS  626S TBIRDS CADDIES METAL SEATS CHROME DOORS JUNK  CONVERT CONVERT CONVERT RHS
SEATS CHROME DOORS MIN
OBJECTIVE -185 -210 -265 -310 0.15 0.90 0.70 1.00 -0.05
METAL -1380 -1210 -1920 -2418 1 -1 -0.7 =0
SEATS -230 -220 -192 -156 1 1 =0
CHROME -115 -110 -288 -546 1 1 =0
DOORS -184 -220 -320 -273 1 1 =0
JUNK -391 -440 -480 -507 1 -1 -0.3 =0
CAPACITY 1 1 12 14 <42
LABOR 10 12 15 20 .001 .0015 .0020 .0025 .0001 < 700
PARTSPACE .003 .0014 .0016 < 60
LOWER BOUND 4000 70 2
UPPER BOUND 13 12 20 10 6000 10000 5000
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Table7.6. Solution for Jerimiah Junk Yard Example

Objective = 18337.2

Variable Vaue Reduced Cost Constraint Slack Shadow Price

ESCORTS 4.00 0 Parts

626S 0 -49.960 METAL 0 0.150

TBIRDS 20 31.688 SEATS 0 -0.050

CADDIES 10 91.356 CHROME 0 0.150
DOORS 0 0.090

Sell JUNK 0 -0.050

METAL 73186.2 0 CAPACITY 0 24.760

SEATS 6000 0.95 LABOR 43.512 0

CHROME 10000 0.550 PARTSPACE 20 0

DOORS 5000 0.910

JUNK 18013.8 0

Convert

SEATS 320 0

CHROME 1680 0

DOORS 4866 0
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Table7.7. Data for Chicken Example Yidds from Cutting

Leg-Breast-
Parts Halves Quarters Meat Thigh
Wings 2
Legs 2 2
Thighs 2 2
Back 1
Breasts 1 2
Necks 1 1
Gizzards 1 1 1 1
Mesat 0.05 0.07 1 0.2
Breast Quarter 2
Leg Quarter 2
Halves 2
Selling Priceand Labor Usefor Chicken Packs
Pack Labor Price
A 2 $2.05
B 13 2.00
C 12 1.45
D 11 1.95
E 1.25 1.25
Gizzard 10 0.90
Individual Selling Pricesfor Parts
Part Price Part Price
Wings 0.10 Gizzards 0.07
Legs 0.20 Mesat 2.00/1b.
Thighs 0.25 Breast Quarters 0.45
Backs 0.12 Leg Quarter 0.40
Breasts 0.33 Halves 0.90
Necks 0.05
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Table7.8.

Primal Formulation of Charles Chicken Company Problem

Sl Buy RHS
G

Disassemble Assemble i T

w T z w h

i h N z M i L i

n L i e a e n e g

g e g c r a g g h

X, Xh X X X, Xa Xy X Xq Xe Xy s g h k d t s s s

Object -1 -1 -1 -1 -1 2.05 2.00 1.45 1.95 1.25 .90 10 .20 .25 .05 .07 2.0 -12 -.22 -27 Max
Wings -2 2 1 -1 < 0
Legs -2 -2 2 2 1 -1 < 0
Thighs -2 -2 2 2 1 -1 < 0
Backs -1 1 < 0
Breasts -1 -2 1 < 0
Necks -1 -1 1 1 < 0
Gizzards -1 -1 -1 -1 10 1 < 0
Meat -.05 -.07 -1 -2 1 < 0
Breast Qtr. 2 4 < 0
Leg Qtr. 2 4 < 0
Halves -2 2 < 0
Chickens 1 1 1 1 1 < 1000
Labor 2 13 12 11 1.25 1 < 3000
Wing 1 < 20
Leg 1 < 20
Thigh 1 < 20
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Table7.9. Solution to the Charles Chicken Co. Problem

Objective function = 1362.7

Variable Vaue Reduced Cost | Equation Slack Shadow Price
X, 0 -0.22 Wings 0 0.120
Xh 0 0 Legs 0 0.355
X4 0 -0.33 Thighs 0 0.270
X 0 -0.27 Backs 0 0.180
XL 1000 0 Breasts 0 0.330
Xa 0 0 Necks 0 0.050
Xp 0 0 Gizzards 0 0.090
X 0 -0.15 Meat 0 2.000
Xq 0 -0.22 Breast Qtr. 0 0.500
Xe 1010 0 Leg Qtr. 0 0.400
Gizzards 0 0 Halves 0 1.085
Wings 0 -0.02 Chickens 0 1.36
Legs 0 -0.02 Labor 17375 0
Thighs 0 -0.155
Backs 0 -0.06
Breasts 2000 0
Necks 1000 0
Gizzards 0 -0.02
Meat 200 0
Breast Qtr. 0 -0.05
Leg Qtr. 0 0
Halves 0 -0.185
Wings 0 0
Legs 20 0
Thighs 20 0.135
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Table 7.10. Data for the Grain Blending Example

Grade Characteristics

Maximums Grain Grain
Batch 1 Batch 2

Moisture
Foreign Matter

Table7.11. Solution of the First Formulation of the Grain Blending Problem

Objective = 100
Variable Vaue Reduced Cost | Equation Slack Shadow Price
A 20 0 Moisture 0 1
B 20 0 Foreign Matter 0 0
G, 20 2 Weight 0 4
G, 20 3
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Table 7.12. Optimal Solution to the Correct Formulation of the Grain Blending Problem

Objective = 80
Variable Vaue Reduced Cost Equation Slack Shadow Price

A 0 0 1 0 1

B 40 0 2 1
Gu 0 0 3 5
Gy 20 0 4 20 0
Gx 0 0 5 20 0
Gy 20 0 6 0 2

7 2

8 2
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Table 7.13. L P Formulation of Sequencing Example 1
Plow - X Disc-Y Plant etc. - Z RHS
April May June | May June July | May June July
Obj -100  -100 _ -100 | -20 -20 -20 | 400 400 400 max
X-Y May -1 -1 < 0
link  June -1 -1 -1 < 0

July -1 -1 -1 1 < 0

Y-Z May -1 < 0

link  June -1 -1 < 0

July -1 -1 -1 1 < 0

Labor  April 0.2 < 160
May 0.2 0.3 0.3 < 160
June 0.2 0.3 0.1 0.3 < 160
July 0.3 0.1 0.1 03 | < 160
Aug. 0.1 0.1 01 | < 160
Sept. 0.5 0.1 01 | < 160
Oct. 0.5 01 | < 160
Nov. 05 | < 160

Land 1 1 1 < 600
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Table7.14.

Solution to Sequencing Example 1

Objective function = 168,000

Variable Value Reduced Cost Equation Slack Shadow
Price
Plow  April 600 0 Plow- May -192.59 0
Disc
May 0 0 (alt) June 200.00 0
June 0 0 (alt) July 0 380
Disc May 407.41 0 Disc- May 88.89 0
Plant
June 0 0 June 0 0
July 192.59 0 July 400
Plant May 125.93 0 Labor April 97.78 0
June 281.48 0 May 0 0
July 192.59 0 June 0
July 0
Aug. 100 0
Sept. 1111 0
Oct. 51.11 0
Nov. 60 0
Land 0 280
Table 7.15. Yieldsfor Crops1and 2 by Crop Planting and Harvest Dates
Planting Date
Harvest Crop 1 Crop 2
Date . .
April May June April May June
September 110 105 20 38 40 35
October 125 120 118 35 38 40
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Table 7.16.

Formulation of Problem for Sequencing Example 2

Disk for
Crop 1 Plant and Harvest Disk Plant and Harvest
Plow in Monyh inMonth Crop 1in Months Crop 2in Months Hire Labor Sell RHS
Rows Mar April May Mar April May
Mar Apr May Jun Apr May Jun Apr May Jun Apr May Jun Apr May Jun Apr May Jun Mar Apr May Jun Sep Oct Nov Crop 1 Crop 2
Sep Sep Sep Oct Oct Oct Sep Sep Sep Oct Oct Oct

Objective -5 -5 -5 -5 -3 -3 -3 -60 -60 -60 -60 -60 -60 -43 -43 -43 -43 -43 -43 -10 -10 -10 -10 -10 -10 -10 3 8.7 Max
Land Balance 1 1 1 1 1500

Mar -1 1 1 0
Plowed Apr -1 -1 1 1 1 1 1 0
Land May -1 -1 -1 1 1 1 1 1 1 1 1 0
Baance Jdun -1 -1 -1 -1 1 1 1 1 1 1 1 1 1 0
Disced Apr -1 1 1 0
Land May -1 -1 1 1 1 1 0
Baance Jdun -1 -1 -1 1 1 1 1 1 1 0

Mar 03 0.2 0.2 -1 300

Apr 03 0.2 0.22 0.22 0.22 0.2 0.22 0.2 -1 300
Labor May 0.3 0.2 0.1 0.22 0.1 0.22 0.1 0.22 0.2 0.1 0.22 0.2 -1 300
Avail- Jdun 0.3 0.2 0.1 0.22 0.1 0.22 0.1 0.22 0.1 0.22 -1 300
ability Jul 0.1 0.1 0.1 0.1 -1 300

Sep 0.7 0.7 0.7 0.6 0.6 0.6 -1 300

Oct 0.7 0.7 0.7 0.6 0.6 0.6 -1 300
Yied Crop 1 -110 -105 -90 -125 -120 -118 1 0

Crop 2 -38 -40 -35 -35 -38 -40 1 0
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Table7.17. Solution for Sequencing Example 2

Objective function = 449,570

Variable Vaue Reduced Cost | Equation Slack  Shadow
Price
Acreage Plowed in:  March 1275 0 Land 0 292.5
April 0 0 Powed March 1275 0
Land:
May 225 0 April 0 2.10
June 0 0 May 0 14.4
Acreage Disced for ~ April 775 0 June 0 284.0
Crop Lin: May 0 0 Disced  Apiil 0 13.16
Land:
June 0 0 May 0 5.34
Acreageof Crop1  Sept./April 0 -40.15 June 0 287.0
planted/harvested In: g0y /1oy 0 4981 |Labor:  Mach 0 10
Sept./June 0 -92.65 April 0 10
Oct./April 775 0 May 0 3
Oct./May 0 -9.66 June 200.5 0
Oct./dune 0 -135 July 2775 0
Acreageof Crop2  Sept./April 0 -19.24 Sept. 0 3.067
planted/harvested In: o0y 12y 500 0 oct. 0 10
Sept./June 0 -39.34 Yidd: Crop1l 0 3
Oct./April 0 -49.5 Crop 2 0 8.7
Oct./May 0 -21.56
Oct./dune 225 0
Labor hired in: March 82.5 0
April 1255 0
May 0 -7
June 0 -10
July 0 -10
Sept. 0 -6.93
Oct. 3775 0
Crop 1 Sdes 96875 0
Crop 2 Sdes 29000 0
Table 7.18. Formulation of Storage Example
Objective Sl Store
23X, + 25X, + 27X, + 29X, ~-|.1h, - 2h, - .3h,
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1l X, +| n, < 100
Grain 2 X, - h h, <
Inven
t-ory 3 Xs h, hy| <
4 X, h,| <
1l X, < 50
Max 2 X, < 50
Sdes 3 X < 50
4 X < 50
Min 1| X, > 15
Sdes 2 X, > 5
Max Store h, < 75
Table 7.19. Primal Solution to the Storage Problem Example
Objective = 237.5
Variable Value Reduced Cost Constraint Slack Shadow Price
X4 25 0 Pd1 Inventory 0 23
X, 50 0 Pd2 Inventory 0 25
Xs 25 0 Pd3 Inventory 0 2.7
X, 0 0 Pd4 Inventory 0 29
h, 75 0 Max sale Pdl1 25 0
h, 25 0 Max sale Pd2 0 0
h, 0 -0.1 Max sale Pd3 25 0
Max sale Pd4 50 0
Capacity 0 0.1
Min sale Pdl 10 0
Min sale Pd2 45 0
Min sale Pd3 25 0
Min sale Pd4 0 0
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Table 7.20.

Input Output Example Data

Transactions Matrix

Manufacturing Agriculture Finance Services
Manufacturing 50 40 10 75
Agriculture 20 10 2 40
Finance 25 8 12 20
Services 100 40 40 40
Exogenous 55 24 11 55
Final Demand Data
Fina Demand

Sector for Sectors

Manufacturing 75

Agriculture 50

Finance 10

Services 10
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Table 7.21. Technical Coefficient Matrix for Input Output

Manufacturing Agriculture Finance Services
Manufacturing 0.200 0.328 0.133 0.326
Agriculture 0.080 0.082 0.027 0.174
Finance 0.100 0.066 0.160 0.087
Services 0.400 0.328 0.533 0.174
Exogenous 0.220 0.197 0.147 0.239

Table 7.22. L P Formulation of Input Output Example

Manufacturing Agriculture Finance Services
Maximize 1 1 1 1
Manufacturing 0.8 -0.33 -0.13 -0.33 < 75
Agriculture -0.08 0.92 -0.03 -0.17 < 50
Finance -0.1 -0.07 0.84 -0.09 < 10
Services -0.4 -0.33 -0.53 0.83 < 10
Table 7.23. Solution for Input Output Example
Objective = 677
Variable Vaue Reduced Cost | Constraint Slack Shadow Price
Manufacturing 250 0 Manufacturing 0 4.615
Agriculture 122 0 Agriculture 0 4716
Finance 75 0 Finance 0 4.960
Services 230 0 Services 0 4.547
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Table 7.24.

Matrix Formulation of Block Diagonal Problem

PLANT 1 PLANT 2 PLANT 3
Make Transport Make Functional Chairs Make Fancy Make Make Functional Make Fancy RHS
Table Sell Table Chair Norm MxSm MxLg Chairs Table Chairs Chairs
FC FY FC FY Norm MxSm MxLg FC FY Norm MxSm MxLg Norm MxSm MxLg
Objective -80  -100 200 300 -5 -5 -15  -16  -157 -25 -265 -26.6 82 105 -80 -100 -15 -16 -157 -25 -265 -265 Max
P Table FC -1 1 0
L
| I{ FY -1 1 0
A nventory
N
Chair FC -1 0
T
Inventory FY -1 0
Labor 3 5 17
1 5
Top Capacity 1 1 50
P Chair FC 1 -1 -1 -1 0
LA
N Inventory FY 1 -1 -1 -1 0
T
Small Lathe 08 13 02 12 1.7 05 14
0
Large Lathe 05 02 13 07 03 15 920
2
Chair Bottom 04 04 04 1 1 1 12
Carver 0
Labor 1 105 11 08 082 084 12
5
P Table FC -1 0
L
| I{ FY -1 0
A nventory
N
Chair  FC -1 -1 -1 0
T
Inventory FY 1 101 1 0
Small Lathe 08 13 02 12 17 05 13
3 0
Large Lathe 05 02 13 07 03 15 10
0
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Chair Bottom

Carver

Labor

Top Capacity

Table 7.25. Primal Solution to the Block Diagonal Problem

Objective = 36206.9

Variable Vaue  Reduced Cost Equation Slack Shadow Price
Plantl  Sell FC set 24.40 0 Plantl  FC Tables 0 212
Sell FY set 29.01 0 FY Tables 0 320
Make FC Table 24.40 0 FC Chairs 0 97
Make FY Table 20.36 0 FY Chairs 0 130
Sell FC Table 0 -12 Labor 0 44
Sell FY Table 0 -20 Top Cap 5.240 0
Plant2  Trans FC Chair 62.23 0 Plant2  FC Chair 0 92
Trans FY Chair 78.2 0 FY Chair 0 125
Sell FC Chair 0 -10 Sm Lathe 0 47.77
Sell FY Chair 0 -20 Lrg Lathe 0 38.83
Make FC Table 0 -58.11 Chair Bot 16.907 0
Make FY Table 0 -96.85 Labor 0 19.37
Make FC Chair N 62.23 0 Plant3  FC Table 0 200
Make FC Chair MS 0 -14.2 FY Table 0 300
Make FC Chair ML 0 -5.04 FC Chair 0 90
Make FY Chair N 73.02 0 FY Chair 0 123
Make FY Chair MS 0 -10.24 Sm Lathe 0 18.50
Make FY Chair ML 5.18 0 Lrg Lathe 0 12.19
Plant3  TransFC Table 0 -8 Chair Bot 0 35.27
Trans FY Table 8.649 0 Labor 0 40.00
Trans FC Chair 35.37 0 Top Cap 20.562 0
Trans FY Chair 95.85 0
Sell FC Table 0 0
Sell FY Table 10.79 0
Sell FC Chair 0 -8
Sell FY Chair 0 -18
Make FC Table 0 0
Make FY Table 19.44 0
Make FC Chair N 35.37 0
Make FC Chair MS 0 -8.59
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Make FC Chair ML 0 -3.35

Make FY Chair N 76.83 0
Make FY Chair MS 0 -6.68
Make FY Chair ML 19.02 0

CHAPTER VIII: MULTI-YEAR DYNAMICSAND LINEAR PROGRAMMING

Many problems contain multiple year dynamic elements (hereafter called dynamics). Thisis especialy
true in agricultural problems covering perennial crops, livestock and/or facility investments. Dynamic concerns
arise when decision makers face: @) binding financial constraints which change with time (i.e. cash flow
considerations); b) a production situation in which current actions impact the productivity of future actions (e.g.,
cropsin rotation, livestock breeding or equipment purchases); ¢) a need to adjust over time to exogenous stimulus
(e.g., altering production as prices or resource endowments change); d) future uncertainty and/or €) an exhaustible
resource base. This section presents modeling techniques for incorporating dynamic considerations into linear
programs. The discussion will be limited to the modeling of multiple-period situations.  Within-period (year)
dynamics are covered in the sequencing example of the previous chapter. Before beginning a discussion of

methods, we first present background principles.

8.1 Dynamics Background

A number of key questions are involved with the modeling of dynamic situations. Fundamentally, one
must ask whether an explicit multiple time period representation is necessary. If so, anumber of other questions
arerelevant. Firgt, the length of the total time period and the starting date must be determined. Second, the length
of the time interval s explicitly represented within the total time period must be determined. Third, initial and fina
inventory conditions must be specified. Fourth, one must decide on activity life; i.e., when a particular activity is
begun and how long it lasts. Fifth, the rate of time preference must be determined; i.e., one needs the discount
rate at which future returns are considered when compared with current returns. Sixth and finally, one must

decide whether to include uncertainty. The sections below present discussion on each of these topics.

8.1.1 Should Dynamics be Explicit?
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Dynamic situations may not require multi-period dynamic models. Some dynamic questions must be
explicitly modeled, alowing the solution to change over time. On the other hand, other questions may be
adequately depicted by a steady state equilibrium model. In an equilibrium model the same decision is assumed to
be repeatedly made in all time periods and thus a "representative” single period representation is used.

Choice between these two modeling aternatives depends on a number of considerations.  First, one must
ask whether modeling adaptation is important. This depends upon whether the modeled entity is likely to
experience growth, development/exhaustion of its resource base, and/or dynamic changes in model parameters.
Second, one must be interested in the time path of adjustment and must not be content to solve a model for an
optimal final state with the adjustments required to attain that state determined exogenoudly. Simultaneoudly, one
must ask whether the data are present in sufficient detail to support adynamic model. Finaly, the multi-period
dynamic analysis must be affordable or practical given the model size and data required.

Dynamic equilibrium models may be used when one is willing to assume: @) the resource, technology and
price data are constant; and b) along-run "steady state” solution is acceptable. Disequilibrium models are used
when these assumptions do not hold. Often reliance on equilibrium models is stimulated by the absence of data on
parameter values over time.

The decision on whether or not to assume equilibrium needs to be addressed carefully. Two common
errors occur in the context of dynamic models: unnecessarily entering explicit dynamics into a model and
improperly omitting them. Naturally, the proper dynamic assumption depends upon the problem. Treating
dynamics as an equilibrium does not imply ignoring dynamics, but rather assumes repetitive decision making with

equal initial and final inventory, a zero growth rate and a constant resource base.

8.1.2 How Long?

Given that a dynamic modd is to be used, one must determine the length of time that the model covers.
There are trade-offs between time coverage and size. Longer lengths generally add variables and constraints
along with data needs.

Determination of the model time frame involves many considerations. One of the smplest, yet powerful
statement comes from Madigliani and Cohen, who stated that the time horizon must be long enough so that

aterationsin its duration do not impact the initial period solution. However, this statement is based on the
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assumption that the first period variables are the main focus of interest.  When more periods are of interest (e.g.,
first five years), an obvious restatement is that the time frame should be long enough so that its extension does not
alter the variables of interest. Such acriteria, while appealing, may not be terribly practical. Model size may
limit its attainment. An alternative modeling strategy is to specify a number of periods explicitly, then introduce
terminal conditions for in-process inventories. Specification of terminal conditions is discussed below.
Resolution of the model duration question is well beyond the scope of this effort. The questions of time
preference and uncertainty are intimately related. Resolution of the question, however depends upon the problem
at hand. Theoretical investigation may be found in Arrow and Kurtz; Graff; and Boussard. Also, areview of the
literature may be found in Nuthall.
8.1.3 Time Interval Representation

A discrete time representation is used in al modelsin this book. Within such a setting one must define
time sub-intervals, hereafter called periods. One may specify periods of uniform or non-uniform duration.
Basically, the specification depends upon the nature of the decisions to be made and the length of the production
cycle

Annual time disaggregation is most common. However, decades, half years, quarters and months have
been used depending upon the problem structure. Model size usually increases rapidly as more periods are
specified. Further, it is possible to have fine breakdowns in resource availability within time periods, for example,
having weekly detail on some variables (e.g., product scheduling), but coarser detail on others (i.e., machinery
investment). The breakdown used must be determined by the elasticity of substitution (n) between resources at
different times; i.e., when labor in two weeks is perfectly substitutable (n=1) then include these weeksin one
larger period. Otherwise, multiple periods are defined.
8.14 Initial and Terminal Conditions

Often initial and terminal conditions are specified when formulating a multi-period dynamic moddl. In
such amodel it isimportant to adequately reflect the in-process inventory and previoudy made commitments
(e.g., trees planted in the past, animals on hand, or partialy depreciated investments) as initial conditions.

Most models do not contain either an infinite time horizon or conditions where al dynamic enterprises
stop at the end of the horizon. Consequently, termina conditions are important. Terminal conditions reflect the
value of in-process inventory beyond the final period explicitly modeled and should either value or require a

minimum level of inventory. When used, terminal vaues should reflect the net present vaue of the future income
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stream earned by ending the time horizon with a unit of the in-process inventory. Such conditions can insure that
model activity will be reasonable up until the final year. The error created by ignoring terminal conditions can be
illustrated through example. Suppose afirm uses trucks which must be replaced after 6 years. Given a model
with a7 year horizon and no terminal conditions, there would be little incentive to buy new trucks toward the end
of the model time horizon, say in the 6th year. The model would ssimply not reflect gains from the future
availability after the 7 year horizon. Thusin a seven year model, a new truck acquired in the 6th year would need
aterminal condition reflecting the returns to having the truck inits 5 years of existence after the explicit model
time frame. The specification of terminal values can be difficult, particularly in the case of investments which
enhance production and therefore ater the income stream.

Initial and terminal conditions may be specified in severa ways, as aways dependent upon the problem.
The most common specification of initial conditions has the initial quantities specified as an exogenous limit (i.e.
that there are 40 acres of existing trees that are 20 years old). Initial conditions may aso alow inventory to be
purchased at a price or according to a price quantity schedule. The same basic modeling alternatives are available
for depicting terminal conditions. The terminal in-process inventory may be required to equal or exceed afixed
quantity, valued at afixed price, or valued according to a price quantity demand schedule. It isusually improper
to omit terminal conditions. Terminal values sometimes can be inferred by observing, for example, the model
shadow prices on intermediate inventory in early time periods. Termina values are much more difficult to specify
than initial conditions (due to the element of forecasting involved). However, these parameters are key to the
meaningful modeling of multi-period dynamic Situations.
8.15 EnterpriseLife

Enterprise life refers to the number of years that an activity lasts and may be assumed to be known or
unknown. If enterprise life is unknown and is to be determined in the model, then constraints and activities must
be present in the moddl to keep track of age of the items on hand. If not, asingle activity can be used. Models
using alternative enterprise life assumptions are given below.
8.1.6 Time Preference

Time preference is an important dynamic modeling concern. Given that returns and costs occur over time
and alternative streams must be compared, these must be placed on common footing, usually using the concepts of
discounting and present value. The present value of adollar earned in year t, given a constant opportunity cost of

funds of ris (1+r)". Thus, the current value of aflow of funds which varies from year to year (¢,) over T yearsis

copyright Bruce A. McCarl and Thomas H. Spreen 8-4



.
PV = X (1+r)'C,
=0

t

Once time preference is considered, the question of specifying the appropriate cost of funds, (also called
the discount rate) arises. Many considerations enter, such as whether the rate should bein real or nominal terms,
how to determine the opportunity cost of capital, how to include the cost of borrowing funds, how to consider the
value of aternative investments, and how to take risk into account. It is beyond the scope of this book to cover
how to determine such arate. Rather, the reader isreferred to the discussion in Bussey relative to ratesin private
firms or Mishan for discussion of ratesin social choice situations.

8.1.7 Risk

Risk is definitely afactor in dynamic situations. Risk is almost always present as situations evolve over
time. This chapter only treats certainty models and unique aspects of risk in the context of dynamics; The
majority of the risk techniques which have been used are discussed in the risk programming chapter below.

8.2 Dynamic Linear Programming

The most straight forward linear programming model of a dynamic situation contains multi-year
enterprises of known life with multiple years modeled. Thisiswhere our discussion of dynamic models will
begin. Subsequently, models with unknown life will be discussed, followed by sections on the equilibrium, typical
single period mode with known and unknown life. For economy of description, we will refer to multi-period
models as disequilibrium models, and typical period representations as equilibrium models.

8.2.1 Disequilibrium - Known Life

Consider a problem involving decisions on how to commit resources over a number of time periods
considering items which, once begun, will require resources for a known number of periods. A formulation of this
problem must consider resource availability, choice of variables and continuing resource usage during the life of
multi-period enterprises. Time preference of income and initial and terminal conditions must also be incorporated.
Assume al enterprises have aK year life so that an enterprise undertaken in year t lasts until t+K. A modd of

this situation, assuming resource use, yields and returns are independent of the year in which the activity beginsis
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Max t§X(1+r)’t Ci X, *+ (@7 XXF I,
i e ]

e<K
st. D Xipe < b, foraliandt
ej '
X . = X, forale>0andalj
- jEXj,T—e + IJ.e = 0 foral e<K andal j
X . > 0 foradljt ande<K

Heret isthe year identifier and begins at zero for the first year; T isthe last year in the model; j identifies
aternative variables; e indexes the elapsed age of an enterprise; K isthe life of an enterprise (i.e., the number of
periods after starting the enterprise that resources are used); i indexes resources, r is the discount rate; C; isthe
profit from initiating variable X;; in year t; X;;is the number of units of alternativej initiated in year t; F. isthe
terminal value of X, after the explicit time period in the model lapses; 1. is the number of units of X; which are e
years old at the model completion; A is the usage of resource i by the jth alternative when it is e years old; b, is
the endowment of resourcei inyear t; and X', , istheinitia condition giving the amount of X; done p years
before the model begins.

The model maximizes net present value of activity from years O through T plus the terminal value of
in-process inventory. Annual profits are converted to present value by multiplying through by the discount factor.
The model assumes the profits (C;;) are collapsed into the period when the X; variable isinitiated. Thisis done by
calculating the term C; as

C,- X(+r) ©9h,
where eeg {K-t, T-1}
where h is the net profit from X;,. Whenitiseyearsold. Theinequality for e accounts for cases where the life

of the enterprise extends beyond the time horizon.

The second term of the objective function gives the termina value of enterprises not entirely completed
during the years the model explicitly covers. For example, enterprises begun in the last year explicitly modeled
are valued at F;, since they will be one year old in the period following the model. The F, terms depict a future
stream of profits to activities lasting beyond the model horizon discounted back to year T.

The first model constraint requires resource use to be less than or equal to resource availability in
that year. Annual resource use depends upon enterprises begun in the current time period as well as items which

began up to K yearsin the past. Thus, the summation subscripting adds all variables which are of age
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0to K yearsold in the current year (t). Resource use is assumed to depend only on the elapsed age (e) of the
activity. Each alternative (j) once committed will always exist for yearst+0 to t+K using an a priori specified
amount of resources (A;;) each year. The next constraint set specifiesthe initial conditions: i.e., the amount of
enterprises undertaken before the model was started which use resources during the time period covered by the
model. The last congtraint set adds up in process inventory at the end of the explicit time horizon setting the
variable |, equal to the amount of X; whichis e yearsold in the final model year and will extend into future years,
thus the e=K case is not included.

The formulation assumes all enterprises have the same life. This clearly is not necessary and will be re-
laxed in the example. The assumption could be relaxed in the general moddl by adding a subscript j to the e
parameter which would depict the life of the jth activity. The model aso assumes equal length periods.
8.2.1.1 Example

Suppose a farmer wishes to establish afive-year crop plan. Two crops are under consideration:
whesat and strawberries. Constraints restricting the choice of plans include quantities of land and water. Assume
wheat has aone year life and requires one acre of land while an acre uses $60 of variable costs per acre using 1
acre-ft/acre of water and yielding 100 bushels of wheat which sell for $4.00 each. Assume strawberries have a 3
year life.

The Strawberry costs, resource usage and yields are

Year Q Yearl Year 2
Cost/Acre 150 280 300
Yidd/acre in tons 0 7 7
Water/acre in acre-feet .8 4.5 4.5

The price per ton of strawberriesis $140. The farm has 700 acres, 50 planted in O year old strawberries and 10
inl
year old strawberries. Water available consists of 1200 acre ft. per year.
We need terminal conditions to value those items which are carried into the fifth and beyond years.
Assume that the following values have been derived.
Product Terminal Vaue
New strawberries (0 years old the year after the model) $160/acre
1 year old strawberries $110/acre
Theinitia tableau of this formulation appearsin Table 8.1. The tableau reflects the known life

assumption in that, under the strawberry activities, when the strawberries are begun, they commit resources both
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in the year they are begun and in later years. Thus, while one acre of land in year one is used for year zero
strawberries, it is aso matched by an acre in years one and two. This reflects the assumption that strawberries
are aways kept three years, i.e. that they have aknown life. Theinitia conditions on the problem are reflected by
the right-hand sides. Notice the year one land constraint has a resource availability of 640, which isthe 700 acres
of available land less the sixty acres previoudy planted to strawberries. The water constraint is similarly
adjusted. Thisisalso reflected in the second year where the resource endowments reflect continuation of the ten
acre patch previoudly existing. Terminal conditions in the model are reflected on the strawberries begun in years
three and four, which are not fully completed during the model time frame.

The solution is shown in Table 8.2. The GAMS file DISEQK depicts this problem. The solution reflects
the disequilibrium nature of the model. Wheat acreage varies from year to year as the acres of strawberries are
established. Note that no strawberries are established in the last couple of years, and therefore there are no
terminal quantities of strawberries. Thisis due to relatively low terminal conditions on strawberries. The
solution indicates that it would cost as much as $330 in year five to plant strawberries. This means that the
terminal conditions would have to be at least $490 before it would be optimal in the model to do that.

8.2.2 Disequilibrium - Unknown Life

A second possibility involves modeling of situations wherein the exact life of activitiesisto be
endogenoudly determined (although a maximum life is known) in a multi-period context. A formulation of this
problem must include the considerations in the known life model as well as variables depicting the decision on
whether to continue or terminate an activity. Adopting the same assumptions as above, a general formulation of

thismodd is

Max  BL(1+1)" Cg X0 ()T XXF I
e ]

e je
tje e

exK

st. XA Xie < b, for al i and t
ej v
X oe = Xjge foraljande<K
- Xire * e = O for al j and e < K
- ijtflyefl + ijtye < 0 for all tj ,jade>0
X , . > O foralj,t,e

j.te

Wheret isthetimeindex; T isthe length of the total planning horizon; j is an index for identifying alternative
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variables, eisan index identifying the elapsed age of avariable; K isthe maximum age of avariable; i isan
index which identifies resources; r is the discount rate; C isthe per unit profit from variable j when it is of age €;
Xt isthe number of units of alternative j on hand in period t which are of elapsed age €; Fj. isthe terminal value
of incomplete units of X; which are of elapsed age €; A, is the resource i usage by one unit of the production
represented by variable j when it is of elapsed age €; b, is the endowment of resourcei in period t; and X, isthe
initial amount of enterprise j of elapsed age e before the model begins (in time period 0).

Thismodel has many common features with the known life model. In particular, the objective function
interpretation is virtualy identical. However, there are severa distinctive features which should be brought out.

Since the life of a production variable may be terminated, the decision variable now is X;, which alows
for the possibility of employing variablej in year t when it is of elapsed age e. The constraint before the
nonnegativity conditions relates the amount of e year old variable in year t to the amount of e-1 year old variable
inyear t-1. The inequality on this constraint permits the predecessor to be nonzero and the successor to be zero
(thus depicting selections less than maximum life for the variable).

Thismodel is probably more redlistic than the earlier one, but this has a price. The number of variables
has been multiplied by the number of years a production activity could exist (K + 1) and the number of
congtraints has expanded. Thisis potentially a much larger mode.

8.2.2.1 Example

For this example we use the data above plus longer retention of strawberries. Assume they may be kept
up to 4 years and that in the fourth year the planting costs $400 with the yield being 5, and water use being 5.7
acre feet. We will also assume that the terminal value of 3-year old strawberries is $20/acre.

The resultant model is given in Table 8.3. The model shows several things. First theinitial endowments
of strawberries, are reflected on the right-hand side in the first year. Here there are 50 acres of zero year old
strawberries, 10 of one year old strawberries, and zero of two year old strawberries. Second, the unknown life
assumption is reflected in the linkage constraints that are labeled straw 0-1 year one etc. These constraints
require that the strawberries in year one that are zero years old be a prerequisite for strawberries that are one year
old in the second year, and similarly two year old strawberriesin year two are a prerequisite for three year old
strawberriesin year three. Third, the modd thus has its choice of whether to continue or not continue the
strawberries throughout their life. Thisis reflected in the solution (Table 8.4), which shows that three year old

strawberries are never used, indicating their life is always terminated, except that the two year old strawberries
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are kept in the terminal condition in the final year. Fourth, disequilibrium behavior is reflected in that different
amounts of strawberries are established in each year, as are different amounts of wheat.

8.2.2.2 Comments

An dternative form of the disequilibrium unknown life model merges the concepts of the known and
unknown life models. In this model the linkage equations above are dropped and the X variables are assumed to
have known life wherein the aternative variables are formulated for each possible activity age. Thusin our
example, we would have first year variables for strawberries planted in the first year and kept with a known life of
1, 2, 3, and 4 years (4 variables). Such an example will beillustrated in the equilibrium unknown life section.
8.2.3 Equilibrium - Known Life

Disequilibrium models are usualy relatively large. Further, the specification of the initial and terminal
conditionsis of key importance. However, such conditions can be difficult to specify. Equilibrium models
provide an dternative approach. In an equilibrium model, the firm is assumed to operate in a steady state manner,
repeatedly making identical decisions year after year. In such acase, initial and final inventories of in-process
goods will be equal; thus, theinitial and final conditions may simply be set equal and their optimal levels
determined by the model. Thisleadsto a smaller model depicting a representative equilibrium year. Equilibrium
solutions, however, do not portray growth situations or time paths of adjustment; only final equilibriums are
created.

Equilibrium models are developed as follows: assume we have a variable with life of 4 periods and
resource use, yield, etc., equal to A, where e is the elapsed age of the activity (0-3). Let us (assuming we start
with zero initia activity) portray the resource use over severa periods.

Begin Activity in Period

1 2 3 4 5 6
Period 1  resource use A,
Period 2  resource use A A,
Period 3  resource use A, A A,
Period4  resource use A, A, A A,
Period 5  resource use A, A, A
Period 6  resource use A, A, A,
Period 7  resource use A, A A

Once the activity pattern enters period 4 we have resource use by each age of the activity. Inthisand

subsequent periods, resource use in any period may be written as
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R = AX 3 + AXi, + AKXy + AgX,
where X, is the quantity of the activity begun in period t.
Under an equilibrium assumption the same thing is done each year in a continually repeated sequence.

Thus, X, = X..; = X, = X,.3 and the resource use may be rewritten as

= AKX+ ALK AX AKX = (A A A, ADX = X E
e

In an equilibrium model, then, the resource use for avariable is the sum of its resource usages over its whole life.
(At this juncture we should observe that these assumptions imply that initial and final inventories are equal.)

Thus, agenera formulation of the equilibrium model with known lifeis

Max ECJ.XJ.
j

st. EAinj < b for dl i
j

A

X

[\

0 for dl j
where: X isthe quantity of the jth enterprise produced in equilibrium.

C, istherevenue per unit of X; and equals the sum of the returnsto the activity over the periods (€) of its
life, which is assumed to be known;

A, istheuse of resourcei per unit of X; and equals A;; or the sum of the resource usages over the years
of the enterprise’slife; and

b, isthe amount of resourcei available.

8.2.3.1 Example 1

Two examples will be shown for this particular formulation to illustrate its features. The first continues
the example used throughout the chapter; in the second, initial and final inventory are explicitly handled.

The equilibrium known life nature of this model is reflected in Table 8.5 and GAMS formulation
EQUILK. The mode reflects the known life assumption under the strawberry activity in that the objective
function of the strawberry activity equals the sum of the objective function values over al three years of itslife.
Similarly, land use equals three, indicating that when one acre is started in the first year that implicitly an acreis
committed a year from now and two years from now. Under the equilibrium assumption for each acre started
now, there will be two additional acres; one that was started one year ago and one that started two years ago, for
atota of three acres of land. Initial and terminal conditions are not reflected. The solution to this model is given

in Table 8.6, which shows that the equilibrium solution isto plant 479 acres of wheat each and every year and 74
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acres of strawberries. Thismodel can aso be re-expressed in terms of average resource use. Thisisdonein
Table 8.7, where an average of one acre of land is used every year generates an average of $410 and the usage of
3.27 acre feet of water. The solution for this model essentially identical to the solution for the previous model,
but the strawberry variable equals 221. Thisindicates that the equilibrium solution averages 221 acres of
strawberries. Thus, in the strawberry rotation, one-third of the 221 acres (or 74 as in the earlier moddl) would be
first year, one-third second year and one-third year.

8.2.3.2 Example 2

The above example does not explicitly show the initial and final inventory situations. Therefore, we wish
to construct another example that demonstrates this point more explicitly.

Suppose a farmer wishes to establish a crop rotation. Two crops are planted: corn and soybeans.
Assume crop yield varies with dates of planting and harvest, thus the yields are dependent upon time of planting.
Timeis disaggregated into five annual periods: one in the fall after harvest through spring before planting, two
during planting, and two during harvest. Cultura operations of the crop are plowing, planting and harvesting.
Plowing may be done any time after a crop is harvested (during or after the harvest period) and before planting
(during or before the planting period). Also assume that corn yields depend upon whether corn follows corn or

soybeans. Land and labor are the limiting resources.

Technica data pertinent to the model are:

Corn Soybeans
Prices/Unit $2.50 $6.50
Production Cost/ Acre 100 50
Labor Usein hrg/acre
Plowing 4 3
Planting A5 A5
Harvesting .35 A7

Yields:
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Soybeans

Corn after Corn Corn After Soybeans (after Anything)

Planting Period Planting Period Planting Period
Pd2 Pd3 Pd2 Pd3 Pd2 Pd3

Harvest Pd4 130 120 145 133 35 45
Period Pd5 125 110 137 129 33 42

Labor Availahility (hrs)

Period Available Labor
Post harvest/Preplant (Pd1) 80
Plant (Pd2) 65
Plant (Pd3) 75
Harvest (Pd4) 100
Harvest (Pd5) 80

The farm has 400 acres.
Before formulating this model, its dynamic nature should be explored. Specificaly, we must address this
guestion: what are the items which congtitute the initial and terminal conditions?

A diagram of the dynamic process appears below:

Fall Plow in p | Spring Plow p | Plantin Harvest in Fall Plow
) in Year t Yeart — P | Yeart — - in Yeart
Year (t- 1)
Spring Plow in . Plant in » Harvest in Fall Plow in
Year t+1 Year t+1 Year t+1 . Year t+1
etc.

This dynamic process reflects linkages between last year's fall plowing with this years activities. The
equilibrium assumption then is that this year's fall plowing and crop mix equals last year's. Therefore, we will

require this to be true by using only one set of variables for fall plowing which by nature assumes equality. The
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springplow. — ®  plant —® harvest —m fdlplow ——

diagram of the resulting dynamic process is which implies that planting precedes harvest which precedes planting;
thus, planting precedes itsalf in an assumed equilibrium situation.

The model formulation' reflecting thisis shown in Table 8.8. Note that sequencing is modeled as
illustrated earlier. Thisintroduces the dynamic equilibrium assumption, in that plowing precedes planting, which
precedes harvest, which precedes plowing, making the timing circular where the functions both precede
themsdalves and follow themsealves. The solution to this modd isindicated in Table 8.9, and shows a continuous

rotation with 200 acres of corn are planted after soybeans and 200 acres of soybeans are planted after corn.

8.2.3.3 Comments

Several aspects of the equilibrium model require discussion. First when a model reaches an equilibrium,
the resources available must be in equilibrium. Thus, the same amount of resources must be available on a
continuing basis. Similarly, resource use of a variable of a given age must be the same year after year. Such
assumptions rule out the use of this model when examining cases with depletable resources.

A second assumption involves the word repeatability. Namely, the plan at any point in time must be
repeatable. Given an alternative which lasts n periods the solution will have 1/n units of the alternative in each
stage of itslife. In the whest strawberry 1/3 of the acreage is in each of the three years of the strawberrieslife.
Further, in the corn-soybean example, no more than %2 the acreage will be devoted to corn following soybeans and
an equal acreage must be devoted to soybeans followed by corn.

A fina line of comments relates to discounting. These authors have not examined discounting at great

length, but feel that discounting should not be included in this model since the return in every year isidentical.
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8.2.4 Equilibrium - Unknown Life
A version of the equilibrium model may be formulated in which the multi- period activities are of
unknown life. The assumption is retained that the same thing is done each period. Thus, resource usein atypica

period is summed across the possible ages that an activity may be kept. A general formulation of the model is

Max JE eE CieXje
st. E > AXe < b for dl i
j e
Xer T X < 0 for dl jand e > 0
X, = 0 for dl j and e

where: X, isthe quantity of the jth activity produced and kept until it is e periods old;

C,e isthe per unit returnsto X

A isthe per unit usage of resource i by Xie;

b, isthe amount of resourcei available;

The model maximizes profits subject to constraints on resource use and age sequencing. The age
sequencing constraints state that the amount of enterprise j of age e must be less than or equal to the amount of
that enterprise that was kept until age e-1.

8.2.4.1 Example

A tableau of the unknown life equilibrium mode! in the wheat, strawberry example context isgivenin
Table 8.10. There we again have the structure where first year strawberries are required before second year
strawberries can be grown. Similarly, two year old strawberries are required before three year old strawberries,
etc. The solution, whichisgivenin Table 8.11, indicates that the model chooses to terminate the life of
strawberries at the end of three years and that it would cost $88 to continue them into the fourth year. The
solution aso is indicative of what termina conditions would be needed had we set them appropriately in the
equilibrium model, where the terminal value of zero year old strawberries is around $488 and the termina value
of one year old strawberries is $164 and the terminal value of two year old strawberriesis $0. A dightly more
compact formulation may be constructed in which the activities represent the activity kept for e years. This
model isillustrated in Table 8.12.

8.2.5 Overall Comments on Dynamic Linear Programming
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Dynamic LP may be used in many settings. The models, however, do involve numerous assumptions and
require different computational and data resources. The disequilibrium modelsin particular become quite large
when used and also require constructing "good" terminal conditions. Equilibrium models are more compact, yet
use assumptions which may be unrealistic given a problem situation.

Further, both models suffer from a"curse of certainty”; clearly the optimal solution depends upon the
assumed current and future conditions. However, the modd can include uncertainty. Kaiser and Boeljhe (1980)
included uncertainty in the disequilibrium model using the expected value variance and MOTAD formulations
(athough their MOTAD approach iswrong). Yaron and Horowitz (1972B) incorporated risk via a multi-stage
discrete stochastic method.

Three types of models have been used in many research studies. 1n terms of equilibrium - known life
models, Swanson and Fox (1954); and Peterson (1955) present early models. Throsby (1967) formalized the
approach. In fact, the use of average dtatistical budgetsin a single year model assumes equilibrium (e.g., the
modelsin Heady and Srivistava[1975]). Brandao, McCarl and Schuh (1984); and El Nazer and McCarl (1986)
present models which apply the equilibrium model. Equilibrium - unknown life models are not as easily found,
although El Nazer and McCarl (1986) and McCarl et a. (1977) provide examples.

In terms of disequilibrium models, early models with known life come from Swanson and Fox (1954) and
Dean and deBeredictus (1964) while White et a. (1978); and Spreen et a. (1980) provide later examples.
Unknown life type models are given in Loftsguard and Heady (1959); and Candler (1960) while Irwin (1968)
provides areview article and Boussard (1971); Norton, Easter and Roe (1980); and Reid, Musser and Martin
(1980) provide other examples and references.

8.3 Recur sive Programming

Another LP formulation dealing with dynamic situations is known as recursive programming (Day,
1963). Basically, recursive programming models involve problems in which model coefficients are functionaly
dependent upon earlier model solutions and an exogenoudly specified time path. Following Day and Cigno, a
recursive programming model consists of a constrained optimization model; and a data generator. The data
generator given the solution in period t, prepares the input for period t+1 including defining a set of constraints
which relates the feasible values of current variables to past values of variables and exogenous events. The model
then is optimized for each time period with the data generator updating the model to the next time period.

While recursive programming does not have to be cast asaLP, the LP version will be presented. The

general recursive LP sequentially maximizes an LP for each of a number of periods.
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Max for period t Z, = X CX;, + XdY,
j k
st. X AX, v XEY, < Db for &l i
j k
S Yo =2 O for dl j and k

Where: C; are objective function parameters functionally dependent upon the previous objective function
parameters (C;.,), lagged optimal decision variables (X;.1, Y1), and exogenous events; X;, are the values of the
decison variables at timet; A;; are the resource i usages by X;; functionally dependent upon lagged vaues, d, are
objective function coefficients which are stable over time; Y, are the optimal values of the kth Y variable in time
period t; E;, are the usages of resource i which do not change over time; b, are the resource i limits, functionally
dependent upon lagged phenomena

The recursive model is not solved over all time periods s multaneously, rather an optimal solution is
congtructed for each time period. Thereis no guarantee (or necessarily a desire) that these solutions are optimal
over al periods. Rather, the solution represents an adaptive stream of decisions.

We have not specified the functional form of the lagged functions as they most often depend upon the

problem at hand.

8.3.1 Example

A simple recursive programming example arises from a "cobweb" type model. Assume we have a group
of producers who choose between two crops based on last year's price. Further assume that producers dampen
their adjustment so that production varies only as much as 2 percent from last year's acreage. Production costs
are $135 per acre for Crop 1 and $85 per acre for Crop 2. Theyields are Crop 1 - 130 bu/acre; Crop 2 - 45
bu/acre. Assume the typical producers each have 600 acres. Suppose, last year's acreage mix was 50 percent
Crop 1 and 50 percent Crop 2 (300 acres of each for the average producer). Lastly, assume the demand curve for
Crop 1 in terms of this producers production price dependent form is P, = 20 - .00045 Q, and the demand curve
for Crop 2is P, = 10.9 - .00045 Q, where Q is the quantity produced. Such a situation leads to the following

programming problem.
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Max Z, = (130P, - 135 X, + (45P, - 85 X,

1t

Xy o+ Xy < 600
X < 102 X, ,
X > .98 X,
X, < 102X, ,
Xy < 98X,
X Xy = 0
where: Py, =20 - 0.00045 Q;
Q=130 X,
Py, = 10.9 - 0.00045 Q,
Qx =45 Xy
The recursive solution to this model over 6 periodsis
Time Period X i X Pt Pota Z
0 300.000 300.000 2.450 4.825
1 306.000 294.000 2.099 4.703 94995.750
2 311.880 288.120 1.755 4.584 79491.454
3 306.118 293.882 2.092 4.701 64163.394
4 311.995 288.005 1.748 4.582 79182.851
5 306.235 293.765 2.085 4.699 63860.831
6 312.110 287.890 1.742 4.580 78874.189

8.3.2 Comments on Recursive Programming

Recursive programming models explicitly represent lagged adjustment. Several forms of lagged
adjustment have been commonly used. A frequently used form involves "flexibility constraints' in which a
variable is allowed to vary at most from its predecessor by a percentage (as done in the example). Day

(2963) first used this form of constraint; Schaller and Dean did so later. Sahi and Craddock (1974, 1975)

present information on estimation of these parameters.

Models involving lagged adjustment to price are a'so common. Day (1978) reviews the early literature
involving the cobweb model and goes over a number of considerations involved in its use. The approach involved
is similar to the example above where current price is afunction of lagged production. Such an approach is

common in recursive programming, and in fact has been used in other contexts (e.g., see the discussion of
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iterative methods in Judge and Wallace (1958) and Tramel and Seale (1959,1963)). The recursive programming
model generally adjustsin one-year sequences. Multi-year activities must then be converted to single-year
activities by annualizing costs and putting in expected future returns. The literature does not cover considerations
where resource use of an activity is expected to change over time, but they are possible.

Finally, we come to usage of recursive programming. Actualy, the vast mgjority of the usages are
centered in and around the work of Day. A review of applicationsis givenin Day and Cigno and several other

references appear in Judge and Takayama (1973).
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Table 8.1. Diseq

uilibrium Known Life Example

Year 1 Year 2 Year 3 Year 4 Year 5 Terminal
Conditions
Rows Straw- Straw- Straw- Straw- Straw- Strawberries RHS
Wheat berries | Wheat berries Wheat berries Wheat berries Wheat berries Aje0 Ajel

Objective 340 1230 340 1230 340 1230 340 550 340 -150 160 110 Max

Land Year 1 1 1 < 640
Water Year 1 1 0.8 < 930
Land Year 2 1 1 1 < 690
Water Year 2 45 1 0.8 < 1155
Land Year 3 1 1 1 1 < 700
Water Year 3 45 45 1 0.8 < 1200
Land Year 4 1 1 1 1 < 700
Water Year 4 45 45 1 0.8 < 1200
Land Year 5 1 1 1 1 < 700
Water Year 5 45 45 1 0.8 < 1200
Strawberry 0 -1 1 < 0
Strawberry 1 -1 1 < 0
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Table8.2. Disequilibrium Known Life Example M odel Solution

Objective = 1224296

Reduced Shadow
Variables Vaue Cost Equation Slack Price
Wheat Year 1 506.2 0 Land Year 1 0 340.0
Strawberries Year 1 133.8 0 Water Year 1 316.76 0
Wheat Year 2 539.9 0 Land Year 2 0 283.1
Strawberries Year 2 16.3 0 Water Year 2 0 56.9
Wheat Year 3 423.4 0 Land Year 3 0 336.9
Strawberries Year 3 126.6 0 Water Year 3 0 31
Wheat Year 4 557.1 0 Land Year 4 0 279.8
Strawberries Year 4 0 0 Water Year 4 0 60.2
Wheat Year 5 573.4 0 Land Year 5 0 340.0
Strawberries Yearb 0 0 Water Year 5 57.05 0
Term Straw -0 0 0 Strawberry 0 0 -160
Term Straw -1 0 -8 Strawberry 1 0 -118
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Table 8.3

Disequilibrium Unknown Life Sample Problem

Year 1 Year 2 Year 3 Year 4 Year 5 Terminal Conditions
Strawberries Strawberries Strawberries Strawberries Strawberries Strawberries RHS
Rows Wheat 0 1 2 3 Wheat 0 1 2 3 Wheat 0 1 2 3 Wheat 0 1 2 3 Wheat 0 1 2 3 0 1 2
Max
Objective 340 -150 700 680 300 340 -150 700 680 300 340 -150 700 680 300 340 -150 700 680 300 340 -150 700 680 300 160 110 20
Land Year 1 1 1 1 1 1 < 700
Water Year 1 1 0.8 4.5 4.5 5.7 < 1200
Init Straw 0 1 < 50
Init Straw 1 1 < 10
Init Straw 2 1 < 0
Straw 0-1 Year 1 -1 1 < 0
Straw 1-2 Year 1 -1 1 < 0
Straw 2-3 Year 1 -1 1 < 0
Land Year 2 1 1 1 1 1 < 700
Water Year 2 1 0.8 4.5 4.5 5.7 < 1200
Straw 0-1 Year 2 -1 1 < 0
Straw 1-2 Year 2 -1 1 < 0
Straw 2-3 Year 2 -1 1 < 0
Land Year 3 1 1 1 1 1 < 700
Water Year 3 1 0.8 4.5 4.5 5.7 < 1200
Straw 0-1 Year 3 -1 1 < 0
Straw 1-2 Year 3 -1 1 < 0
Straw 2-3 Year 3 -1 1 < 0
Land Year 4 1 1 1 1 1 < 700
Water Year 4 1 0.8 4.5 4.5 5.7 < 1200
Straw 0-1 Year 4 -1 1 < 0
Straw 1-2 Year 4 -1 1 < 0
Straw 2-3 Year 4 -1 1 < 0
Land Year 5 1 1 1 1 1 < 700
Water Year 5 1 0.8 4.5 4.5 5.7 < 1200
Term Straw 0 -1 1 < 0
Term Straw 1 -1 1 < 0
| Term Straw 2 1 il 0
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Table 8.4. Disequilibrium Unknown Life Example Modd Solution

Objective = 1280757.0

Variable Vaue Reduced Equation Slack Shadow Price
Cost
Wheat year 1 547.1 0 Land Year 1 0 340
Straw O year old year 1 92.9 0 Water Year 1 308.57 0
Straw 1 year old year 1 50.0 0 Init Straw 0 0 490
Straw 2 year old year 1 10.0 0 Init Straw 1 0 340
Straw 3 year old year 1 0 -40 Init Straw 2 0 0
Wheat year 2 557.1 0 Straw 0-1 Year 1 0 -490
Straw O year old year 2 0 -8 Straw 1-2 Year 1 0 -130
Straw 1 year old year 2 92.9 0 Straw 2-3 Year 1 10 0
Straw 2 year old year 2 50.0 0 Land Year 2 0 280
Straw 3 year old year 2 0 -322 Water Year 2 0 60
Whest year 3 464.3 0 Straw 0-1 Year 2 0 -470
Straw O year old year 3 142.9 0 Straw 1-2 Year 2 0 -340
Straw 1 year old year 3 0 0 Straw 2-3 Year 2 50 0
Straw 2 year old year 3 92.9 0 Land Year 3 0 340
Straw 3 year old year 3 0 -40 Water Year 3 203.57 0
Whest year 4 557.1 0 Straw 0-1 Year 3 0 -490
Straw O year old year 4 0 0 Straw 1-2 Year 3 0 -110
Straw 1 year old year 4 142.9 0 Straw 2-3 Year 3 92.85 0
7
Straw 2 year old year 4 0 0 Land Year 4 0 274
Straw 3 year old year 4 0 -349 Water Year 4 0 65.7
Whest year 5 557.1 0 Straw 0-1 Year 4 0 -470
Straw O year old year 5 0 -330 Straw 1-2 Year 4 0 -360
Straw 1 year old year 5 0 0 Straw 2-3 Year 4 0 0
Straw 2 year old year 5 142.9 0 Land Year 5 0 340
Straw 3 year old year 5 0 -40 Water Year 5 0 0
Term Straw 0 0 Term Straw 0 0 -160
Term Straw 1 0 Term Straw 1 0 -110
Term Straw 2 0 Term Straw 2 142.86 -20
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Table 8.5. Equilibrium Known Life Example Formulation

Wheat Strawberries
Objective 340 1230
Land 1 3 < 700
Water 1 9.8 < 1200
Table 8.6. Equilibrium Known Life Example Solution
Objective = 253441
Reduced Shadow
Variables Value Cost Equation Price
Wheat 479 0 Land 309
Strawberries 74 0 Water 31
Table8.7. Equilibrium Known Life Example Formulation with Average Activities
Wheat Strawberries
Objective 340 410
Land 1 1 < 700
Water 1 3.27 < 1200
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Table 8.8 Rotation Examplein Equilibrium Known Life Context
Plant Corn Plant Soybeans RHS
Plow after corn Plow after soybeans after corn after soybeans after corn after soybeans
Rows pl2 pl2 plI3 pl3|pl2 pl2 pl3 pl3|{pl2 pl2 pl3 pI3|pl2 pl2 pl3 pI3
pdl pd2 pd3 pd4 pd5|pdl pd2 pd3 pd4 pd5|hr4 hr5 hr4 hr5fhr4 hr5 hr4 hr5lhrd hr5 hrd hr5lhrd hr5 hrd hrb
Dbjective 225 200 263 233 178 243 178 243 Max
213 175 243 223 165 223 165 223
|_and 1 1 1 1 1f1 1 1 1 1 < 400
| abor pdl 4 3 < 80
| abor pd2 A4 3 2 .2 2 .2 2 .2 2 .2 < 65
| abor pd3 A4 3 2 .2 2 .2 2 .2 2 2k 75
| abor pd4 A4 3 A4 A4 A4 A4 3 3 3 3 < 100
|_abor pd5 4 3 4 4 4 4 3 3 3 3] 80
lant after plow
corn pd2 -1 -1 -1 -1 11 11 < 0
corn pd3 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 < 0
50y beans pd2 -1 -1 -1 -1 11 11 < 0
50y beans pd3 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1k O
low after harvest
corn pd4 1 -1 -1 -1 -1 < 0
corn pdS 1 1 1 1 1 -1 -1 -1 -1)-1 -1 -1 -1 < 0
so0yb pd4 1 -1 -1 -1 -1 < 0
soyb pdS 1 1 1 1 1 -1 -1 -1 -1]-1 -1 -1 -1k 0
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Table 8.9. Solution to Rotation Model

Obj = 100777
Reduced Shadow

Variable Vaue Cost Equation Slack Price
Plow After Corn Land 0 238
pdl 0 0 Labor pdl 80 0
pd2 875 0 Labor pd2 0 0
pd3 72.5 0 Labor pd3 16 0
pd4 0 -22 Labor pd4 0 56
pd5 0 0 Labor pd5 0 0
Plow After Soybeans Plant After Plow
pdl 0 0 corn pd2 128 0
pd2 0 0 corn pd3 0 238
pd3 0 0 soybeans pd2 0 0
pd4 0 -17 soybeans pd3 0 253
pd5 200 0 Plow After
Plant corn after corn corn pd4 200 0
pl2 hr4 0 -33 corn pd5 0 0
pl2 hr5 0 -26 soyb pd4 189 0
pl3 hr4 0 -58 soyb pd5 0 15
pl3 hr5 0 -63
Plant Corn After Soybeans
pl2 hr4 200 0
pl2 hr5 0 -11
pl3 hr4 0 -30
pl3 hr5 0 -31
Plant Soybeans After Corn
pl2 hr4 0 -70
pl2 hr5 0 -59
pl3 hr4 189 0
pl3 hr5 11 0
Plant Soybeans After
Soybeans
pl2 hr4 0 -70
pl2 hr5 0 -74
pl3 hr4 0 -5
pl3 hr5 0 -15
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Table 8.10. Equilibrium Unknown Life Example Formulation
Strawberries RHS

Rows Wheat 1 2 3 4 MAX

Objective 340 -150 700 680 300

Land 1 1 1 1 1 < 700

Water 1 0.8 4.5 4.5 5.7 < 1200

Straw 1-2 -1 1 < 0

Straw 2-3 -1 1 < 0

Straw 3-4 -1 1 < 0
Table8.11. Equilibrium Unknown Life Example Solution

Objective 253441
Reduced Shadow

Variables Vaue Cost Equation Slack  Price
Wheat 479 0 Land 0 309
Strawberries 1 year old 74 0 Water 0 31
Strawberries 2 year old 74 0 Straw 1-2 0 483
Strawberries 3 year old 74 0 Straw 2-3 0 232
Strawberries 4 year old 0 185 Straw 3-4 74 0

copyright Bruce A. McCarl and Thomas H. Spreen

Table8.12. Alternative Formulation of Equilibrium Unknown Life

Keep Strawberries RHS
Rows Wheat 1 2 3 4

MAX
Objective 340 -150 550 1230 1530
Land 1 1 2 3 4 < 700
Water 1 0.8 5.3 9.8 15.5 < 1200
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CHAPTER IX: LINEAR PROGRAMMING MODELING:
NONLINEARITIESAND APPROXIMATION

This chapter presents LP formulation techniques for representing nonlinear phenomena. The formulations
fal into transformations and approximation classes. Transformations deal with minimization of the sum of
absolute values; minimization of the largest absolute value; and maximization of afraction. Approximations
include grid point based formulations of probl@isTvidhseparadieasd multi-variable functions.
9.1.1 Minimization of the Sum of Absolute Deviations

Suppose one wishes to minimize the sum of absol ute deviations between a set of predictions and

observations, where the predictions involve endogenoudy determined variables. Let the deviations be represented

by:

where i identifies the i"" observation, ¢; gives the deviation, Y; an exogenously observed value, X;; the exogenous
data which go into forming the prediction of Y;, and b; the endogenous variable levels. The term Y; minus the sum
of X; b, gives the difference between the observed level Y; and its prediction given by (2X;; b,).

A LP constraint set is formed by moving the = X;b; term to the Ieft side of the equation.
€ + _Ein b =Y,
i
The basic problem of minimizing the summed absolute values of all €; is:
Min 3e|
|
st. g + XX;b =Y, for al i

<

., — 0 for al i and j
>

m
VIA

o

O

The variables in this formulation are €; and b;. Thee; are unrestricted in sign as are the b;'s.
This problem is not a LP problem because of the nonlinear absolute value function. However, it can be
transformed into a LP problem. First, we substitute for €;, writing it as the difference of two non-negative

variables:

€, can take on negative valuesif €,>¢€,;"; conversdly, if €,">€;", positive values result. The resultant problem
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i

€ -€ + Exji b =Y, fordli
j

€. ¢ >0 b % 0 foraliandij

This problem is still nonlinear because of the absolute value term. However the absolute value terms can be
simplified whenever either €;" or €; equals zero as the consequent absolute val ue reduces to zero plus the other

term. Algebraicaly, if the product of the deviation variablesis zero, i.e.,

then the absolute value term can be written as the sum of the two variables

€| +le] = ¢ +¢

’ei+ - § |

whenever € *¢ 0

Imposing the restriction that one or the other variable is zero, the formulation becomes

Min Y(¢ +€)
st. € - + XX;b =Y, fordli
i
€ *€ = 0 fordli

€, e >0 b ; 0 fordliandj.

Thisisan LP formulation except for the constraint on the product of €;* and €;". However, this constraint can be

dropped. Consider a problem with only one observation Y without X and b. Under this case the formulation

reducesto

Rearranging the first constraint we obtain
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In turn, tabling alternative values for Y (i.e., consider Y=4, Y=-6), including possible valuesof €", € and the

resultant objective function sum yields

Y =4 Y=-6
€ € € +¢€ € € € +¢€
4 0 4 0 6 6
16 12 28 14 20 34

Z+4 A 2Z+4 A Z+6 2Z+6

" These cases are the only onesin which € * € equals zero.
Inthe Y=4 case, € hastoequal € +4. Theleft most part of the table gives severa aternatives for this. The
firstis €' =4 and € =0, leadingto asum (€ +€ ) of 4. The second aternative (16 and 12) gives an objective
function sum of 28. In general, for any choicefor € =2Z, the € value must equal Z+4, and the objective
function value becomes 2Z+4. Clearly, when 2Z+4 is minimized and Z is non-negative, the minimum occurs at
Z=0, implying € =0. A similar conclusion can be reached for the negative Y case. Thus, minimization will
automatically cause ef * € toequal zero, and the nonlinear constraint is not necessary. Consequently the final

formulation becomes

Min X(¢ + )

st. € - € + Einbj =Y. fordli
j

0 for dl i and j,

VIA

which isalinear program. This problem solves the origina problem. The nonlinear problem has been
transformed into an equivalent LP.

9.1.1.1 Example

Suppose a linear equation is to be fit predicting raw orange price as alinear function of the quantity of juice

and fresh oranges sold given the following data:

Price of Raw Oranges Quantity of Oranges Sold ~ Quantity of Juice Sold

10 8 5
5 9 1
4 10 9
2 13 8
6 15 2
9 17 3
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Assume the prediction equation isY; = b, X;; + b, X;,, where b, is the intercept, b, and b, are the prediction
parameters on the quantity of oranges and juice sold, respectively. Define X;; and X;, as the observations on the
guantity of oranges and juice sold, respectively; and Y, as the observed price. Suppose the desired criteriafor
equation fit is that the fitted data exhibit minimum sum of the absolute deviations between the raw orange price

and its prediction. The formulation would be

MIn 2|€|
st. € =Y -by,-X,b -X,b, fordli
> < :
. — 0 b,, b, b, — 0  foradli
S 2 o P By
The equivalent LP formulation is
Min X(¢ + €)
st. € -¢ =10 - b, - 8b, - 5b,
€ -€ = 5 - b, - 9 -1b,
€& - € = 4 - by - 10b, - 9b,
€ - € = 2 - by -13b - 8h,
€ - € = 6 - by - 15b, - 2b,
€ ~€ = 9 - by - 17b - 3b,
€, ¢ > 0 by,b,b, % 0 for al i

Moving the endogenous variables (i.e., the €'s and b's) onto the left-hand side and substituting for the variables
which are unrestricted in sign (b, by, b,) yieldsthe final formulation given in Table 9.1. The GAMS formulation
for this problem is called ABSOLUTE. The objective function minimizes the sum of the deviation variables
subject to constraints relating the deviation variables to the difference between the observed and forecast levels for
each observation. The coefficients on the intercept are plus ones; the coefficients on the other parameters (b,, b,)
are the observed levels. The right hand sides are the observed prices to be forecast.

The resultant solution yields an objective function value of 11.277, and the solution is shown in Table 9.2.
The predictive equation yielded by this problem revea s that the price of oranges is predicted by the equation
3.426 + (0.191 * the quantity of raw oranges) - (0.149 * the quantity of juice). This equation goes exactly
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through observations 2, 3, and 5 while nonzero deviations exist for observations 1, 4, and 6. The dual to this
problem requires that the shadow prices be between -1 and +1. The dual variables equa these extreme limits
when the deviation variables are in the solution. This is shown by the shadow prices on the observations 1, 4, and
6.

9.1.1.2 Comments

The minimization of total absolute deviations formulation has been used in three settings.  the solution of
regression problems (Charnes, Cooper and Ferguson; Klein; Fisher (1961); Wagner (1959); Wilson); goal
programming problems (as covered in the multiple objective chapter), and risk analysis (asin the risk modeling
chapter). The regression formulation is commonly used when non-normal errors are expected (see Wilson for
discussion).

9.1.2 Minimization of Largest Absolute Deviation
Models can involve minimization of the largest absolute deviation rather than the sum (i.e., the maximum

forecast error using the so-called Chebyschev criterion). Such aformulation would be expressed asin the

equations Min [M_ax]ei]]
st. € =Y, -XX;b forali
i
< . .
€ b —0 for dl i and j
>

where the variable € isthe deviation under the i observation and b; is the j"" parameter in the forecast equation.
The other symbols are as defined in the previous section. The problem formulation is straight forward. Suppose
that we define avariable € (without a subscript) which will equal the largest deviation and introduce two

equations for each observation (1):

m
[\

Y, - XX; b
j

m
[\

(Y, - £X, b)
i

These equations require € to be greater than or equal to the deviation and the negative of the deviation for each
observation. Thus, € will be greater than or equal to the absolute deviation from each equation. Taking asimple

example without b variables, with observationson Y equaling -3, 2, and 7, then these equations become
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Observed Constraints

Y, €>Y, €> -Y,
-3 € > -3 €>3
€> 2 €> -2
€e>17 €> -7

Clearly, € cannot be less than 7 (the largest absolute deviation in the model). Since the objective function
minimizes € subject to these two constraints for each observation, the modd collectively minimizes the

maximum absolute value. The composite linear program is:

Min €
st. -€ - XX. b o< -y, fordli

A

-€ + XX.b < Y fordli
€e>0 b — 0 for dl j

9.1.2.1 Example

Utilizing the data from the previous example with the restrictions that the intercept term by, is unrestricted in

sign but that the parameter on b, be non-positive while the parameter b, is non-negative. The resultant

formulation is
Rows € by b, b,
Objective 1 Minimize
1 -1 -1 -8 -5 < -10
T -1 1 8 5 < 10
2* -1 -1 -9 -1 < -5
2 -1 1 9 1 < 5
3* -1 -1 -10 -9 < -4
3 -1 1 10 9 < 4
4t -1 -1 -13 -8 < -2
& -1 1 13 8 < 2
5* -1 -1 -15 -2 < -6
5 -1 1 15 2 < 6
6" -1 -1 -17 -3 < -9
6 -1 1 17 3 < 9
1 < 0
1 > 0

where all variables are non-negative and the GAMS formulation is called LARGE. This problem solution yields

an objective function value of 3.722 with avariable and constraint solution as shown in Table 9.3.
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The solution shows the regression line of the price of orangesis equal to 7.167 - 0.111 times the quantity of
oranges. The maximum absolute deviation is present at the first, fourth and sixth observations equalling 3.722.

9.1.2.2 Comments

The above formulation solves the Chebyshev criterion problem as discussed in Wagner. This model form
results in shadow price sum equaling 1 due to the duality constraint imposed by the form of €, as observed in the
solution. Such a criterion has not been applied widely, but Wilson and Wagner give references.

9.1.3 Optimizing a Fraction
Charnes and Cooper (1962) present a LP formulation involving optimization of afraction. Thisformulation

allows problems maximizing such things as the average rate of return. The problemis

Co + XC, X,

Max S B

d, + Xd, X,

i
st. anij X; < b foradli
X; >0 for dl |
where the denominator is strictly positive
d, + J_Edj X; >0

Note there are constants in both the numerator and denominator accounting for exogenous terms which are not a
function of the decision variables.
Transformation into alinear program requires several manipulations and substitutions, resulting in an exact

transformation of the problem. First, define avariable y, which equals one over the denominator

Yo = |do+ T x|
or equivaently

Yo' =dy+Xd X
j

Multiplying both sides of this relationship by y, yields

d0y0+j2dj X ¥ =1
The new variable y, is substituted into the above formulation, with the above relationship imposed. The net result
is.
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Max C,y, + J_ECJ. X, Yo

st. _qu X Yo! Yo
J

dy Yo + Xd Xy, =1
J

IN

b for al i

Yo X, 0.

[\

Note that each g;X; term has been multiplied by y/y, which issimply 1. Thiswill be convenient later. Now we
introduce a change of variables. Let us define anew variable, y; equal to the old variable X; times y,,.
Yi = X Yo
Substituting this into the formulation above yields
Max C,y, + J_ECJ. Y,

%A\

st. Ea”. Y'Y, < b forali
j

dy Yo * Xdy =1
J

This formulation is not a LP problem,; thg‘iérm YilYo appean)éin%he?i rs{%ror%tlrzj\i nt equation. However, given that
Y, (i.e. the reciprocal of the denominator) is strictly positive we can multiply both sides of the equation through by
it without altering the direction of inequality

23 ¥j < by g
In turn, rewriting the second equation yields the LP formulation

Max C,y, + J_ECJ. Y,

0 for dl i

IN

st. by, + Za” Y,
j

dyy, + Xdy, =1
J

Vv

Yor y, 2 0 for dl |

which is an exact transformation of the original fractional program. Once this problem has been solved, the levels
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of the origina optimum decision variables are easily discovered by performing the reverse transformation that X;
equalsy; divided by y,
X; =Y 1Yo

The LP form includes a new variable with coefficients in the matrix which are the negative of the right hand
sidestimes anew variable ( -b; y,). A constraint is also added requiring the constant term in the denominator
times the new variable ( d, y,) plus the denominator terms involving the transformed variablesto equal 1. The
transformed mode! usesthe same g;'sasthe origind. Its right hand sides are all O's except the one in the new
congtraint. The objective function does not have a denominator term and the objective function altered to include
the numerator constant times the new variable y,. Model selection yields the optimal y's (Yo,Y1,---,Y5)-
Subsequently, then we transform to obtain X.
9.1.3.1 Example

Suppose that it is desirable to solve the following problem.

Max 18X, + L7X,

10+ 4X, + 41X,
st. 15X, + X, < 6
30X, + 4X, < 20
X, X, > 0

Then the transformed problemis
Max 18y, + 17y,

st. 6y, + 15y, + y, < 0
20y, + 30y, + 4y, <0
10y, + 40y, + 41y, =1
Yo Yo Yo 2 0

Once a solution to this problem is obtained, the values of the origina variables are recovered using the formulas
X1=Y11Yo
Xz =Y21Yo
The GAMS model is set up in the file FRACTION and the solution is shown in Table 9.4.
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The solution shows that the reciprocal of the denominator equals .031513 and that the decision variables are
.042 and .126. Transforming these variables to their original vaues by dividing them through by the denominator
reciprocal yields X,=1.333 and X,=4. Plugging back into the original problem, the numerator equals 9.2; the
denominator, 31.73, and their fraction 0.29 (the objective function value reported). One may also recover the
shadow prices. In this case since the rows are multiplied by one over the denominator, the original shadow prices
may be recovered by multiplying through by the denominator as shown in the scaling discussion in Chapter 18 .
Thus the effective shadow price for constraint 1 is 10.85, and constraint 2 is 1.33. Constraint 3 has no analogue
in the origina problem, and thus, the shadow prices are not transformed.

9.1.3.2 Comments

Thisis an exact transformation as long as the denominator remains strictly positive. The formulation failsif
Yo equals zero in the optimal solution.

Much research has been done on fractional programming. The original development appears in Charnes and
Cooper (1962). A historical perspective and literature review can be found in Schaible and Ibaraki.

9.2 Approximations

Approaches to nonlinear problems often utilize approximations. Such approximations may be either
one-time or iterative. Discussion of the one-time approximations constitutes the majority of the material below.
9.2.1 Grid Point Approximations

Virtually all one-time approximations use grid points, representing nonlinear phenomena as a discrete series
of linearized steps. Such approximations have been used where: &) costs increase with production; b)
prices decrease as sales increase; and c) production yields decrease as input usage increases. All these cases
involve decreasing returns to scale (increasing returns to scale are covered in the integer programming chapters).
Approximations for decreasing returns cases use a set of discrete grid points assuming that: production cost,
output prices, and/or quantities produced are constant between grid points, but change as we move aong the grid.

9.2.1.2 Functions with Separable Variables

The most common grid point approximation is separable programming. Separable programming deals with

problems in which the functions may be of any nonlinear form, but must be separable into functions of asingle
variable. For example in the two variable case the functions f(x,y) must be decomposable into h(x) + g(y).
Separable programming is usually considered a nonlinear programming technique (Hadley, 1964); but is

commonly used in an LP setting. The most commonly used form of separable programming arose originally with
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Charnes and Lemke, and was extended by Miller. The formulation yields an LP whenever the objective function
terms are concave and the feasible set is convex (Hadley, 1964, p. 124). When these properties do not hold, more
general separable programming needs to be used.

Separable programming relies on a set of grid points and constructs an approximation between these points.
The approximation is setup so that the approximated value equals the value at the base point plus the dope
divided by the difference from the base point. Suppose we wish to approximate the function at point X which
falls between approximating points )A(k and )A(k+l. This can be expressed algebraically by the formula

f(X,. ) - (X .

f(X) = F(X) = f(X,) + — < (X - X))
Xk+1 - Xk
In this case, if we write X as a convex combination of X, and X, ,
X = )‘k xk + )‘k+l xk+l
)‘k + )‘k+l = 1
)‘k’ )‘k+l = O

where the new variables 1, and ., are the amount of the k™ and k+1% approximation points used.
Substituting this relationship into the above equation for F(X) we get the equation
F(X) = )‘k f(xk) + )‘k+1 f(xk+ 1)
where the function value is approximated by a convex combination of the function evaluated at the two adjacent

grid points. This can be represented by aLP problem. Namely given the separable nonlinear problem

Max Xf; (X))
j
st. Xg; (X) < b, forali
j
X > 0

]

we may form the approximating problem
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Max ZE)‘]H fj ()A(ju)
i

N

st. 3TA, g (X,) < b, forali
iu

EA]H = 1, forallj
il
A, > 0, fordljandp
where )A(ju isthe u™™ approximating point for X; and
XJ = E:)\]HXJH

This formulation involves a change of variables. The variables 4;, give the anount of the P grid point used
in the approximation of the " variable. The terms f j()A( i and g j()A( ;) givethe values of the objective function
and congtraint terms evaluated at the various grid points. The new constraints on the A variables cause a convex
combination of the grid points to be chosen for each variable approximated. The functions must be properly
behaved, otherwise the nonzero A'sin the solution will not necessarily be adjacent; and the approximation will not
work properly (Hadley, 1964). That iswhy users of the approximation should be careful to ensure that
diminishing returns to production are present whenever this approach is being used.
9.2.1.1.1 Example 1.

Suppose we approximate the problem.

Max (4 - .25X) X - (1+.252)z
X - 3Y <
2Y - Z <
X, Y, Z >0

To set this problem up, suppose we use values of X equal to 1,2,3,4,5,6 and the same values for Z. The separable

programming representation is

Obj 3750, + TA, + 975A, + 12}, + 1375 + 1BAg - 125, - 3B, - 5258, - 8B, - 11250 - 156 max
Output A v 24, + 3y o+ 4N + By o+ Bl - 3Y < 0
Input 2y - B, - 2B, - 3P, - 4B, - 5B, - 6 < 0
Convex A At A Ao+ Ayt Ay Ag = 1
Convex B B, + B, - B, + B - B + B = 1
Nonneg A Ay Ay Ay A A Y, B, B,. [ B, By, Bs: > 0
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Note that 1, stands for the amount of the gridpoint X=2 utilized having an objective value equal to the
nonlinear function of X evaluated at X=2. The GAMS formulation is called SEPARABL and the resultant
solution is shown in Table 9.5. The objective function valueis 7.625. The modd sets A,=1s= 0.5
amounting to 50% of gridpoint X, and 50% of X; or X=4.5. Thevaueof Y =1.5. Simultaneoudly 8, =1
implying Z = 3. Now, let us examine the adequacy of the approximation. The objective function
approximation for X has 12(.5) + 13.75(.5) = 12.875, while the true f(X) = 12.9375. The Z approximation
has zero error in this case. The modeler could either accept this as an adequate approximation or enter new
grid points in the neighborhood of this solution.
9.2.1.1.2 Example 2: Separable Terms in the Constraints

The above example deals with the approximation of separable objective function terms which McCarl
and Ona found computationally unattractive. On the other hand, separable programming can aso
approximate constraint nonlinearities, which McCarl and Onal found attractive.

Suppose we wish to approximate the following problem

Max 3X - 3Y
st X - (20+2Y - 2Y?) <
X, Y >

Selecting agridfor Y of 0, 1, 2, 3, 4 and 5, the separable programming formulation becomes

Obj 3X - 0A - 34, - 6A, - 94, - 12A, - 154, max

xba X - 20A - 218\, - 232\, - 242\, - 248\, - 254, < O
convex A, * A, + Ay + A, + A + A = 1
nonneg X, Ay Ay Ags Ags Ae, Ay = O

The resultant GAMS model isin the file CONSEPAR and the solution isgiven in Table 9.6. We may
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plug this solution back into the original problem to evaluate the adequacy of the approximation. The
values of A imply that Y equals 3. However, optimization using calculus shows the optimum to be at Y
equals 2.5, giving ayield of 23.75 and profits of 63.75. Thus, this demonstrates a 0.235 percent error of
approximation. Again, one could go on to add more grid points, or accept the approximation error.

9.2.1.2 Gridpoints and Gridpoint Refinements

The separable formulation uses gridpoints to approximate functions. Readers may wonder how to
define such points. Gridpoints are aways defined in the context of the applied problem. The gridpoints
should provide a reasonable approximation of the function in the domain of the answer, including points
both close to the expected answer as well as points depicting functional extremes (Geoffrion (1977)
discusses the importance of the extreme points). Even spacing of the gridpointsis not required. GUder
and Morris show minimum theoretical error occurs with equal spacing. Thus, one could approximate a
curve at the points 10, 2, 1, .95, .50, .10, .02 and .01. The gridpoint also may be redefined given a solution
where, for example, one might find a solution of X = 2.50, discover the approximation is inadequate at that
point, and then enter more gridpoints in the neighborhood of 2.5. Gridpoint refinement schemes are
discussed in Bazaraa and Shetty. Implementation of a gridpoint refinement scheme is discussed in
K ochenberger, Woolsey and McCarl.

9.2.1.3 Gridpoint Approximation of Functions of Multiple Variables

Gridpoint approximation may aso be applied to functions containing multiple variables. In this case
amulti dimensional grid is defined. This approach generally only works when one is approximating
functions that depict a concave objective function and a convex congtraint set.° The method involves
techniques similar to separable programming and was devel oped by Dantzig and Wolfe. This method is
discussed in Duloy and Norton; Shapiro (1979b); Bradley, Hax and Magnanti; and Lasdon. One of the

possible formulations on this scheme which can be used is

Max CX - Edj Y,
j
st. X - H(Y,Y,Y,..Y) = 0
;< b, for al j
X, > 0

®  Readers unfamiliar with concavity and convexity should look at the Non-Linear

Programming Theory chapter.
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where there are multiple inputs and one output (for simplicity). The output X is afunction of the levels of
the multiple inputs (Y;). Also the function H(Y;...Y,,) hasto be such that this problem has a convex
constraint set.

We will discuss two versions of this formulation. The first version deals with caseswhere H is
homogeneous of degree one and the second where H is homogeneous of degree less than one.
9.2.1.3.1 Homogeneous of Degree 1

The function H being homogeneous of degree 1 implies that

H(aY) = oH(Y)
Suppose we choose a set of rays \?ju which depict the way each Y; participates in each ray and define the
variable o, which is the amount of ray \?ju whichisused. Then we know that
H(o,Y,) = oH(Y,)

i.e., the function « times the ray values equal « times the function evaluated at the base ray point. The

iu

generalized programming formulation then becomes

Max CX - XdY,
J
st. X - Xq H(\?ju) =0
Yo, Y, - Y, = 0 foradlj
| < bj for dl |
X, o, > 0 fordluandj.

The approximating model has the rays represented by a variable indicating how much of a particular
ray Y;, combination is used. They should be defined with unique ratios of the variables within \?ju (i.e,
1:1, 1:4, 4:1, etc., as below).

Example
Thisformulation is probably best illustrated by example. Consider the problem

Max 4X - 20Y, - 100V,
st. X - 21Y)Py)® =0
1 < 50
X, Y., Y, > 0.
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Suppose we select a set of combinationsfor Y, and Y ,, given in Table 9.7, showing that when 1 unit
of Y, and 4 unitsof Y, are used, X=29.7. Similarly, when 8 units of Y, and 8 units of Y, are used, X=168.

The resultant formulation is

Max 4X - 20y, - 100v,
st. X - 2970, - 168a, - 59.4a, < 0
o + 8a + by - Y, = 0
4o, + B, * 0y - Y, = 0
1 < 50
X, 0, 0, 0, Y. Y, > 0

An isoquant graph of this situation is portrayed in Figure 9.1.

Note that the three lines in the graph stand for the combinations4to 1, 1to1and 1to 4. The
connected line in the graph is the isoquant for output equals 168, and the linear segments show how the
production process is represented.

The GAMS formulation of the problem is called HOMOGEN and the solution is given in Table 9.8.
This solution impliesinput usein theratio 4:1. We may wish to put more rays in the neighborhood of 4:1
or we may be willing to accept the approximation error.
9.2.1.3.2 Homogeneous of Degree Less Than One

Now we turn to the case where we do not have homogeneity of degree one. In this case, the function
evaluated at o times the vector of inputs Y, isless than « times that functiona value evaluated at one unit at
Y providing « islessthan or equa to one.

H(axY) < oH(Y).

Consider the multiplicative function

X = a¥,'v,n Y, = an XY
We may set up a vector representation J
YJ = ochju
Under this substitution the function becomes -
X = a(1_th:j ¥ |

j
But, the sum of the exponents on «, is less than one

Ebj < 1.
j
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Thus, as one moves o units dong the ray the function only increases by afactor of « to the = b, which
resultsin an increase less than « X. This problem exhibits diminishing returns to scale because as o, is
increased, less and less output is produced per unit increase in «,. This particular problem, however, may
be formulated as a linear problem. This approach has been called the "column generation method" as
discussed in Shapiro (1979b). Specificaly, suppose we choose grid points Y, and a set of a priori

multipliers o, . The problem then becomes

Max CX - EdeJ.
j
st. X - XLEH(YJ.uocuL) AuL =0
XLE(YJ.uocuL) Ay - YJ. = 0 for dlj
XEAuL =1
ulL
| < bj for dl |
X, A > 0

uL? j
The variables are 1, where u identifies the input combination and L the length along that input
combination. The parameter «,, gives how far along the u™ ray we move. The sum of the A variables are

then equal to one. Thisisacombination of the separable programming and homogeneity of degree one

formulations above.

Example
Consider the example problemy , .. 5 5y 2Y - 2Y
. 1 2
X - 21y =0
. < 10
Y, > 0

1! 2

where the exponents sum to 0.75 so the function is homogeneous of degree less than one. If we then put in

three different approximation rays 1 to 1, 1 to 2 and 2 to 1 in these cases, the resultant values of X are
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X = 21°, X = 29.70;°, X = 250"

We obtain a function that along the lines X is equal to some constant times «®”°. We then develop atable
of approximations (Table 9.9). The resultant formulationisin Table 9.10 and in the file NONHOMOG.
Note, here we have four combinations for each ratio of inputs, each representing different multiples of o, .
The convexity constraint is needed to insure that the model uses no more than one unit of the first step and
rather is forced to go into the latter steps of the production process. The solution of the problemisgivenin
Table 9.11 and shows that the 4™ step of the second ray is used resulting in the value for the variables of
X=99.3, Y,= 10, Y,= 5 with the objective function equal to 19.65.

9.2.1.3.3 Comments

We get many classroom questions as to why we have presented the above generalized approximation
formulations. There are two reasons. Firgt, they constitute an approximation that can be used when
representing a relationship between multiple inputs and outputs (i.e., see Onal et a.). Such acase occursin
agricultural models when approximating fertilizer response functions containing two or more fertilizer
inputs or when intercropping is modeled. Approximations have also involved more complex production
functions, where the output is a function of multiple inputs. Second, following Dorfman (1953), this can
be used as a conceptual moddl. Often modelers include a number of activities for the production of a good
where the input combinations and outputs arise from experiments or observed behavior. In thiscase, oneis
representing the underlying production process without ever estimating it. Such a procedure is utilized in
Erhabor and Job.

A second question involves the manner in which grid points are chosen. Again, asin the separable
programming case, this is done in accordance with the problem. For example, when one knows common
levels of input use, one might construct several combinations of deviations from these numbersin small
increments. Thus, when fertilizer and herbicide are used commonly in the ratio 50 Ibs. fertilizer to 1 gallon
herbicide one might add 5 activitiesinvolving: 1) 1 gal. herbicide with 50 Ibs. of fertilizer; 2) 1 ga.
herbicide with 47.5 Ibs. of fertilizer; 3) 1 gal. herbicide with 45 |bs. of fertilizer; 4) 1 gal. herbicide with
52.5 |bs. of fertilizer and 5) 1 gal. herbicide with 55 Ibs. of fertilizer. In turn, the user should examine the
model solution and see if the solutions chosen use the most extreme ray for an input (e.g., the least amount
of herbicide possible per unit of fertilizer). In such a case one should consider entering aternatives
expanding the space represented. The representation is only satisfactory when the solution isinterior to the

cone of approximation points used and not on its boundary (Shapiro and Geoffrion provide theoretical
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explorations of related topics).
9.2.2 Iterative Approximations

In addition to the step approximation formulations above, there are a number of iterative
approximations which can be used. We will not cover these in depth; they are largely numerica
techniques. Those interested in aternative approaches should examine Zangwill's convex simplex method,
Dembo's geometric programming condensation method, or the methods reviewed in Himmelblau; Reklaitis
et a; or Bazaraa and Shetty.

We will explain one technique for illustrative purposes. The iterative approximation presented here
was developed by Griffith and Stewart and is based on the concept of a Taylor series expansion. This

method solves the problem

Max f(X)
gXxX) < b
L < X < G

J J

using afirst order Taylor series expansion. A first order Taylor series expansion assumes that a functional
value can be represented as afirst order expansion of the function evaluated at a base point plus the
derivative of that base point times the difference of X from the base point. The approximating problem

then is given by

Max f(X,) + dix f(X)) (X - X)

d
st. gi(x) = gi(xo) + d_X 9; (Xo) (X - Xo) < bi
L < X < G

i i
where given a base point X, we approximate the value at any X using aLP formulation to find the

difference from X, that the solution will move where dl of the termsinvolving X, are constants. Thisis

done by substituting in a variable p; such that

to obtain the LP problem
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d
Max f(X Y— f(X)u
( 0) + : dXJ- ( o)l'lJ

IN

d
Y — g(X K b - g(X

where the limits are developed relative to an exogenous parameter §;

Limj’

min[[ij, Xoj - Lj]

+

Lim

| min[[ij, GJ. - X

o)
Here the variables are given by
Xg ' = gt
Then, given any initial choice of variables at the k™ iteration, the variable at k™+1 iteration is equal to that
variable at the k™ iteration plus the optimal change variable value uj* . The change variables are artificially
congtrained to be limited by some quantity p;. It is desirable that this quantity becomes smaller as iterations
proceed.
9.2.3 Other Approximations
We have covered only afew of the approximations which are possible in the area of nonlinear
programming. There are also other approximations based on exatic transformations for various sorts of
problems; e.g., see Dembo; or McCarl and Tice. Many approximations may be used given specia problem
structures. Their use depends on the ingenuity of the modeler. What we have attempted to do above is give

some of the basic techniques and references.
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Table9.1.

Minimization of Sum of Absolute Deviations For mulation

€’ €1 €)' €5 €3 €3 €, €4 €' €5 N €5 b, b, b,
Obj 1 1 1 1 1 1 1 1 1 1 1 1 Min
1 -1 1 5 =10
2 1 -1 1 9 1 =5
3 1 -1 1 10 9 =4
4 1 -1 1 13 8 =2
5 1 -1 1 15 2 =6
6 1 -1 1 17 3 =9
9-23
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Table9.2.

Solution of Minimization of Absolute Deviation Sum Example

Objective function = 11.277

Variable Vaue Reduced Cost Equation Slack Shadow Price

€' 5.787 0 Obs 1 0 1
€5 0 2.000 Obs 2 0 -0.660
€ 0 1.66 Obs 3 0 0.191
€5 0 0.340 Obs 4 0 -1
€3 0 0.809 Obs5 0 -0.532
€3 0 1191 Obs 6 0 1
e 0 2.000
s 2.723 0
e 0 1.532
e 0 0.468
-~ 2.766 0
e 0 2.000
Bo 3.426 0
b, 0.191 0
b, -0.149 0
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Table9.3. Solution of Largest Absolute Deviation Example

Variables Vaue Reduced Cost Equation Slack Shadow Price
€ 3.722 0 1 0 -0.222
b, 7.167 0 r 7.44 0.0
b, -0.111 0 2" 4.89 0.0
b, 0.000 2.056 2 2.56 0.0

3 5.78 0.0
3 1.67 0.0
4* 7.44 0.0
4 0 -0.5
5 3.22 0.0
5 4.22 0.0
6" 0 -0.278
6 7.44 0.0

Table9.4. Solution to the Example for Optimizing a Fraction
Objective function = 0.2899

Variable Vaue Reduced Cost Equation Slack Shadow Price
Yo 0.032 0 1 0 0.342
Y1 0.042 0 2 0 0.042
Y, 0.126 0 3 0 0.290
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Table9.5. Solution to the Step Approximation Example

Objective function = 7.625

Variable Vaue Reduced Cost Equation Slack Shadow Price

A 0 -3.000 1 0 1.750
Ay 0 -1.500 2 0 2.625
Az 0 -0.500 3 0 5.000
Ay 0.5 0 4 0 2.625
A 0.5 0

X 0 -0.500

Y 15 0

B 0 -1.250

B, 0 -0.375

B3 1 0

Ba 0 -0.125

Bs 0 -0.750

Be 0 -1.875
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Table 9.6. Solution to the Constraint Step Approximation Problem

Objective function = 63.6

Variable Vaue Reduced Cost Equation Slack Shadow Price
X 23.2 0 1 0 3
M 0 -3.6 2 0 63.6
Ao 0 -1.2
As 1 0
Aa 0 0
As 0 -1.2
Ag 0 -3.6

Table9.7. Set of Y,, Y, Combinations for
Homogeneous of Degree 1 Example

X Y, Y,
29.7
168
59.4 4 1
Table9.8. Solution to Example Problem for Homogeneous of Degree 1

Objective function = 719.8

Variable Vaue Reduced Cost | Equation Slack Shadow Price
X 742.5 0 1 0 4
oy 0 -315.6 2 0 34.4
o, 0 -403.2 3 0 100
as 125 0
Y, 50 14.4
Y, 12.5 0
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Table9.9.

Approximations for the Homogenous of Degree L ess Than One Example

X

Yll

Y1

X

Y12 Y22 X Y13 Y23
21 1 1 29.7 2 1 25.0 1 2
59.4 49.9 2 70.6 8
80.5 6 6 67.7 6 3 95.7 6 12
118.1 10 10 99.3 10 5 140.4 10 20
Table 9.10. Formulation of the Homogeneous Degr ee L essthan One Example
Rows | X A Az A3 Aa Aoy Ao Ag Aoy A1 A Aas Aas Y, Y, RHS
Obj 0.5 -2 -2 max
X bal 1 -21 -59.4 -80.5 -1181 | -29.7 -499 -67.7 -993 | -250 -706 -95.7 -1404 =
1 4 6 10 2 4 6 10 1 4 6 10 -1 =
Y ba
1 4 6 10 1 2 3 5 2 8 12 20 -1 =
convex 1 1 1 1 1 1 1 1 1 1 1 1 <
Y lim 1 <10
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Table9.11. Solution to the Homogenous of Degree L ess Than One Example

Objective function = 19.651

Variable Vaue Reduced Cost Equation Slack Shadow Price
X 99.3 0 X bal 0 0.500
Ay 0 -5.506 Y, bal 0 2.850
A 0 -0.856 Y, bal 0 2.000
A3 0 0.000 convex 0 11.156
s 0 -0.606 Y lim 0 0.85
. 0 -4.006
. 0 -1.581
A3 0 -0.404
Aps 1 0.000
Aag 0 5519
A 0 -3.237
Aas 0 -4.384
Ay 0 -9.434
Y, 10 0.000
Y, 5 0.000
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Figure 9.1 Approximation of Homogeneous of Degree One Example

2

15
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CHAPTER X: MODELING SUMMARY

Now that L P theory and basic modeling have been covered, a number of additional considerations

involved with using models are covered, including variable and constraint types as well as L P assumptions.

10.1 Typesof Constraintsand Variablesin Linear Programming Models
In most text books the LP problem is vastly oversimplified when first defined. For example,

consider the problem

Max CX
st. AX <
X >

Where, the X's are defined as alternative production processes while the constraints (AX < b) are referred
to asresource limitations. However, the previous chapters show there may be many different types of
variables and constraints within such aformulation. This section devel ops a characterization of the various
possible types of variables and constraints which can be used.
10.1.1 Types of Constraints

Possible constraint types include resource limitations, minimum requirements, supply-demand
balances, ratio controls, upper/lower bounds, accounting relations, deviation constraints, and
approximation or convexity constraints.

10.1.1.1 Resource Limitations

Resource limitations depict relationships between endogenous resource usage and exogenous
resource endowments. A resource limitation restricts endogenous resource use to be less than or
equal to an exogenous resource endowment. An example of aresource limitation constraint is

33X, + 4X, < 7

This constraint requires the sum of resources used in producing X,, which uses 3 resource units per unit,
plus those used in producing X,, which uses 4 resource units per unit, to be no greater than an exogenous
resource endowment of 7 units. Resource usage depends on the values of X; and X, determined by the
model and thusis an endogenous quantity. Thistype of constraint appears in many of the formulationsin

Chapter 5, including the resource allocation problem.
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10.1.1.2 Minimum Requirements

Minimum requirement constraints require an endogenously determined quantity to be greater than or

equa to an exogenoudly specified value. A smpleillustration is

Xl+2X224

In this case the endogenous sum of X, plustwo times X, is constrained to be greater than or equal to the
exogenously imposed requirement of four. One may aso express this constraint in less-than-or-equal-to
form as

-X, - 2X, < -4
The minimum requirement often specifies that the model must meet exogenous demand through the
endogenous supply of goods. Thiskind of constraint is present in many different types of programming
models. An example appearsin the transportation model of Chapter 5.

10.1.1.3 Supply and Demand Balance

The supply-demand balance requires that endogenous supply be balanced with endogenous demand.
A typical exampleis

X, < X

1 2

This equation requires the endogenous demand for agood (X;) to be less than or equal to the endogenous
supply of that good (X,). After moving al the variables to the left hand side, the constraint becomes

X, - X, < 0.
More generaly, supply demand balances may involve exogenous quantities. Consider the inequality

2X, - X, < 3.
Here, the difference between endogenous demand (2X,) and supply (X,) is less than or equal to an
exogenous supply of 3 units. Thisinequality can also be expressed in the following form:

2X, < X, + 3
which says that the endogenous demand (2X;) must be less than or equal to total supply, which consists of
endogenous supply (X,) plus exogenous supply (3). A related situation occurs under the constraint

X, - 44X, < -2

Here, the difference between endogenous supply and endogenous demand is less than or equal to minus 2.

This can be rewritten as

X, + 2 < 4X

1 2

which states that endogenous demand (X,) plus exogenous demand (2) is less than or equal to endogenous

supply (4X,). In general, supply-demand balances are used to relate endogenous supply and demand to
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exogenous supply and demand. The genera caseis given by

Demandz, + Demandg, < Supply g, + Supplyg, -
Here, the sum of demand over endogenous and exogenous sources (respectively denoted by the subscripts
En and Ex) must be less than or equal to the supply from endogenous and exogenous sources.
Manipulating the endogenous variables to the left hand side and the exogenous items to the right hand side
gives

Demandz, - Supplye, < Supplyg, - Demandg, .

Here endogenous demand minus endogenous supply is less than or equal to exogenous supply minus
exogenous demand.

This constraint contains the resource limitation and minimum requirement constraints as special
cases. Theresource limitation constraint exhibits zero endogenous supply and exogenous demand. The
minimum requirement constraint exhibits zero endogenous demand and exogenous supply.

Supply demand balances are present in many of the examples of Chapter 7. The assembly,
disassembly, assembly - disassembly, and the sequencing problems all possess such constraints.

10.1.1.4 Ratio Control

Ratio control constraints require the ratio of certain endogenous variables to be no more than an
endogenous sum, possibly influenced by exogenous factors. Specifically suppose that a number of units of
X, haveto be supplied with every unit of X,. For example, aLP formulation of an automobile
manufacturer might require a constraint to insure that there are four tires for every car sold. Such a
situation would be modeled by

4X, - X, < 0
where X, isthe number of tires and X, the number of cars sold. In order for one unit of X, to be sold, 4
units of X; must be supplied.

The general case is depicted by

EN,y < P (Wey ENpy + ENgper + EXgr)-
where the left hand side elements are denoted with the subscript "rat,” and the right hand side elements
with "other." EN denotes endogenous variables and EX denotes exogenous constants. The parameter wgy
is nonzero only when the endogenous variables (EN,,) are part of the right hand side. The constraint
requires that the endogenous "rat" expression be less than or equd to p times the sum of the "rat” term or
variables plus the "other.” Manipulating this constraint so that all the endogenous variables are on the left

hand side gives
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(1 - pWen)ENg - P ENginer < P EXpther
This expression is rather abstract and is perhaps best seen by the example. Suppose we wish the variable
X, to be no more than 25 percent of X, + X,. Thus
X, < 2BX, + X)
Placing all the endogenous variables on the left hand side yields

75X, - 25X, < O

Consider another example which includes exogenous factors. Suppose that

X, + 3) < B2X, + 3X, + 10
this can be written as

S0X, - 7/BX, < -5
Here we have a reguirement between X; and X, and an exogenous constant appearing on the right hand
side. Findly, if the endogenous variables do not appear on the right hand side (for example, where X, is
less than or equal to one-third the sum of X, + 4X,) then the inequality would be manipulated to state:
EN,. - pEN_ < O

Rat oth

within the example context yields
X, - U3, - 43X, < 0
Thisis an example where the w'sin the ratio control constraint are zero.

This particular constraint type is a special case of the supply/demand balances. It is not used
explicitly in any of the general formulations, but would also be used in afeed problem formulation where
the quantity of feed to be produced was not exogenously given (i.e., on the right hand side) but rather was
an endogenous variable.
10.1.1.5 Bounds

Upper and lower bounds have important implications for the performance of the smplex agorithm.
Upper bounds are resource limitation constraints, however, they only involve asingle variable. Similarly,

lower bounds are minimum requirement constraints on asingle variable. Examples are
X, < 4

X, > 2.
1
Such constraints are usually exploited by LP solvers so that they do not enter the basis inverse.

10.1.1.6 Accounting Relations
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Accounting relations are used to add endogenous sums for model solution summary purposes. These
relations are used for modeler convenience in summarizing a solution (i.e., adding up total labor utilized by

crop). Accounting relations can be depicted as either

n n
Y AX > 0 or > AX - S =0
. i . i
j=1 j=1

In the first case the surplus variable would equal the sum of AX (assuming AX isaways
non-negative). The second form of the equation simply introduces an accounting variable which takes on
the value of the sum. Accounting relations are discussed in the purposeful modeling section.

10.1.1.7 Deviation Constraints

Deviation congtraints are used to devel op the endogenous deviation of a particular sum from a target

level. The genera format of these constraintsis as follows:

Ygx + Dev =T,
i

Here T, isatarget level and Dev, is a deviation variable indicating the amount the endogenous sum

(Y’ g;x;) deviates (as measured by the deviation variable Dev;) from the target level (T;). The deviation
congtraint concept is utilized in the nonlinear transformations involving absolute value, multi-objective
programming, and risk modeling.

10.1.1.8 Approximation or Convexity Constraints

A convexity constraint requires the sum of a set of variablesto be equal to or possibly less than or
equal to one. These are commonly used in approximations such as those under the separable programming
section of the nonlinear approximations chapter.

10.1.2 Types of Variables

There are many different types of variables. Production, sales, purchase, transformation, slack,

surplus, artificial, step, deviation and accounting variables are discussed in this section.

10.1.2.1 Production Variables

Production variables depict the production of outputs from inputs. Such avariable is represented by

X, inthe LP problem
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(1) Max aX, ~ X, - gX, - iX - mX, - Xy ¢+ X

(2 st. X, - DbX, < 0
3 cX, - X + 5 < 0
4 eX, - X < f
(5) hX, - X, < 0
(6) X, - Xg =0
(7) kX, - X, o+ X = T
(8 -pX,, + Xy < 0
9) rX, < b

X >0

Note that X, produces items which are transferred into the equations (2) and (8). The X, variable also uses
inputs from equations (3) and (5) and utilizes a fixed resource which is represented by (4). Thus, X,
depicts a multi-factor/multi-product production process. Production coefficients do not aways explicitly
appear in the constraint equations; rather, production may simply yield revenue in the objective function as
in the resource allocation and sequencing problems. Production activities may also use inputs which have
pre-specified costs, thus the objective function coefficients may involve revenue and/or cost terms. The
purposeful modeling section provides such an example.

10.1.2.2 Sales Variables

Sales variables reflect the sale of an item at an exogenously determined price. For example, variable
X, in the above tableau depicts the sale of an item at price a, where the item is drawn from the
supply-demand balance that relates X, to the production activity X, (equation (2). Xgisalso asaes
variable. Sales variables appear in numerous examples above. For example, see the assembly-
disassembly and joint product formulations.

10.1.2.3 Purchase Variables

Purchase variables depict the purchase of items at exogenously specified prices with the items made
available for use within the model. Examples of this type of variable are X; and X, above. For example,
one unit of X; yields one unit of supply to the supply-demand balance equation (3) and enters the objective
function with a coefficient of -d. Purchase activities areillustrated in the assembly formulation.

10.1.2.4 Transformation Variables

Transformation variables transform the location, time availability, unit or form characteristics of an
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item (although other inputs may be required to do this). Examples of such variables include transportation
variables which alter location, storage variables which alter time availability, unit transformation variables
that convert the units from, say tons to pounds, or variableswhich transform a good from one form to
another, possibly with the addition of other inputs. An example of thistype of variable includes beef
slaughter, where pounds of beef on the hoof are converted into hanging carcass beef.

The variable X5 in the LP example given by (1) - (9) is atransformation variable depicting
transformation at per unit cost | of the resources in constraint (3) into the resources in constraint (4).
Transformation variables appear in the storage and transportation examples.

10.1.2.5 Slack Variables

Slack variables represent the amount of excess resources (i.e., resources which are unused in
production). Ordinarily, they have a zero objective function coefficient and a plus one entry in asingle
congtraint. Slack variables are defined in association with less than or equal to constraints representing the
extent to which the endogenous quantity is less than the right hand side. Slack variables do not play alarge
role in model formulations (although deviation and accounting variables are forms of dack variables).
However, dack variables can play an important role in solution interpretation. Modelers should check
which resources are left unused (with non-zero slack) and question whether such a situation is reasonable.

10.1.2.6 Surplus Variables

Surplus variables are analogous to dack variables; they have zero objective function coefficients and
a coefficient only in one particular row. They represent the amount that the left hand side of a congtraint is
greater than the right hand side. Surplus variables do not ordinarily play alarge rolein applied modeling.
However, they may be important in the interpretation of the solution of amodel. For example, the
magnitude of a surplus variable may indicate the extent to which over-production occurs above a minimum
requirement.

10.1.2.7 Artificial Variables

Artificial variables are most often utilized to make an infeasible problem feasible, allowing the
violation of equality constraints or minimum requirements. Artificial variables ordinarily have alarge cost
in the objective function and a coefficient in the particular row with which they are associated. However,
artificial variables can play arole in applied modeling. For example, artificial variables can be used to
prohibit an infeasible solution from arising in solvers. Artificial variables also play an important role in

discovering the causes of infeasibilities, as discussed in the chapter on debugging models.
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10.1.2.8 Step Variables

Linear programs may involve the approximation of nonlinear phenomena. Step variables are often
used in such approximations. One may, for example, utilize step variables to represent different portions of
an increasing cost function. Step variables receive their name from their portrayal of nonlinear functions as
aseries of piece-wise linear steps. Step variables appear in the separable programming formulations.

10.1.2.9 Deviation Variables

Deviation variables tell the amount by which an endogenous sum deviates from atarget value. Such
variables are illustrated in the LP model given by (1)-(9) by X, or Xg. For example, in equation (7), these
variables indicate the amount kX, deviates from the target value T. The variable X, gives the amount that
the sum is over the target while the variable X, gives the amount the sum is under the target. These
variables are analogous to surplus and dack variables; however, they may have an objective function
coefficient which reflects costs or revenues associated from "missing” the target. These variables will work
properly aslong as the objective function is properly structured as explained in the multi-objective
programming chapter. Deviation variables are also an important part in the LP approaches to regression
(as used in the absolute value formulation) and in the MOTAD formulation.
10.1.2.10 Accounting Variables

An accounting variable is typically used to indicate the value of endogenous sums so that the analyst
need not manually summarize the solution. The variable X, in equation (6) is an example of this type of

variable. These variables are also prominently featured in the section on purposeful modeling.

10.2 " Violations' of the Algorithmic Assumptions

The agorithmic assumptions of LP hold for individual variables within alinear program but not
necessarily for the total process represented. Thus, modeling techniques can be used to generate
formulations which, for practical purposes, invalidate the algorithmic assumptions. Let us consider models
which nominally appear to violate each of the algorithmic assumptions.
10.2.1 Nonproportional Example

It is possible to satisfy the agorithmic assumptions regarding proportionality while formulating
nonproportional problems. For example, suppose a production process exhibits diminishing returns to

scale (i.e., doubling the level of inputs does not double the output). This may be modeled as follows:
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Max 10Y -z, - 8,

st. Y - 6X;, - 12X, < 0
3X, + X, - Z, < 0

4X;, = 4x, - Z, < 0

X, < 4

X, < 4

Y, X, o Z, Z, > 0

In this model, asingle output Y is produced from two production processes depicted by X, and X, with X,
and X, upper bounded at four. The production processes utilize two inputs denoted by Z, and Z,. Variable
X, uses three units of the first input and four units of the second input and produces six units of the output
Y. Variable X, uses the same mix of inputs, but produces 1.2 units of output which is one-fifth the amount
produced by X;. When inputs are used in the combination 4 units of the second input to 3 of the first, then
for any combination between zero and 12 units of the first input (along with 16 units of the second), six
units of output are produced per 3Z, and 4Z, used in combination. However, after using 12 units of Z, and
16Z,, the production process X, must be used yielding a marginal product of 1.2 units of production for the
inputs used in the same proportion. In this example, doubling the level of input usage does not result in a
doubling of output, but rather in only a 20 percent increase.

Are the agorithmic assumptions violated? Yesand no. They are not mathematically violated but
they are conceptually violated. The assumptions hold for the individua activities, for example, going from
X, =.510 X; =1 would involve the doubling of the inputs, and a doubling of outputs. However, because
of the upper bound constraint on X, the solution X, = 4 isfeasible, the solution X, =8 is not.

Consequently, the model must use X, yielding less output per unit of input.

In general, the proportionality assumption can be relaxed using multiple variables. The joint product
section of chapter 7, as well as the separable programming and nonhomogeneous of degree one sections of
chapter 9 provide further examples. Formal relaxation of this assumption is done through a number of
techniques including integer, quadratic, and nonlinear programming. A reconciliation of LP modeling with

the concept of diminishing returnsis presented in the separable programming sections.
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10.2.2 Non-Additive Example
Models may also be constructed which appear to violate the additivity assumption. Suppose a

production process involves two inputs which can be substituted in production. This may be modeled as

follows:
Max 3Y
st. Y - 2X;, - 2X, - 2X; < 0
4X, + 2X, + X3 < 1
X, + 2X, + 4X; < 1,
Y, X X, > 0.

1’ 2!

Note this formulation depicts the production of Y using production processes X, X,, or X5. Each process
produces 2 units of Y; however, inputs are used in different proportions. X, uses four units of input 1 and
one unit of input 2; X, utilizes equal combinations of the two inputs, while X, uses one unit of input 1 with
four units of input 2. The formulation is constrained by input availability where the quantity inputs
available are designated asr; and r,.

Now let usillustrate the nonadditive nature of this formulation. Suppose equa amounts of the inputs
are available (r, = r,), then it would be optimal to produce in a pattern utilizing the inputs in equal
proportions. Note that by producing X; and X, in equal amounts, the inputs would be used in equal
proportion, i.e., setting both variables to one would produce 1.6 units of output while utilizing 2 units of
inputs of r, and r,. Thus, 1.6 units of output are attained when using 0.4 units of each variable. However,
when activity 2 is utilized at |east two units of output are produced when using two units of each input.
Total input usage is the same in both cases, however, more production arises out of the second production
process then by adding the output of the first and third process. Thus, we get more out of using the inputs

together, f(X + Y), than we do separately, f(X) + f(Y).

Does this violate the algorithmic assumptions? Within the model the production processes are
strictly additive. Combination of any group of X's leads to an additive output effect. However, by utilizing
different variables, a production process may be represented which is not strictly additive. Thus, one can
usually handle nonadditive cases between variables by including "better" variables which are more

productive (i.e., X, above). Nevertheless, the additivity assumption always holds for the individual
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variables. 1t may not hold for the model through the combination of variables. This assumption isformally
relaxed by the models covered in the nonlinear, price endogenous and risk chapters.
10.2.3 Uncertainty Examples

The certainty assumption may also be relaxed. Suppose we model a production process involving, a
cost of $3 in period 1 but that, in the second time period we are uncertain about how much of the product
will be produced (e.g., harvested). Suppose that one of two uncertain events can occur in the second time
period: no more than 2 units of the product may be sold for a price of $5.00 with a probability of .3 or no
more than 3 units of product could be sold at a price of $4 with a probability of .7. This problem may be

formulated as a classical so-called two-stage optimization problem (Dantzig, 1955). The formulation is

Max -3Y + .3(6X,) + .7(4X,)

st. -Y + X, < 0
X, < 2

-Y + X, < 0

) < 3

Y, X X > 0

In this formulation a certain cost of $3 is incurred when using variable Y. In turn, the production of Y
permits sale under the two probabilistic events. The amounts sold are denoted X, or X, depending upon the
event. Resources cannot be shifted between X; and X, (i.e., they are two mutually exclusive states of
nature), thus, there are independent limits on the sale of X, and X,. However, Y precedes both. The
objective function reflects the maximization of expected profits which are the expected revenue from sales

lessthe cost of Y.

Thus, this formulation explicitly includes uncertainty. But, isthe certainty assumption violated?
Again, this formulation simultaneoudy satisfies and violates the a gorithmic assumptions of LP. We have
incorporated uncertainty within the formulation, but each variable contains certain coefficients. However,
the overall model represents production under uncertainty. The uncertainty problem has been expressed in
a problem where the model is certain of the uncertainty. Additional certainty assumption relaxations are
discussed in the risk chapter. The specific example above is a sequential uncertainty, discrete stochastic or

two-stage stochastic programming with recourse problem.
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10.2.4 Noncontinuous Example
The continuity assumption when violated involves decision variables which are integer valued by
nature (i.e., the number of cows, for instance). This maybe relaxed by rounding when in the optimal

solution

the integer variables have very large values. A problem of thistypeis asfollows:

The solution without the requirement that X, and X, be integer is X, = 4,666 2/3 and X, = 5,333 1/3.
The model user might be willing to round this solution interpreting the solution as producing 4,667 of the
first product and 5,333 of the second. Thiswould clearly not be the optimal solution but might be practical
and "close enough."” Note, however, that the answer 4,667 and 5,333 dlightly violates the second
congtraint. Nevertheless, decision makers might be willing to adopt this solution. In apractical problem
this answer might even be interpreted as 4,700 and 5,300.

The continuity assumption is not practically relaxed other than by rounding large solution values or

by solving an integer programming problem.

copyright Bruce A. McCarl and Thomas H. Spreen 10-12



References

Baker, T. and B.A. McCarl, "Representing Farm Resource Availability over Timein Linear Programs. A
Case Study." North Central Journal of Agricultural Economics, 4(1982):59-68.

Dantzig, G.B. "Linear Programming Under Uncertainty.” Management Science. 1(1955):197-206.

Dantzig, G.D. and R.M. Van Slyke. "Generalized Linear Programming.” Chapters in Optimization
Methods for Large Scale Systems, D.A.Wisner, (ed.). McGraw-Hill: New Y ork, 1970.

Heady, E.O. and W.V. Candler. Linear Programming Methods. Ames, I1A: lowa State University Press,
1958.

Lasdon, L. Optimization Theory for Large Systems. MacMillan: New Y ork, 1970.

McCarl, B.A. "Degeneracy, Dudlity, and Shadow Pricesin Linear Programming.” Canadian Journal of
Agricultural Economics. 25(1977):70-73.

McCarl, B.A., W.V. Candler, D.H. Doster, and P.R. Robbins. "Experiences with Farmer Oriented Linear
Programming for Crop Planning." Canadian Journal of Agricultural Economics. 25(1977):17-30.

Murtaugh, B. and M. Saunders. "MINOS 5.0 Users Guide." Technical Report SOL 83-20 Stanford
University, 1983.

Orchard-Hays, W. Advanced Linear Programming Computing Techniques. New York: McGraw-Hill,
1968.

Schrage, L.E. Users Manual for LINDO. Palo Alto: The Scientific Press, 1981.

copyright Bruce A. McCarl and Thomas H. Spreen 10-13



CHAPTER XI: MULTI-OBJECTIVE PROGRAMMING

Optimization of a single objective oversmplifies the pertinent objective function in some potentia
mathematical programming application situations. Arguments can aso be made following Simon that
optimization is not as appropriate as statisficing. These two statements introduce the general topic of
multiobjective programming. Multiobjective programming formally permits formulations where: @)
solutions are generated which are as consistent as possible with target levels of goals; b) solutions are
identified which represent maximum utility across multiple objectives; or ) solution sets are devel oped
which contain all nondominated solutions. Multiple objectives can involve such considerations as leisure,
decreasing marginal utility of income, risk avoidance, preferences for hired labor, and satisfaction of
desirable, but not obligatory, constraints.

A discussion of this area requires some definitions. An objective is a measure that one is concerned
about when making a choice among the decision variables (something to be maximized, minimized or
satisfied like leisure, risk, profits, etc.). A goal impliesthat a particular goa target value has been chosen
for an objective.

We will use "multiple objective programming" to refer to any mathematical program involving more

than one objective regardless of whether there are goa target levelsinvolved. Note, the literature contains
conflicting definitions (see Blake and McCarl; Ignizio [1978,1983]; Romero [1989, 1991]). For example:
a) goa programming has been used to refer to multiple objective problems with target levels; b)
multiobjective programming has been used to refer to only the class of problems with weighted or
unweighted multiple objectives; c) vector maximization has been used to refer to problemsin which a
vector of multiple objectives are to be optimized; and d) risk programming has been used to refer to
multiobjective problems in which the objectives involve income and risk.

Multiobjective programming involves recognition that the decision maker is responding to multiple
objectives. Generally, objectives are conflicting, so that not all objectives can simultaneoudly arrive at their
optimal levels. An assumed utility function is used to choose appropriate solutions. Several fundamentally
different utility function forms have been used in multiobjective models. These may be divided into three
classes: lexicographic, multi-attribute utility and unknown utility.

The lexicographic utility function specification assumes the decision maker has a strictly ordered

preemptive preference system among objectives with fixed target levels. For example, a lexicographic
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system could have its first priority goa as income of not less than $10,000; the second priority as leisure of
no less than 20 hours a week; the third as income of no less than $12,000, etc. Thisformulation is typical
of "goa programming models." (Charnesand Cooper (1961); Lee). The various goals are dealt with in
strict sequential order - higher goals before lower order goals. Once agoal has been dealt with (meeting or
failing to meet the target levdl), its satisfaction remains fixed and the next lower order goa is considered.
Consideration of the lower level goals does not alter the satisfaction of higher level goals and cannot
damage the higher level goals with respect to target level attainment.

Multi-attribute utility approaches allow tradeoffs between objectives in the attainment of maximum

utility. The most common form involves maximization of the sum of linearly weighted objectives. This type of
formulation has been used by Candler and Boeljhe; and Barnett, Blake and McCarl.

The third utility approach involves an unknown utility function assumption. Here the entire Pareto

efficient (nondominated) solution set is generated so that every solution is reported wherein one of the multiple
objectivesis as satisfied asit possibly can be without making some other abjective worse off (Steur, Geoffrion
(1968)).
11.1 Formulations
All of the above utility functions can be expressed in terms of the following problem. Assume there are
multiple objectives which are given by
GX
where there are J decision variables (X) and R objectives. Thus, the matrix G is of dimension R by Jwhile

XisJby 1. These objectives can aso be expressed in summation notation as

Xg, X, for dl r
J

When target levels are added, the objectives become
GX>T
The general goal programming problem, then, is asfollows:

Sdlect X so that we
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optimize or achieve GX

st. AX < b
Possibly subject to GX >
X >0

Here the normal LP objective function is replaced by a more general function which permits use of different
utility function forms (it is difficult to write the Pareto utility function in this form). The problem involves
selection of the X's. The selection is driven by either optimization of some weighted tradeoff of objectives
or through lexicographic achievement of various goal target levels. The specific formulations used for each
of the above utility function specifications are given below.
11.1.1 L exicogr aphic Utility - Target Values

Perhaps the first application of multiobjective programming was the Charnes and Cooper goal

programming formulation. The formulationis: Select X so that

AX < Db
X >0
and so that the goals are handled in the following priority order:
nglj X, > T,
then
_Egzj X, = T,
i
on through to
ngRj X, > Tq

for the R" and last goal.

The lexicographic multiple objective formulation is not precisely aLP problem. It has many
structural characteristics in common with a LP problem; however, a conventional objective function is not
defined, nor can asingle LP formulation reflect imposition of the sequentia ordering of the goals. Rather,
an iterative procedure is needed (Lee). Essentialy, the approach is to solve problems for each of the goals

sequentially. When considering the i goal solve the problem
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Min  w.

st.  w, + d| > T, for dl r
o, - Xg,X; = 0 for &l r
i
Ya, X, < b, for dl m
J
W, < w,’ for dl r <i
W, < o0 fordlr >
W, XJ. > 0 for dl jand r
gl, unrestricted for al r

The new variable w, gives the amount that the goal level (Xjn.x J.) islessthan the target value (T,), while gl,
isthe current level of goal r. When i = 1 the problem minimizes the shortfall from the first goa target
level, subject to the LP constraints. One of two solution situations will then occur. Either the optimum
value of w;, (denoted w',) equals O, indicating full satisfaction of the first goal, or w'; # 0, indicating the
goal cannot be fully satisfied. Subsequently, a second problem is solved. This problem isvirtually
identical to the first, except w, is minimized and a constraint is appended indicating that w, cannot be any
worse than the optimum value obtained at the end of the solution of the first stage (w;). This requires: 1)
if goal 1 was met before, then goa 1 will continue to be met (i.e., w, must be less than or equal to zero); or
2) if god 1 was not met, then the deviation from goa 1 will not get bigger than the minimum deviation
obtained at the previousiteration. Thus, the prior objective is constrained to be no worse off than it was
before. This problem, in effect, explores alternative optimums where we hold the prior objectives at their
optimum values, then try to optimize the satisfaction of the subsequent objectives.

This procedure is executed for all R goals where different deviation variables are minimized at each
stage and a congtraint is added holding al previous deviations to maximum values prohibiting the earlier
objectives from becoming worse off. Lee presents a more comprehensive discussion of the procedure while
the example below gives an empirical application.

11.1.2 Utility Tradeoff M odd

The second utility function type involves tradeoffs between various objectives. Such problems can be
formulated as conventional linear programs. There have been two alternative formulations of this problem.
They differ in their assumptions about target levels. The first formulation (appearing for example in

Candler and Boeljhe) does not take into account target levels, maximizing the weighted sum of the
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guantities of each objective. Thisis

Max
—ng”.xj - d
_—
J.Eamjxj
X;
al,

Yc.q,

N rqr

A

unrestricted

for dl r

for dl r

for dl m

for dl jand r
for dl r

where ¢, isthe weight which expresses the importance of the r'" objective in the context of the decision

maker's total utility and N, is a normalizing factor which converts the goa values so they are valued

somewhere around one.. The ¢, coefficients would be in utility units per percent deviation from full

satisfaction at the normalizing factor for the r'" objective achieved; gl, is the amount of r'" objective in the

optimal solution and g, is the proportional satisfaction amount of r' objective relative to the normalizing

factor.

The objective function, maximizes multi-dimensional utility summed across all objectives. Each

objective isweighted. The second equation sums the level of each objective into the variable gl,. The third

expresses satisfaction in terms of the normalizing factor. The fourth represents resource availability

limitations, the fifth expresses nonnegativity constraints and the sixth allow the goa level to be positive or

negative (note the normalizing factor must be of the appropriate sign).

The second weighted tradeoff formulation embodies goal target levels. The formulation is

Max

st.  Xg,X; - d|
J
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0 for dl r
T, for dl r
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0 for dl j and r
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where T, isthe goal target value for objectiver, ¢* is the weight attached to overachieving objectiver
relative to its target, ¢ isthe weight attached to underachieving objective r relative to its target, g, isthe
level of the rth goa attained, g," is the proportion that the target for objectiver is overachieved, and g is
the proportion that the target for objective r is underachieved.

Thisisagain alinear program. The formulation is adapted from Lee and isused in Barnett, et al.
(1982).
11.1.3 Unknown Utility Function

The other approach to multiobjective programming involves an unknown utility function assumption.
Instead, the entire nondominated set of aternatives is generated. The formulation for this approach is
exactly like the first one under the weighted tradeoff section above except that al possible weights are
utilized in the problem. This particular approach has been studied extensively, (see, for example, the
bibliographies in Steuer; and Ignizio, 1983) but does not appear to be very empirically useful.

11.2 Examples

A common example is used to demonstrate the above formulations. However, we will omit coverage
of the unknown utility function model as its solutions would be rather extensive and its use has been
limited.

The example builds upon the chair example used in the resource all ocation section of the linear
programming chapter. Suppose that the firm isinterested in profit, idle labor, and idle lathe timein

formulating its goals. Thus, the firm values leisure and dack lathe time as well as profits.

11.2.1 Lexicographic Formulation

The lexicographic formulation will be based on four different goals. The first god is that the profit
be greater than $9,000, the second that idle labor be greater than or equal to 30 hours. The third isthat idle
lathe time be greater than or equal to 25 hours and the fourth, that profit be greater than or equal to $9,500.
The formulation of this problem with the deviation variablesincluded is given in Table 11.1.

The approach in solving this problem is as above. First, the deviation from the $9,000 profit target
level will be minimized. Thisresultsin adeviation of zero. Subsequently, when minimizing the deviation
from theidle labor goal, a constraint is entered alowing zero deviation from a profit level of $9,000. Then
we precede to consider idle lathe time holding the profits and idle labor goal achievement constant.

The GAMS implementation is given in Table 11.2 and file LEXICO. We have introduced profit

accounting in line 67 through 69. Also, we have introduced slack variables accounting for idle resources
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(lines 71-73). Thefour goas are modeled in lines 75 through 79 where the idle large and small lathe time
is added and set equal to the goal level in line 79. In turn, line 80 relates the goal levelsto their associated
targets. Namely, the goal achievement level plus a deviation variable to make up the shortfall is set greater
than or equa to the target. The constraints defined in line 82 then restrict the goal shortfall to be lessthan
or equal to an acceptable deviation level.

The lexicographic approach isimplemented in lines 85 through 96. The initia allowable deviations
are set to alarge number in line 30. The loop from lines 86 through 95 sets up the problem for each goal
changing the objective function weights then solves. Subsequently, the maximum allowed deviation for
future iterationsis set equal to the shortfall. Report writing statements (lines 92-94) summarize the
solution.

The solutions are presented in Table 11.3. Four solutions are involved, each arising when the goals
areindividually considered. In thefirst solution, the $9,000 profit goal is easily attained while the labor
and lathe time goals fall short with 4.024 units of idle labor and 17.073 units of idle lathe time. This plan
has 12.195 units of functional normal chairs being produced and 108.337 units of fancy normal chairs.

In turn, when the idle [abor problem is setup with the profit deviation restricted (w, < 0), the solution
exhibits profits of $9,482 full attainment of the idle labor goa but the lathe goal is now 20.641 units short
and we are $18.421 short of the $9,500 profit goal. Thisis achieved with production of 115.296 fancy
chairs and 3.289 fancy chairs with maximum large lathe use.

Now turning to the idle lathe time problem, we constrain w, < 0 and w, < 0 then solve. Here we fully
attain the $9,000 profit and idle labor goals but fall 4.337 units short of theidle lathe time goal. Profit is
now $9,000. This planisachieved by producing 15.152 units of functional normal chairs and 99.811 units
of fancy normal chairs.

Finally, turning our attention to the last goal we find that we can not make any progress on it and
have a solution which is equivalent to the solution in the step before.

The above results show the action of alexicographic solution. Namely, the $9,000 profit goal was
satisfied and held satisfied throughout the process while the $9,500 profit was not considered until the last
step and the $9,500 profit goal was only pursued when the other goals had been held at their satisfaction

levels and as a conseguence no progress could be made.

11.2.2 Weighted Tradeoff - No Tar gets

One version of the weighted tradeoff formulation does not contain targets. We will follow the
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theoretical formulation but will also include weights and normalizing factors. The normalizing factors are
used so the goal magnitudes are approximately equal. Namely, we divide the profit goal through by
10,500, the labor goal by the labor resource availability and the total lathe goal by the lathe resource
availability. Thisthen will convert all of these goal numbers that range over O to 1 and alow relative
weightsto be used. In turn, the weight for profit equals one, while the weight for idle labor and lathe time
both equal 0.4. The resultant formulation isin Table 11.4 and the GAMS instructionsin Table 11.5 (file
WEIGHT). Notice in the GAMS formulation the weight and normalization data are defined in lines 23-27,
while the goal setup is essentially the same asin the previous example. The main variant is that the goal
levels are normalized in lines 67-69 and the objective function is the sum of the goal weights times the goal
levels (line 57).

The resultant solution to this problem is that 2.44 functional normal chairs are made while 112.2
fancy normal chairs are made and 6.829 fancy chairs with maximum use of the large lathe. The profit goal
isachieved at a.92 level of the 10,500 normalization level ($9,674) while the labor godl is achieved at a
0.217 level leaving 27.06 hours of labor idle. Theidle lathe time variable equals 0.

11.2.3 Weighted Objective and Targets

Finaly, let us consider the unified target levels and weighted tradeoff formulation. Here we will use
the same target levels as in the lexicographic model, but introduce weights where we value profit at a
weight of oneif it is more than the first goal and at -10 unitsif it islessthan that. Idle labor and lathe time
areweighted at 0.1 if they are greater than their target level and -0.4 if less. Finally, the profit in excess of
$9,500 isvalued at .9 and less than that at -1. The goals are normalized by multiplying the deviation
variables by the target value. Thisformulation is portrayed in Table 11.6 with the GAMS instructions in
Table 11.7 (seefile WTTAR). Noticein thisformulation both positive and negative deviations are defined
and the objective function both reflects shortfalls and excesses. The solution shows profit equals $9,000,
idle labor 25.08 units, and idle lathe time 25 units. This makes for alabor shortfall of .164 units and a
profit shortfall of .05.

11.3 Choice Among Formulations
An important question given the dternative formulationsis. which one should be used for a problem?
There are several general considerations involved in choosing among these formulations.
Thefirst consideration is solver availability. Traditionally, the undominated approach requires a

specially adapted solver. Such adaptations have been implemented (Steuer) although they are not routinely
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available for more than small problems. In addition, the undominated set approach can be quite expensive
computationally (Steuer). Thus, this criteria favors the weighted tradeoff or goal formulations where one
could use standard algorithms.

Second, one needs to consider the required amount of decision maker contact, particularly if the
model is being used for predictive purposes. The undominated solution aternative would not be
satisfactory in alimited contact setting as it requires active choice of the "best" strategy by the decision
maker. Thiswould be particularly troubling in many predictive exercises as the methods would generate a
large number of answers, any of which could be the solution depending on decision maker choice.

Third, the treatment of goal target levelsis difficult in comparative static exercises. It isdifficult to:
1) specify goal target levels and 2) conclude that the goal target levels do not depend upon the resource
base. Certainly, an income goal is easier to satisfy if the resource base is augmented. Thus, the
lexicographic utility function formulations are not scale neutral. Many LP models are built to do
comparative static studies, such as what would happen if larger equipment were available, more land area,
labor, etc. This causes difficulties in using comparative statics with the weighted tradeoff model using
fixed goal target levels or the lexicographic model.

Fourth, weights are difficult to discover. A complex questioning or calculation procedure is required
(we review procedures for establishing weights below). Further, the use of constant weights over the entire
domain of goal levels may be questionable. Procedures for including diminishing margina utility would
involve quadratic or separable programs as covered in other chapters.

All things considered, we prefer the weighted tradeoff model due to its consistency with our
perceptions that individuals are willing to establish tradeoffs between objectives on the margin and that
most models will be used for comparative static analysis.

11.4 Developing Utility Functions

Conceptually, multiobjective programming problems look attractive. However, assuming one knows
the objectives, it isdifficult to specify the utility structure. Clearly, thisis not a problem with the
undominated solution procedure as there are no weights. On the other hand, one puts al the aternative
solutions in the decision maker's lap, which could involve thousands of solutions. Here we address how to

find the utility function for the other formulations.

The easiest system to useis the lexicographic system, where one has to establish goal targets and the

preemptive order. Targets such as the minimum amount of debt service plus consumption or the desired
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length of avacation can be used. However, one must be careful in using these targets in comparative static
analysis, as the relative ability to satisfy the targets changes with alterations in the resource base. Also,
one must ask whether tradeoffs are in order.

Weights are more difficult and are the subject of the bulk of the discussion herein. The first way of
specifying weightsis to take decision makers past actions and then through a grid search over dternative
weights, choose weights so as to minimize deviations of the model solution from observed actions. An
exampleis given by Brink and McCarl for arisk anaysis problem. We know of no formal attempt to do
thisin other than arisk analysis framework. The advantage here isthat one obtains weights which are
somehow consistent with revealed preferences. However, in aLP problem there is arange of weights
which will generate the same solution. It istherefore possible that the proper set of weights is somewhere
within the range, but that the wrong set of weightsis chosen. In turn, this set of weights could lead to
dramatically different behavior in a comparative static study.

A third procedure involves survey techniques. Here decision makers are asked questions about the
relative importance of objectives and then through a scaling procedure a set of objective weightsis
obtained. Thiswas done by Barnett, Blake and McCarl; Smith and Capstick; and Harman, et al. Two
difficulties arise with this procedure. First, there is no assurance that the surveys generate results which
mimic actionsin actual situations. Second, it is difficult to trandate the results into the proper specification
of the programming model objective.

The fourth procedure we discuss was proposed by Candler and Boehlje and applies to the weighted
tradeoff models. The procedure involves interaction with the decision maker and is based on revealed
preference. To begin the process, modelers choose an initial set of weights and present the answers to the
decison maker. In turn, the decision maker expresses preference for a change in the objective satisfaction
levels (i.e., the decison maker could argue that there was insufficient income and excessive risk). The
modeler would then alter the weights on those objectives and rerun the model. The process would continue
until the decision maker was satisfied. This approach has the advantage of obtaining goal weights
consistent with the decision maker's preferences and the potential disadvantage of obtaining the proper

output with the wrong set of goal weights, leading to improper solutions when one is doing further analysis.
Finally, we must comment that there is no real way to abstractly set up a multiple objective model.
The weights for the multiple objectives clearly require interaction with the decision maker.

11.5 Shadow Prices

copyright Bruce A. McCarl and Thomas H. Spreen 11-10



Much discussion has been devoted in previous chapters to shadow prices but little here. Inthis
section we explore the meaning of shadow prices in aweighted multiple objective problem and derive
meaningful shadow prices.

The shadow prices for a weighted multiobjective problem nominally give the marginal change in the
weighted utility of amarginal right hand side change. The weighted utility is a multi-dimensiona utility
measure constructed as the sum of the individual objectives times their weights. However, one must ask
how useful it isto know the expected change in this multi-dimensiona utility function. This ordinarily
would probably not be terribly useful as decision makers will be more interested in knowing what happens
to the specific objectives. Mathematically, the effect on the specific objectives may be derived as follows.
The first weighted multiple objective function with the normalization factors set to one and the equality

constraints substituted out becomes:

Max Xw, (Egﬂ.xj)
r j

st. Xg,X, < b fordl k
]
X, >0 for dl |
Rearranging, we obtain
Max J_E(rEwrg”.)Xj
st. Xg,X; < b fordl k

X > 0 fordlj

Vv

Note that each variable X; has an objective function coefficient which is the sum of the weights timesiits

relative goal contributions. This can be collapsed using

CJ = (Ewr grj)

or, in matrix terms,
C=WG
We now turn our attention to shadow prices, given by
U=C,B?
The Cg terms within the multiobjective programming model are given by the multiplication of goal

weights times the goa levels involved with the basic variables
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where the superscript b on the g terms refer to the coefficients associated with the basic variable in the
various objectives.

The shadow price term can be rewritten as

U=CyBl=W G, B?

Here, the term G B gives an unweighted set of shadow prices, each column of Gg B™* shows how each
objective function is affected by right hand side changes. Practically, these shadow prices could be
obtained analytically from small problems and from larger problems by employing the solver starting from
the optimal solution which can do a pricing pass but does not optimize (doing zero iterations).
11.5.1 Example

Suppose we were to maximize the following multiple goal objective problem

and we are willing to assume that the weights are each 1. The problem with the composite objective

10X, + X,
Max
X, + X,

st. X, - X, < 5

A

X, + X, < 10
X, X, 2 0
function then becomes
Max 1(10X + X,) + L(-7X, + X,) = 33X, + 2X,
st. X, - X, < 5
X, + X, <10
XX, = 0
Solving this problem (see file SHADOW) we find that our solution consists X,=7.5 and X,=2.5. equals
2.5. The basis matrix and its inverse are
1 -1 S5 5
B = B -
11 -5 .5

The composite shadow prices are
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CsB =32

5 5 _ 52
5 5 %
However, if we break this down we get

. 10 1 45 55
WGBB = [1 1]

S5 b
=17
-7 1] |-5 b -4 -3

where the last matrix gives the shadow prices in terms of individual objectives. Thus, the change of one

unit in the right hand side will increase the first objective by 4.5 while decreasing the second objective by 4.
These shadow prices are more meaningful than the weighted shadow prices as they tell the implications of
resource changes for each objective. Note that the weighted problem shadow prices are smply the
individual weights times the shadow prices of this problem.

Preckel et al. proposed an aternative where they estimate relevant shadow prices by dividing through
the by shadow prices on the individual objective accounting rows. However, this does not work as well as
the theory above, as the shadow prices will be strictly proportional across the goals which need not happen

in the general case (i.e. in the example above).
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. , Tablell.1l Tableau for Lexicographic Example
c
o
IS Original Decision Variables - Idle Resources Goal Levels Goal Deviations
=3 £
i e Prof Ide Idle Profit
& | Lg Sm Profit Idle Idle Profit RHS
g Xi X, Xgo Xy Xs o X Lathe Lathe CAVEr Labor [0 | o Lahe os0o | 9000 Labor Lathe 9500
Objctive 1 Min
—>
O |profit 67 66 663 80 785 784 | -1 = 0
Small Lathe | 08 13 02 12 17 05 1 = 140
2 |LageLahe | 05 02 13 07 03 15 1 = 90
5
S |carver 04 04 04 10 10 10 1 = 120
o)
§ Labor 10 105 11 08 082 084 1 = 125
'@©
G |Profit 9000 1 1 = 0
Idle Labor 1 -1 = 0
c
S
‘g Idle Lathe 1 1 -1 = 0
hu)
& [Profit 9500 1 -1 = 0
8
O  |Profit 9000 1 1 > 9000
5
5 [IdieLabor 1 1 = 30
hu
& |ideLathe 1 1 .
%
S, |Profit 9500 1 1 > 950
Q
2 :
3 |Profit 1 < 0
Idle 1 < 999
Idle 1 < 999
Profit 1 | < 999
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Table11.2. GAM S Formulation of L exicographic Example

5 SET GOALS GOALS IN THE ORDER THEY ARE TO BE MET
6 /PROFIT1,LABOR, LATHETIME,PROFIT2/
7 PROCESS TYPES OF PRODUCTION PROCESSES

8 /FUNCTNORM , FUNCTMXSML , FUNCTMXLRG
9 ,FANCYNORM , FANCYMXSML , FANCYMXLRG/
10 RESOURCE TYPES OF RESOURCES

11 /SMLLATHE, LRGLATHE, CARVER, LABOR/
13 ALITAS(GOALS,GOAL) ;

15 PARAMETER PRICE(PROCESS) PRODUCT PRICES BY PROCESS

16 /FUNCTNORM 82, FUNCTMXSML 82, FUNCTMXLRG 82
17 ,FANCYNORM 105, FANCYMXSML 105, FANCYMXLRG 105/
18 PRODCOST (PROCESS) COST BY PROCESS

19 /FUNCTNORM 15, FUNCTMXSML 16 , FUNCTMXLRG 15.7
20 ,FANCYNORM 25, FANCYMXSML 26.5, FANCYMXLRG 26.6/
21 RESORAVAIL(RESOURCE) RESOURCE AVAILABLITY

22 /SMLLATHE 140, LRGLATHE 90,

23 CARVER 120, LABOR 125/

24 TARGET (GOALS) GOAL TARGET LEVELS

25 /PROFIT1 9000,LABOR 30,LATHETIME 25
26 ,PROFIT2 9500/

27 DEV(GOALS) MAXIMUM DEVIATION BY GOAL

28 WEIGHTS(GOALS) WEIGHTS BY GOAL ;

30 DEV(GOALS)=999999;

31 WEIGHTS(GOALS)=0.00001;

33 TABLE RESOURUSE(RESOURCE,PROCESS) RESOURCE USAGE

35 FUNCTNORM FUNCTMXSML ~ FUNCTMXLRG

36 SMLLATHE 0.80 1.30 0.20

37 LRGLATHE 0.50 0.20 1.30

38 CARVER 0.40 0.40 0.40

39 LABOR 1.00 1.05 1.10

40 + FANCYNORM FANCYMXSML  FANCYMXLRG

41 SMLLATHE 1.20 1.70 0.50

42 LRGLATHE 0.70 0.30 1.50

43 CARVER 1.00 1.00 1.00

44 LABOR 0.80 0.82 0.84;

46 POSITIVE VARIABLES

47 PRODUCTION(PROCESS) ITEMS PRODUCED BY PROCESS

48 IDLE(RESOURCE) SLACK VARIABLES FOR RESOURCES

49 GOALLEVEL (GOALS) GOAL LEVELS

50 PROFIT TOTALPROFIT

51 SHORTFALL (GOALS) GOAL SHORTFALLS;

52  VARIABLES

53 GOALOBJ GOAL OBJECTIVE;

54 EQUATIONS

55 OBJT OBJECTIVE FUNCTION

56 PROFITACCT PROFIT ACCOUNTING

57 AVAILABLE(RESOURCE) RESOURCES AVAILABLE

58 IDLLABGOAL IDLE LABOR GOAL

59 PROFITGL1 PROFIT1 GOAL

60 PROFITGL2 PROFIT2 GOAL

61 LATHEGOAL IDLE LATHE GOAL

62 TARGS(GOALS) GOAL TARGETS

63 MAXSHORT (GOALS) SHORTFALL LIMITS;

64

65 OBJT.. GOALOBJ =E= SUM(GOALS,WEIGHTS(GOALS)*SHORTFALL(GOALS)) ;

67 PROFITACCT..  PROFIT =E=
68 SUM(PROCESS,, (PRICE(PROCESS)-PRODCOST (PROCESS))
69 * PRODUCTION(PROCESS)) ;

70
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71 AVAILABLE(RESOURCE). .

72 SUM(PROCESS , RESOURUSE (RESOURCE , PROCESS)*PRODUCT 10N(PROCESS))
73 +IDLE(RESOURCE) ~ =E= RESORAVAIL(RESOURCE);

74

75 IDLLABGOAL . . IDLE('LABOR™) =E= GOALLEVEL("'LABOR™) ;

Table 11.2. GAM S Formulation of L exicographic Example (Continued)

76 PROFITGL1. . PROFIT =E= GOALLEVEL('PROFIT1");
77 PROFITGL2. . PROFIT =E= GOALLEVEL('PROFIT2");
78 LATHEGOAL . . IDLE(*'LRGLATHE™)+IDLE("*SMLLATHE")

79 =E= GOALLEVEL("'LATHETIME™);

80  TARGS(GOALS).. GOALLEVEL(GOALS) + SHORTFALL(GOALS) =G= TARGET(GOALS) ;
81

82  MAXSHORT(GOALS).. SHORTFALL(GOALS) =L= DEV(GOALS);

83

84  MODEL RESALLOC /ALL/;

85 PARAMETER  GOALDATA(GOAL,*,*)

86  LOOP(GOAL,

87 WEIGHTS(GOAL)=1.

88

89 SOLVE RESALLOC USING LP MINIMIZING GOALOBJ;

90 DEV(GOAL)=SHORTFALL .L(GOAL) ;

91 WE 1GHTS(GOAL)=0.00001 ;

92 GOALDATA(GOAL ,GOALS, "ATTAIN"")=GOALLEVEL . L(GOALS) ;

93 GOALDATA(GOAL , GOALS, ""SHORT"")=SHORTFALL . L(GOALS) ;

94 GOALDATA(GOAL , PROCESS, ""XLEVEL')=PRODUCT ION . L(PROCESS) ;
95 )s

96 DISPLAY GOALDATA;
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Table11.3. Solution to L exicographic Example

Goal Being Solution Goal Goal Goal
Production
Pursued Item Idle Attainment Level Shortfall

PROFIT1 PROFIT1 GOAL 9500.000 9500 0
-LABOR GOAL 25.976 30 4.024
-LATHETIME GOAL 7.927 25 17.073
-PROFIT2 GOAL 9500.000 9500 0
-FUNCTNORM PROD

12.195
-FANCYNORM PROD

108.537

LABOR -PROFIT1 GOAL 9481.579 9500 0
-LABOR GOAL 30.000 30 0
-LATHETIME GOAL 4_.359 25 20.641
-PROFIT2 GOAL 9481.579 9500 18.421
-FANCYNORM PROD

115.296
-FANCYMXLRG PROD

3.289

LATHETIME -PROFIT1 GOAL 9000.000 9500 0
-LABOR GOAL 30.000 30 0
-LATHETIME GOAL 20.663 25 4.337
-PROFIT2 GOAL 9000.000 9500 500.000
-FUNCTNORM PROD

15.152
-FANCYNORM PROD

99.811

PROFIT2 -PROFIT1 GOAL 9000.000 9500 0
-LABOR GOAL 30.000 30 0
-LATHETIME GOAL 20.663 25 4.337
-PROFIT2 GOAL 9000.000 9500 500.000
-FUNCTNORM PROD

15.152
-FANCYNORM PROD

99.811
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., Tablell4. Tableau for Weighted Tradeoff Example

c

o

IS Original Decision Variables - Idle Resources Goal Levels Goal Deviations

il 3 Lrg  sml Profit Idle Idie |FOt tdedde gy

g X, X, X Xs Xe X Lathe Lathe CAVET Labor Lo Lathe Labor Lathe

£

T Objective 1 Min

—=

O |profit 67 66 663 80 785 784 | -1 = 0
SmalLathe | 08 13 02 12 17 05 1 = 140
LargeLathe [ 05 02 13 07 03 15 1 = 90

> [Carver 04 04 04 10 10 10 1 = 120

5

S |Labor 10 105 11 08 082 084 = 125

8 .

O  |Profit 1 -1 = 0
Idle Labor -1 = 0
Idle Lathe 1 1 -1 = 0

T .

g [|Profit 9000 -1 10500 = 0

-

ﬁ -

8 |iateLavor -1 125 = 0
Idle Lathe 1 230 = 0

11-19
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Table11.5. GAMS Setup for Weighted Objective Example

4
5  SET GOALS /PROFIT,LABOR, LATHETIME/
6 PROCESS TYPES OF PRODUCTION PROCESSES
7 /FUNCTNORM , FUNCTMXSML , FUNCTMXLRG
8 ,FANCYNORM , FANCYMXSML , FANCYMXLRG/
9 RESOURCE TYPES OF RESOURCES
10 /SMLLATHE , LRGLATHE , CARVER,, LABOR/
11
12 PARAMETER PRICE(PROCESS) PRODUCT PRICES BY PROCESS
13 /FUNCTNORM 82, FUNCTMXSML 82, FUNCTMXLRG 82
14 ,FANCYNORM 105, FANCYMXSML 105, FANCYMXLRG 105/
15 PRODCOST(PROCESS) ~ COST BY PROCESS
16 /FUNCTNORM 15, FUNCTMXSML 16 , FUNCTMXLRG 15.7
17 ,FANCYNORM 25, FANCYMXSML 26.5, FANCYMXLRG 26.6/
18 RESORAVAIL(RESOURCE) RESOURCE AVAILABLITY
19 /SMLLATHE 140, LRGLATHE 90,
20 CARVER 120, LABOR 125/
21 WE IGHTS (GOALS) WEIGHT FOR GOALS
22 /PROFIT 1,LABOR 0.4,LATHETIME 0.4/
23 MAGN I TUDE (GOALS) MAGNITUDE FOR GOALS
24 /PROFIT 10500/;
25 MAGN I TUDE (""LATHET IME'")=RESORAVAI L (**SMLLATHE")+RESORAVAI L (""LRGL
ATHE™);
26 MAGN I TUDE (""LABOR") =RESORAVAIL("'LABOR") ;
27
28
29  TABLE RESOURUSE(RESOURCE,PROCESS) RESOURCE USAGE
30
31 FUNCTNORM  FUNCTMXSML FUNCTMXLRG
32 SMLLATHE 0.80 1.30 0.20
33 LRGLATHE 0.50 0.20 1.30
34 CARVER 0.40 0.40 0.40
35 LABOR 1.00 1.05 1.10
36 + FANCYNORM ~ FANCYMXSML FANCYMXLRG
37 SMLLATHE 1.20 1.70 0.50
38 LRGLATHE 0.70 0.30 1.50
39 CARVER 1.00 1.00 1.00
40 LABOR 0.80 0.82 0.84;
a1
42 POSITIVE VARIABLES
43 PRODUCT ION(PROCESS) ITEMS PRODUCED BY PROCESS
a4 1DLE (RESOURCE) SLACK VARIABLES FOR RESOURCES
45 GOALLEVEL(GOALS)  GOAL LEVELS
46 PROFIT TOTALPROFIT;
47  VARIABLES
48 GOALOBJ GOAL OBJECTIVE;
49  EQUATIONS
50 0BJT OBJECTIVE FUNCTION
51 PROFITACCT PROFIT ACCOUNTING
52 AVAILABLE(RESOURCE) ~ RESOURCES AVAILABLE
53 IDLLABGOAL IDLE LABOR GOAL
54 PROF I TGOAL PROFIT GOAL
55 LATHEGOAL IDLE LATHE GOAL;
56
57  OBJT.. GOALOBJ =E= SUM(GOALS,WEIGHTS(GOALS)*GOALLEVEL(GOALS)) ;
58
59  PROFITACCT.. PROFIT =E=
60 SUM(PROCESS,, (PRICE(PROCESS)-PRODCOST (PROCESS))
61 * PRODUCTION(PROCESS)) ;
62
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63 AVAILABLE(RESOURCE). .

64 SUM(PROCESS , RESOURUSE (RESOURCE , PROCESS)*PRODUCT ION(PROCESS))

65 +1DLE(RESOURCE) =E= RESORAVAIL(RESOURCE);

66

67 IDLLABGOAL. . IDLE(*'LABOR™) =E= GOALLEVEL('LABOR'")*MAGNITUDE("'LABOR");

68 PROFITGOAL . . PROFIT =E=
GOALLEVEL (**PROFIT*™)*MAGNITUDE('PROFIT™);

69 LATHEGOAL . . IDLE("'LRGLATHE™)+IDLE("*'SMLLATHE™)

70 =E= GOALLEVEL("LATHETIME")*MAGNITUDE(*"LATHETIM
E");

71 MODEL RESALLOC /ALL/;
72 SOLVE RESALLOC USING LP MAXIMIZING GOALOBJ;
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; Table 11.6. Tableau for Weighted Tradeoff with Targets Example
Original Decision Variables o Idle Resources Goal Levels Goal Deviations
jel Profit Profit Idle Idle Idle Idle Profit Profit
& |smal Large Profit Idle Idle Profit RHS
Xi X, X5 X, Xs X Carv Lab 9000 9000 Labor Labor Lathe Lathe 9500 9500
g I T Lathe Lahe '~ [9000 Labor Lathe 9500 [ o e mee e =
=
Obfective 1 10 1 -4 1 -4 9 1| Max
5
g Profit 67 66 663 80 785 784| -1 = 0
2 |smdiLahe [08 13 02 12 17 05 1 = 140
[=2)
O |LargeLathe | 05 02 13 07 03 15 1 = 90
Carver 04 04 04 10 10 10 1 = 120
>
2 |Labor 10 105 11 08 082 084 1 = 125
(=]
g Profit 9000 1 -1 = 0
-
T Idle Labor 1 -1 = 0
o}
Idle Lathe 1 1 -1 = 0
Profit 9500 1 -1 = 0
5
g Profit 9000 1 -9000 9000 = 9000
& |idieLabor 1 30 30 = 30
g
o}
Idle Lathe 1 o5 25 = 25
Profit 9500 1 -9500 9500 | = 9500
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Table 11.7.

GAMS Setup for Weighted Objective with Target Example

O OVWoWw~NO® U N~

1
11
12

SET

LESSTHAN/

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

ALIAS

PARAMET

TABLE

TABLE R

SMLLATHE
LRGLATHE
CARVER
LABOR
+

SMLLATHE
LRGLATHE
CARVER
LABOR

POSITIV

GOALS GOALS IN THE ORDER THEY ARE TO BE MET
/PROFIT1,LABOR, LATHETIME, PROFIT2/
PROCESS TYPES OF PRODUCTION PROCESSES

/FUNCTNORM , FUNCTMXSML , FUNCTMXLRG
,FANCYNORM , FANCYMXSML , FANCYMXLRG/

RESOURCE TYPES OF RESOURCES
/SMLLATHE, LRGLATHE, CARVER, LABOR/
DIR GOAL DEVIATION DIRECTION /MORETHAN,

(GOALS,GOAL) ;

ER PRICE(PROCESS) PRODUCT PRICES BY PROCESS
/FUNCTNORM 82, FUNCTMXSML 82, FUNCTMXLRG 82
,FANCYNORM 105, FANCYMXSML 105, FANCYMXLRG 105/
PRODCOST(PROCESS) ~ COST BY PROCESS
/FUNCTNORM 15, FUNCTMXSML 16 , FUNCTMXLRG 15.7
,FANCYNORM 25, FANCYMXSML 26.5, FANCYMXLRG 26.6/
RESORAVAIL(RESOURCE) RESOURCE AVAILABLITY
/SMLLATHE 140, LRGLATHE 90,
CARVER 120, LABOR 125/
TARGET (GOALS) GOAL TARGET LEVELS
/PROFIT1 9000,LABOR 30,LATHETIME 25
,PROFIT2 9500/
MAGN I TUDE (GOALS) MAGNITUDE FOR GOALS;
MAGN I TUDE (GOALS)=TARGET(GOALS) ;

WEIGHTS(GOALS,dir) WEIGHTS BY GOAL

MORETHAN LESSTHAN

PROFIT1 1 -10

LABOR 0.1 -0.4
LATHETIME 0.1 -0.4
PROFIT2 -9 -1. ;

ESOURUSE (RESOURCE ,PROCESS) RESOURCE USAGE

FUNCTNORM FUNCTMXSML  FUNCTMXLRG

0.80 1.30 0.20

0.50 0.20 1.30

0.40 0.40 0.40

1.00 1.05 1.10

FANCYNORM FANCYMXSML  FANCYMXLRG

1.20 1.70 0.50

0.70 0.30 1.50

1.00 1.00 1.00

0.80 0.82 0.84;

E VARIABLES

PRODUCTION(PROCESS) ITEMS PRODUCED BY PROCESS
IDLE(RESOURCE) SLACK VARIABLES FOR RESOURCES
GOALLEVEL (GOALS) GOAL LEVELS
PROFIT TOTALPROFIT
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57 SHORTFALL (GOALS) GOAL SHORTFALLS

58 EXCESS(GOALS) GOAL EXCESSES;

59  VARIABLES

60 GOALOBJ GOAL OBJECTIVE;

61 EQUATIONS

62 0BJT OBJECTIVE FUNCTION
63 PROFITACCT PROFIT ACCOUNTING
64 AVAILABLE(RESOURCE) RESOURCES AVAILABLE
65 IDLLABGOAL IDLE LABOR GOAL

66 PROFITGL1 PROFIT1 GOAL

67 PROFITGL2 PROFI1T2 GOAL

Table 11.7. GAM S Setup for Weighted Objective with Target Example (Continued)

68 LATHEGOAL IDLE LATHE GOAL
69 TARGS(GOALS)  GOAL TARGETS ;

70

71 OBJT.. GOALOBJ=E= SUM(GOALSWEIGHTS(GOALS,"LESSTHAN")* SHORTFALL(GOALS)
72 +WEIGHTS(GOALS,"MORETHAN")* EXCESS(GOALS)) ;

73

74 PROFITACCT.. PROFIT =E=

75 SUM (PROCESS,(PRICE(PROCESS)-PRODCOST (PROCESS))

76 * PRODUCTION(PROCESS)) ;

77

78 AVAILABLE(RESOURCE)..

79 SUM(PROCESS,RESOURUSE(RESOURCE,PROCESS)* PRODUCTION(PROCESS))
80 +IDLE(RESOURCE) =E= RESORAVAIL(RESOURCE);

81

82 PROFITGL1. PROHAT =E= GOALLEVEL("PROFIT1");

83 IDLLABGOAL.. IDLE("LABOR")=E= GOALLEVEL('LABOR");

84 LATHEGOAL.. IDLE("LRGLATHE")+IDLE("SMLLATHE")

85 =E= GOALLEVEL("LATHETIME");
86 PROFITGL2. PROHFT =E= GOALLEVEL("PROFIT2");
87

88 TARGS(GOALS)..
89  GOALLEVEL(GOALS) + MAGNITUDE(GOALS)*( SHORTFALL(GOALS) -EXCESS(GOALS))

90 =E=TARGET(GOALYS) ;
91

92

93 MODEL RESALLOC/ALLY/;

94

95 SOLVE RESALLOC USING LP MAXIMIZING GOALOBJ,
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CHAPTER XII: NONLINEAR OPTIMIZATION CONDITIONS

The previous material deals largely with linear optimization problems. We now turn our attention
to continuous, certain, nonlinear optimization problems. The problems amenable to analysis using the
methods in this chapter relax the LP additivity and proportionality assumptions.

The nonlinear optimization problem isimportant in a number of settings. This chapter will lay the
ground work for several later chapters where price endogenous and risk problems are formulated as
nonlinear optimization problems. Optimality conditions for the problems will be treated followed by

brief discussion of solution principles.

12.1 Optimality Conditions

This section is devoted to the characterization of optimality conditions for nonlinear programming
problems. These characterizations depend upon both first order conditions for identification of
stationary points and second order conditions for discovery of the nature of the stationary points found.
Consideration of types of optimum involves the topics of concavity and convexity. Thus, concavity and
convexity are discussed. The presentation will not be extremely rigorous. Those interested in more
rigorous treatments should consult books like Hadley, or Bazaraa and Shetty.

Nonlinear optimization problems may be constrained or unconstrained. Optimality conditions for
unconstrained problems are ordinarily developed in calculus classes and will be briefly reviewed.
Lagrangian multiplier and Kuhn Tucker based approaches are used to treat constrained problems and
will be discussed here.

12.1.1 Uncongtrained Optimization

Unconstrained optimization isatopic in calculus classes. Such problems may contain one or N

variables.

12.1.1.1 Univariate

Problems with asingle variable are called univariate. The univariate optimum for Y = f(X)
occurs at points where the first derivative of f(X) with respect to X (f ‘(X)) equals zero. However,
points which have zero first derivatives do not necessarily constitute a minimum or maximum. The

second derivative is used to discover character of apoint. Points at which a relative minimum occurs

copyright Bruce A. McCarl and Thomas H. Spreen 12-1



have a positive second derivative at that point while relative maximum occurs at points with a negative
second derivative. Zero second derivatives are inconclusive.

It isimportant to distinguish between local and global optima. A loca optimum arises when one
finds a point whose value in the case of a maximum exceeds that of all surrounding points but may not
exceed that of distant points. The second derivative indicates the shape of functions and is useful in
indicating whether the optimum islocal or global. The second derivative is the rate of change in the
first derivative. If the second derivative is aways negative (positive) that implies that any maximum
(minimum) found is a global result. Consider a maximization problem with a negative second derivative
for which f '(X")=0. This means the first derivative was > 0 for X < X" and was< 0 for X > X". The
function can never rise when moving away from X" because of the sign of the second derivative. An
everywhere positive second derivative indicates a global minimum will be found if f '( X")=0, whilea
negative indicates a global maximum.

12.1.1.2 Multivariate functions

The univariate optimization results have multivariate analogues. In the multivariate case, partial
derivatives are used, and a set of simultaneous conditions is established. The first and second
derivatives are again key to the optimization process, excepting now that a vector of first derivatives
and a matrix of second derivativesisinvolved.

There are several termsto review. Firgt, the gradient vector, V,f(X °), is the vector of first order
partial derivatives of a multivariate function with respect to each of the variables evaluated at the point
Xe.

of (X°)

X

where of (X °)/0X; stands for the partial derivative of f(X) with respect to X; evaluated at X°, and X°

VE(X©), =

depicts X, °,X,°,....X,,°. The second derivatives congtitute the Hessian matrix,

FP(X°)

H(Xo)ij = IX.oX.
9%

The Hessian matrix, evaluated at X °, isan NxN symmetric matrix of second derivatives of the function
with respect to each variable pair.
The multivariate analogue of the first derivative test isthat an X ° must be found so that all terms
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of the gradient vector smultaneously equa zero. The multivariate version of the second derivative test
involves examination of the Hessian matrix at X °. If that matrix is positive definite then the point X° is
aloca minimum, whereasif the Hessian matrix is negative definite then the point isaloca maximum.

If the Hessian matrix is neither positive nor negative definite, then no conclusion can be made about
whether this point is a maximum or minimum and one must conclude it is an inflection or saddle point.
12.1.2 Global Optima-Concavity and Convexity

The characterization of minimum and maximum points whether global or local is related to the
concavity and convexity of functions. A univariate concave function has a negative second derivative
everywhere and guarantees global maximum. A univariate convex function has a positive derivative
everywhere yielding a global minimum. The multivariate analogues exhibit the proper definiteness of
the Hessian matrix at all X points.

It is obvioudy desirable when dealing with optimization problems that globa optimum be found.
Thus, maximization problems are frequently assumed to be concave while minimization problems are
assumed to be convex. Functions may aso be locally concave or convex when the second derivative or
Hessian only satisfies the sign convention in aregion. Optimization problems over such functions can

only yield local optimum.

Concavity of functions has been defined in another fashion. Concave functions exhibit the
property that, given any two points X; and X, in the domain of the function, aline joining those points

always lies below the function. Mathematically, thisis expressed as

f(AX | +(1-1)X,) = Af(X,) +(1-A)f(X,)
O<A<1

Note that Af(X,) + (1-2)f(X,) isaline between f(X,) and f(X,) and that concavity requires thisline to
fal below the true function (f(AX; + (1-1)X,)) everywhere below this function.

Similarly, aline associated with two points on a convex function must lie above the true function
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f(AX +(1-2)X,) < Af(X)) +(1-A)f(X,)
0O<Ac<1

Concavity and convexity occur locally or globaly. A function is globally concave if the
conditions hold for al X or islocally concave or convex if the functions satisfy the conditions in some
neighborhood.

The optimality conditions may be restated in terms of concavity and convexity. Namely, a
multivariate function for which a stationary point X ° has been discovered has. @) alocal maximum at
X ¢ if the function islocally concave, b) aglobal maximum if the function is concave throughout the
domain under consideration, c) aloca minimum at X © if the function islocally convex, d) aglobal
minimum at X ° if the function is strictly convex, and €) a saddle point if the function is neither concave
nor convex. At the stationary point, concavity and convexity for these conditions may be evauated
either using the two formulas above or using the positive or negative definiteness properties of the
Hessian.

12.1.3 Constrained Optimization

The second magjor type of optimization problem is the constrained optimization problem. Two
types of constrained problems will be considered: those subject to equality constraints without sign
restricted variables and those subject to inequality constraints and/or sign restrictions on the variables.
The optimality conditions for equality constrained optimization problems involve the Lagrangian and
associated optimality conditions. The solution of problems with inequality constraints and/or variable
sign restrictions relies on Kuhn-Tucker theory.

12.1.3.1 Equality Constraints - The Lagrangian

Consider the problem

Maximize  f(X)
st. g(X) = b for al |
wheref (X) and g; (X) are functions of N variables and there are M equality constraints on the problem.

Optimization conditions for this problem were developed in the eighteenth century by Lagrange. The

Lagrangian approach involves first forming the function,

L(X.2)=H(X)~ TA(g(X)-b)
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where a new set of variables (1) are entered. These variables are called Lagrange multipliers. Inturn
the problem istreated asiif it were unconstrained with the gradient set to zero and the Hessian examined.
The gradient is formed by differentiating the Lagrangian function L(X,1) with respect to both X and .

These resultant conditions are

oL _ 9f(X) _ yye 99,(X*)

/=0 for al j
an an i axj
oL )
2= = (aX®>) -b)=0 for dl i.
7 (9(X°) -b)

In words, the first condition requires that at X ° the gradient vector of f (X) minusthe sum of 1° times
the gradient vector of each constraint must equal zero. The second condition says that at X ° the
origina constraints must be satisfied with strict equality. The first order condition yields a system of
N+M equations which must be smultaneously satisfied. In this case, the derivatives of the objective
function are not ordinarily driven to zero. Rather, the objective gradient vector is equated to the

Lagrange multipliers times the gradients of the constraints.
Max Xc¢X,
i
st. quij = b for dl i

These conditions are analogous to the optimality conditions of an LP consider a LP problem with

N variables and M binding constraints. The first order conditions using the Lagrangian would be

oL _ ;

oxX. G - iz?»,qj = 0 for dl j
J

oL :

= = —XaX. - b = 0 for Al i

a)\’l (J 6\1 ] I)

Clearly, this set of conditions is analogous to the optimality conditions on the L P problem when one
eliminates the possibility of zero variables and nonbinding constraints. Further, the Lagrange
multipliers are analogous to dua variables or shadow prices, as we will show below.
Use of the Lagrangian is probably again best illustrated by example. Given the problem
Minimize X2 + X2,

st. X,+X, = 10
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the Lagrangian function is
L(X,A) = X% + X2 - A(X, + X, - 10)

Forming the Lagrange multiplier conditions leads to

ot - A= 0
oX,
St o, - A= 0
2X,

In turn, utilizing the first twcﬂ:ondiﬂ ons~we (na%/-so(\ée-fm)(f" a@d X,° intermsof 1° and getting
X,° = X,° = ,x°/2ax

Then plugging this into the third equation leads to the conclusion that
2° = 10; X,°=X,°=5

Thisisthen a stationary point for this problem and, in this case, is arelative minimum. We will
discuss the second order conditions below.
12.1.3.1.1 Second Order Conditions - Constraint Qualifications: Convexity and Concavity

The Lagrangian conditions devel op conditions for a stationary point, but yield no insights asto its
nature. One then needs to investigate whether the stationary point is, in fact, a maximum or a minimum.
In addition, the functions must be continuous with the derivatives defined and there are constraint
qualifications which insure that the constraints are satisfactorily behaved.

Distinguishing whether a global or local optimum has been found, again, involves use of second
order conditions. In this case, second order conditions arise through a "bordered” Hessian. The
bordered Hessian is

9X;

HXX,A) = 00 #ix)

X, XX,

For original variables and m<n constraints, the stationary point isaminimum if starting with the
principal minor of order 2m + 1 the last n-m principa minor determinants follow the sign (-1)™. As

similarly, if those principal minor determinants alternate in sign, starting with (-1)™?, then the stationary
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point is a maximum Mann originally developed this condition while Silberberg and Taha (1992)
elaborate on it.

For the example above the bordered Hessian is
0 1 1
H(X°, A°) =11 2 O
1 0 2

Here, there are two variables and one constraint thusn-m=2- 1= 1, and we need to examine
only one determinant. This determinant is positive, thus X ° isaminimum.

An additional set of qualifications on the problem have also arisen in the mathematical
programming literature. Here, the qualification involves relationship of the constraints to the

objective function. It is expressed using the Jacobian matrix (J) which is defined with the el ements

9g;(X ")
X, ’
This Jacobian matrix gives row vectors of the partial derivatives of each of the constraints with respect
to the X variables. The condition for existence of | isthat the rank of this Jacobian matrix, evaluated at
the optimum point, must equal the rank of the Jacobian matrix which has been augmented with arow
giving the gradient vector of the abjective function. This condition insures that the objective function
can be written as alinear combination of the gradients of the constraints. Note that this condition does
not imply that the Jacobian of the constraints has to be of full row rank. However, when the Jacobian of
the condtraintsis not of full row rank, this introduces an indeterminacy in the Lagrange multipliers and
is equivalent to the degenerate case in LP. Both Hadley and Pfaffenberger and Walker treat such cases

in more detail.

The sufficient conditions for the Lagrangian also can be guaranteed by specifying: a) that the
above rank condition holds which insures that the constraints bind the objective function, b) that the

objective function is concave, and c) that the constraint set is convex. A convex constraint set occurs
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when given any two feasible points al pointsin between are feasible.
12.1.3.1.2 Interpretation of Lagrange Multipliers

Hadley (1964) presents a useful derivation of the interpretation of Lagrange multipliers. We will
follow this below. Assume Z isthe optimal objective value, and X the optimal solution for the decision
variables. Suppose now we wish to derive an expression for the rate at which the optimal objective

function value changes when we change the right hand side. Then, by the chain rule, we obtain

zZ oy HxH X
ab, j oX j* ab,
If we aso choose to differentiate the constraints with respect to b, , we get

0 dJg, (X * X"
& :‘Slk:Z 5 ) J

ab, j oX j* ab,

where §, is the so-called Kronecker delta and equals
1 if i=Kk
8 = .
0 otherwise
If we now take the equality relationship between the Kronecker 8 and the derivatives of the

constraints with respect to X'; we may rewrite this as

N dg (X)) oX/
5 - Y 9V X g forall i and k
T o db

Multiplying this through by 2, we get

N ag(XT) oX/
g, - Yo BN i ad
)

j ox;' b

Since the above term equals zero, we may freely sum over it and still obtain zero. If we add this term to

the expression above we obtain

N ) 0X; u N ag (X *)  aX;’
Zo R M) S e - Yo B e
b, =1 axj* db k=1 j=1 axj* db,
Grouping termsyields

copyright Bruce A. McCarl and Thomas H. Spreen 12-8



. ag.(X )| ax.
Z_yus + Y] I yy %X L forali
k

bk i oox; oX;' ob,

The parenthetic part of this expression is equal to zero viathe Lagrangian conditions. Thus, the
sum over | always equals zero. The left hand side A, times 8, will be zero for all terms except where |

equalsk. Consequently, the sum equals %;, and we obtain the conclusion

0Z

db, '
or that the partial derivative of the objective function at optimality with respect to the i right hand side
isequal to A,. Thus, the A;'s are analogous to shadow prices from ordinary LP. However, these are
derivatives and are not generally constant over ranges of right hand side values asistruein LP. Rather,
they are instantaneous projections of how the objective function would change given an infinitesmal
change in the right hand side.
12.1.3.2 Inequality Constraints - Kuhn Tucker Theory

Kuhn and Tucker, in 1951, developed optimality conditions for problems which contain inequality

constraints and/or sign restricted variables. These conditions deal with the problem

Maximixe f(X)
st. agXx) <b
X>0

The Kuhn-Tucker conditions state that if the following six conditions are satisfied then the solution
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1) V. f(X") - AV, 9(X ") < 0
2) [V, f(X7) - AV o(X)IXT = 0
3) X° > 0
4) 9(X") < b
5) A(9(X7)-b) = 0
6) A > 0

X’,A" would be a candidate for optimality.

The conditions may be interpreted economicaly. The first condition requires that the first
derivative of the objective function minus A" times the first derivative of the constraints be less than or
equal to zero at optimality. If one interprets the objective function as profit and the Lagrange
multipliers as the cost of resources, and the constraint derivatives as the marginal resource
requirements, then this condition requires that the marginal profit contribution of any product be less
than or equal to the marginal cost of producing this product.

The second condition requires that the difference between the marginal profit and marginal cost
times the X variable equals zero. The third condition requires nonnegative production. The second
condition, taken together with the first and the third, requires that either the good be produced at a
nonzero level and that margina profit equals marginal cost, or the good not be produced and marginal
profit be less than or equal to marginal cost (strictly less than in nondegenerate cases).

The fourth condition, in turn, requires that the original problem constraints be satisfied. The fifth
condition requires that the Lagrange multiplier variables times the dack in the constraints equals zero,
and the sixth condition that the Lagrange multipliers be nonnegative. The fourth and sixth conditions
taken together, in conjunction with the fifth condition, require that either the constraint be binding and
the Lagrange multiplier be nonzero (zero in degenerate cases), or that the Lagrange multiplier be zero
and the constraint be nonbinding. Conditions 2 and 5 are analogous to the complementary slackness
conditionsin LP.

These conditions guarantee a globa optimum, if the objective function is concave, the congtraints
g (X) < bform aconvex set, and one of severa constraint qualifications occur. The simplest of these

congtraint qualifications require that the constraints form a convex set and a feasible interior point can
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be found (the Slater condition). Another constraint qualification requires that the rank condition of the

Jacobian be satisfied. There are other forms of constraint qualifications as reviewed in Bazaraa and

Shetty; Gould and Tolle; and Peterson.

12.1.3.2.1 Example 1
Consider the LP problem

Maximize CX

The Kuhn-Tucker conditions of this problem are

1)
2)
3)
4)
5)
6)

AX < b

X=>0
C-AMA<O
(C-AAX" =0
X*>0
AX" < b
A(AX" -Db) =0
A" >0

These Kuhn-Tucker conditions are equivaent to the optimality conditions of the L P problem and show

that the Kuhn-Tucker theory is ssmply a superset of LP theory and LP duality theory asthe A'sin the

Kuhn-Tucker problem are equivalent to the LP dual variables.

12.1.3.2.2 Example 2

The Kuhn-Tucker theory has also been applied to quadratic programming problems. A

quadratic problemis

and its Kuhn-Tucker conditions are
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1) C-X'Q - VA <0
2) (C-X'Q - MAX' =0

3) X':0
4) AX' <b
5 A (AX - b) =0
6) A >0

These Kuhn-Tucker conditions are close to alinear system of equations. If one disregards
equations (2) and (5) the systemislinear. These Kuhn-Tucker conditions have provided the basic
equations that specialized quadratic programming algorithms (e.g. Wolfe) attempt to solve.

12.1.4 Usage of Optimality Conditions

Optimality conditions have been used in mathematical programming for three purposes. Thefirst
and least used purposeis to solve numerical problems. Not many modelers check second derivatives or
attempt to solve such things as the Kuhn-Tucker conditions directly. Rather, the more common usages
of the optimality conditions are to characterize optimal solutions anayticaly, asis very commonly done
in economics, or to provide the conditions that an algorithm attempts to achieve as in the Wolfe
algorithm in quadratic programming.

12.2 Notes on Solution of Nonlinear Programming M odels

Three general approaches have been used to solve nonlinear models. Problems have been
approximated by alinear model and the resulting model solved via the smplex method asin the
approximations chapter. Second, special problem structures (most notably those with a quadratic
objective function and linear congtraints) have been solved with customized algorithms.  Third, genera
nonlinear programming agorithms such as MINOS within GAMS have been used.

A popular way of solving nonlinear programming problemsis the "gradient” method (L asdon and
Waren, Waren and Lasdon). One of the popular gradient algorithms was devel oped by Murtaugh and
Saunders (1987) and implemented in MINOS (which is the common GAMS nonlinear solver).

That method solves the problem
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Min F(X) =f(X") + CX*
st. AX <b
X > 0.
where f(X) is atwice-differentiable convex function. Their approach involves an X vector which
contains variables which only have linear terms, X", and variables with nonlinear objective terms, XM,

MINOS first finds a feasible solution to the problem. The usual method employed in LPisto
designate basic variables and non-basic variables which are set equal to zero. However, the optimal
solution to anonlinear problem israrely basic. But Murtaugh and Saunders (1987) note that if the
number of nonlinear variables is small, the optimal solution will be "nearly basic"; i.e., the optimal
solution will lie near a basic solution. Thus, they maintain the traditional basic variables aswell as
superbasic and traditional non-basic variables. The superbasic variables have nonzero values with their
levels determined by the first order conditions on those variables.

Given acurrent solution to the problem, X°, MINOS seeks to improve the objective function
value. The agorithm uses the gradient to determine the direction of change, thus GAMS automatically
takes derivatives and passes them to MINOS. The agorithm proceeds until the reduced gradient of the
objective function, in the space determined by the active constraints, is zero. MINOS can aso solve
problems with nonlinear constraints. See Gill, Murry and Wright for discussion.

12.3 Expressing Nonlinear Programsin Conjunction with GAMS

The solution of nonlinear programming problemsin GAMS is a smple extension of the solution
of linear programming problemsin GAMS. One ordinarily has to do two things. First, one specifies
the model using nonlinear expressions, and second the solve statement is altered so a nonlinear solver is

used. In addition, it is desirable to specify an initia starting point and that the problem be well scaled.

An example quadratic programming problem is as follows:
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Max 6Q, - 0.15QF - Q, - 0.1Q/
Qd B Qs
Qy Qs

IA IA
o O

This problem is explained in the Price Endogenous modeling chapter and is only presented here for
illustrative purposes. The GAMS formulation islisted in Table 12.1 and is called TABLE12.1 on the
associated disk. The solution to this model as presented in Table 12.2 reveals shadow prices aswell as
optimal variable values and reduced costs. The SOLVE statement (line 34) uses the phrase "USING
NLP" which signifies using nonlinear programming. Obviousy users must have a license to a nonlinear
programming algorithm such as MINOS to do this. Also, the objective function is specified asa
nonlinear model in lines 26-28.

Finaly acautionisalso in order. Modelers should avoid nonlinear termsin equationsto the
extent possible (excepting in the equation expressing a nonlinear objective function). It is much more

difficult for nonlinear solvers, like MINOS, to deal with nonlinear constraints.
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Table12.1. GAMS Formulation of Nonlinear Programming Example

O©oo~NOOA~DN

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

35

OPTION LIMCOL =0,
OPTION LIMROW =0,

SETS CURVEPARM CURVE PARAMETERS /INTERCEPT,SLOPE/
CURVES TYPESOFCURVES /DEMAND,SUPPLY/

TABLE DATA(CURVES,CURVEPARM) SUPPLY DEMAND DATA
INTERCEPT SLOPE

DEMAND 6 -0.30

SUPPLY 1 0.20

PARAMETERS SIGN(CURVES) SIGN ON CURVESIN OBJECTIVE FUNCTION
/SUPPLY -1, DEMAND 1/

POSITIVE VARIABLES QUANTITY(CURVES) ACTIVITY LEVEL

VARIABLES OBJ NUMBER TO BE MAXIMIZED
EQUATIONS OBJJ OBJECTIVE FUNCTION
BALANCE COMMODITY BALANCE;

OBJJ.. OBJ=E=SUM(CURVES, SIGN(CURVES)*
(DATA(CURVES,"INTERCEPT")* QUANTITY (CURVES)
+0.5*DATA(CURVES,"SLOPE")*QUANTITY (CURVES)**2)) ;

BALANCE.. SUM(CURVES, SIGN(CURVES)*QUANTITY(CURVES)) =L=0;

MODEL PRICEEND /ALL/;

SOLVE PRICEEND USING NLP MAXIMIZING OBJ;

Table12.2. Solution to Nonlinear Example M odel

Variables Value Reduced Cost Equation Level Shadow Price
Qq 10 0 Objective function 25 -
Qs 10 0 Congtraint 0 3
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CHAPTER XIII: PRICE ENDOGENOUSMODELING

A common economic application of nonlinear programming involves price endogenous models. In
the standard LP model, input and output prices or quantities are assumed fixed and exogenous. Price
endogenous models are used in Situations where this assumption is felt to be untenable. Such problems
can involve modeling an industry or sector such that the level of output or purchases of inputsis
expected to influence equilibrium prices.

Py = & - by Qg

The approach to formulating such problems was motivated by Samuelson, who suggested solving
optimization problems whose first-order conditions constituted a system of equations characterizing an
equilibrium. Suppose we follow this approach by first defining a system of equations, then posing the
related optimization problem. Let an inverse demand equation be defined where P, is price of the
product, &, is the intercept, b, is the dope, and Qy isthe quantity demanded. Similarly, suppose we
have an inverse supply equation

P, = a + b, Q,
where the terms are defined analogously. An equilibrium solution would have price and quantity

equated and would occur at the simultaneous solution of the equations

P, - P
or
a - by Q = & + b Q
and
Q4 = Qs

One should also recognize some possible peculiarities of the equilibrium, namely it is possible that the
markets could clear at zero quantity, in which case the supply price might be greater than or equal to the
demand price.

Thus, we can write the condition that the equilibrium price (P) is greater than or equal to the demand

price

a - by Q < P
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Simultaneously, the market price may be less than the supply price,

a + b, Q > P’

One can also argue that these two relations should only be inequalities when the quantity supplied or
demanded equals zero. Namely, when the price of demand is less than the equilibrium price, then zero
guantity should be demanded. Similarly, when the price of supply is greater than the equilibrium price,
then zero quantity should be supplied. Simultaneously, when a non-zero quantity is supplied or
demanded, then the equilibrium price should equal the supply or demand price. This relationship can be

expressed through complementary dackness like relations where
@ - by Qo - P)Q =0
(as + bs Qs - P7) Qs

Il
o

One should aso recognize that the quantity supplied must be greater than or equal to the quantity
demanded

but, if the quantity supplied is strictly greater than the quantity demanded, then the equilibrium price
should be zero. Mathematically thisrelationship is

(-Q, + QP" =0
Finaly, we state nonnegativity conditions for price and quantities,

Qu Q. P" = 0.
The above equations are similar to the Kuhn-Tucker conditions. In particular, if P istaken to be
adual variable, then the above equation system is equivalent to the Kuhn-Tucker conditions of the

following optimization model

Max a, Q, - U2b, Q; - a Q, - 12b Q2
s.t. Qy - Q <0
Qd! QS >0

where P is the dual variable associated with the first constraint. Optimizing this model solves our
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equilibrium problem.

Thisis aquadratic programming problem. The formulation was originally motivated by Enke;
and Samuelson. Later it was fully developed by Takayama and Judge (1973). The general form
maximizes the integral of the area underneath the demand curve minus the integral underneath the
supply curve (Figure 13.1), subject to a supply-demand balance. The resultant objective function value
is commonly called consumers plus producers surplus.

The graphical representation allows one to develop a practical interpretation of the shadow price.
Consider what happensif the Q, - Q, < 0 constraint is altered so that the right hand sideis one (Q - Qs
< 1). Inthis case demand is allowed to be one unit greater than supply. Assuming the one unit is small
relative to total quantity then we get an area increment that is approximately the height of the
equilibrium price and one unit wide (Figure 13.2). The resultant objective function then is the origina
value plus an area equaling the equilibrium price. Thus, the change in the objective function when
increasing the right hand side (the shadow price) can be interpreted as the equilibrium price. Thisaso
equals the Lagrange multiplier introduced when applying Kuhn-Tucker theory.

Example
Suppose we have

Then the formulation is
Max 6Q, - 015QF - Q, - 0.1Q/

Qd B Qs
Qda

O

]
v IA
o O

The GAMS formulation of this model isin Table 13.1 and file PRICEND. Note that there are
two important changes in this setup compared to an LP. The first is that the objective function equation
contains the nonlinear squared terms. The second isthat in the SOLVE statement we indicate that the
problem is a nonlinear programming problem by saying SOLVE USING NLP. The solution to the
moddl isgivenin Table 13.2. It indicates that the quantity supplied and demanded equal 10, that the

priceis 3 (equaling the shadow price on the commodity balance row), and that consumers plus
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producers surplus equals 25.
The above example is a smple case where we have a single supply and single demand curve.
Clearly, no one would solve this problem using nonlinear programming, as it could be easily solved by

hand. However, the problem does illustrate the formulation of price endogenous models.

13.1 Spatial Equilibrium

A common price endogenous model application involves the spatial equilibrium problem. This
problem is an extension of the transportation problem relaxing the assumption of fixed supply and
demand. The problem is motivated as follows. Production and/or consumption usually occursin
spatially separated regions, each of which have supply and demand relations. In a solution, if the
regional prices differ by more than the interregional cost of transporting goods, then trade will occur and
the price difference will be driven down to the transport cost. Modeling of this situation addresses the
questions of who will produce and consume what quantities and what level of trade will occur.

Takayama and Judge (1973) developed the spatial equilibrium model to deal with such situations.
Suppose that in region i the demand for the good of interest is given by

Ps = fi(Qq)

where py is the demand price in region i while Qy; is the quantity demanded. Simultaneously suppose

the supply function for regionii is

Py = S|(Qg)
where py isthe supply priceinregion i, and Qg the quantity supplied. A "quasi-welfare function” for
each region can be defined as the area between the supply and demand curves,

Q4 Qg

W( Qy.Qq4) = f Pg dQy - f Py dQy.
[0} [0}
The total welfare function across al regionsis the sum of the welfare functions in each region less total

transport costs. Suppose T;; represents the amount of good shipped from i to j at cost ¢;. Then the net

welfareis
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NW = XW, (Q4.Qq) - XgT,
i i

In turn we may form an optimization problem with the NW expression as the objective function plus the
congtraints from the transportation model. These constraints involve a demand balance requiring that
incoming shipments to a region be greater than or equal to regiona demand,

Qg < XT; fordli

J

and a supply balance requiring that outgoing shipments do not exceed regional supply
Qg = I Ty fordli
i
The resultant problem becomes

Qg Qq
Max  X( [pydQy - [PsdQy) - g T,

st. Qq - XT; < O fordli
i
- Qg + ETij < 0 for dl i
i
Qg Qg T, = 0 fordliand|

This problem yields an equilibrium solution as long as the demand curves are downward doping and the
supply curves are upward doping. The nature of the solution and the equilibrium can best be reveaded

by investigating relevant parts of the Kuhn-Tucker Conditions.

oL oL

Q. Pg ~ A <0 (T)Qdi =0 Q4 20
i i

oL oL

aQ:‘pg+(PgSO (aQ)QQZO Qg =0
E ¥

oL oL

7:—c:iJ.Jr}Ldj—(pg.sO (T)Tij:o Tiij

These conditions imply that the shadow price in region i on the first constraint set (14), assuming Qg is
positive, equals the demand price while the second shadow price ¥ equals the supply priceif Qg is

positive. The transportation activities insure that the demand price in aregion must be less than the
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supply pricesin all other regions plus transport costs.

The solution to this problem yields the level of supply by region (Qy), the level of consumption by
region (Qy), and the level of trade between regions (T;; i#]) aswell asthe level of internal consumption
(Ti)- Pricein each region isfound in the dual variables.

The relationships between the equilibrium prices can take on one of severa cases. Namely: @) if
region i fills some of its own demand (i.e. T;; > 0), then the domestic supply and demand prices are
equal; b) if region i exportsto region j, (T; > 0), then the demand price in region j equals the supply
priceinregion i plus transport cost; ) if region j does not export to region i, then generally Py < Py + C
j indicates trade is not desirable since the price differential will not support the transport cost.

In this problem, the variable T; represents the quantity produced in region i and consumed in that
region. For example, suppose there are 3 regions, then total supply in region 1 isdenoted by Q.. Total
exports to region 2 and region 3 are T,,+ T,5. The amount produced in region 1 and not exported, thus
locally consumed, is

Qu ~ T, ~ Ty = Ty
In inequality form, the balance is
Qu > Ty + Ty + Tyg
The spatial equilibrium literature commonly deals with a specia case of this problem namely the

case where the supply and demand functions are both linear, i.e.,

ps =8 + b Qg, and Py =& — T Qq

In this case the objective function is quadratic and becomes:

Max Y(eQy - U2 f Qf - aQy - 12 b QF) - ¢, T,
i ij

Example

Suppose we have three entities (US, Europe, Japan) trading a single homogeneous commodity.

Suppose supply curves are present only in the US and Europe and the parameters of these curves are
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while the demand curves are

direction,

pS,U
pS,E

Pyu
Py

Pos =
and internal transport isfree. Also suppose transport between the US and Europe costs 3 in either

25 + qu

35 + QsE
150 - Qg
155 Que
160 Qus

while it costs 4 between the US and Japan and 5 between Europe and Japan. The formulation of this

problemis
Max 150Q;,
- 25Q,
-0 Ty,
-4T
st. Qg v
Que
Q.
B QS,U
Quv: Quer Qur Qsu:

1/2Q%,

12Q2,
3 Tye
5T,

- QS,E

Qs;,E'

+ 155Que -

- 35Q, - U2Q%

4

- T

T

TU,J

(VAV]

(VRV]

u,u’

+

T

3Ty

UE

T

UE

12Q7: + 160Qy, - 1/2Qg,
0 TE,E 5 TE, ]
Tey
B TE,E
TU,J B TE,J
+ Ty,
+ Tey  +Tee +Te,
Ty Tew  Teg Te,

U,E’

The solution to this problem yields an objective function value of 9193.6. The optimal values of

the variables are shown in Table 13.3.

This solution indicates consumption of 45.4 unitsin the U.S,, and 51.4 in both Europe and Japan,

while 79.6 units are supplied in the US and 68.6 in Europe. The U.S. and Europe both get al of their

consumption quantities from domestic production while the U.S. exports 34.2 units to Japan and Europe

exports 17.2. The equilibrium prices appear in the shadow price column. The priceinthe U.S. is104.6

while the European price is 103.6. Note the Japanese price is 108.6 which is higher than the pricein the

other two regions by the transport cost. These prices may aso be recovered by plugging the equilibrium

guantities into the demand and supply curves.

The utility of this model may be demonstrated by performing some dight extensions. Suppose we

use the model to examine the costs and effects of trade barriers and their cost. Specifically consider
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model solution &) without any trade, b) with the U.S. imposing a quota of 2 units, and c) with the U.S.
imposing a 1 unit export tax while Europe imposes a 1 unit export subsidy. Modeling these items
involves the addition of a constraint which limits exports from aregion to zero, the quota or an infinite
amount depending on the scenario and the ateration of the inter-country transport coststo reflect the
subsidy/tax. The GAMS file SPATEQ shows the implementation of these features. Table 13.4
presents a summary of the case solutions. Note that the expected results occur. Without trade domestic
consumers in the U.S. and Europe receive cheaper prices and consume more, but Japanese consumers
receive nothing. Simultaneously U.S. and European producers supply less and receive lower prices.
Under the U.S. quota, atrade realignment occurs. This also happens under the tax and subsidy
scenario. One may also interpret the objective function in terms of welfare and could decompose it to
reveal the welfare positions of the consumers and producers by country. All in al, this example

illustrates the potential usefulness of the spatia equilibrium, price endogenous structure.

13.2 Multi-Market Case

The price endogenous model may also be extended to multiple markets and products. Suppose
one wishes to construct a model with multiple sources of supply and demand. For a single homogenous
commodity let usillustrate this with an example.

Suppose we have two sources of wheat supply (domestic and import) and three sources of demand
(wheat for making bread, wheat for making cereal, and wheat for export). Define Q4 and Q; asthe
quantities supplied by domestic and import sources, respectively, with P, and Py as the corresponding
prices. Further, define X, X, and X, as the quantities of bread, cereal and exported wheat demanded,
with Py, P, and P, the accompanying prices. Let the supply and demand curves be dependent on own
price only with the supply curves:

domestic supply: Py = 20 + 0.003 Q,
import supply: Py = 31 + 0.0001 Q..
and the demand curves:
bread demand: P, = 075 - 0.0004 X,
cereal demand: Py 0.80 - 0.0003 X,
3.40 - 0.0001 X,

o
Il

export demand:
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Also suppose that one bushel (bu.) of wheat yields 5 units of bread, 6 units cereal or 1 exported bushel.
A prablem which depicts this situation is
Max (0.75 - 1/2+.0004X, )X, + (0.80 - 1/2+.0003X )X, + (3.4 - 1/2%.0001X )X~ (20 + 1/2%.003Q)Q, - (3.1 + 1/2+.0001Q)Q,

st. UsX, -+ Uex, + X Q - Q
X, Q

VoA

Readers may verify that at the optimal solution the Kuhn-Tucker conditions equate the price of wheat in
the supply and demand markets as well as the quantity forming an overal equilibrium. The solution of
this example arises from the file MARKETS and is given in Table 13.5. Now the question is, "What
does the objective function represent?

(0.75 - 1/27.0004X,)X,
The term is the area under the price curve for bread. Similarly, the other expressions are the integrals
under the other curves. Thus, we have the integrals under the demand curves less the integrals under the
supply curves leading us to a measure of the areas between the curves. The area between demand and
supply functionsis a measure of producers plus consumers surplus. Alternatively, this may be viewed
as atechnical behavioral objective whose purpose is to equate prices in markets.

This example again illustrates how price endogenous models can be constructed to account for
multiple markets. Again, the nonlinear part of the model takes into account the price responsivenessin
the demand and supply curves. This modd has an explicit supply curve for the product wheat,
composed of the aggregate of the two supply curves, as well as ademand curve which is the aggregate

of demand for wheat in the production of three products.

13.3 Implicit Supply - Multiple Factor sProducts
The above models involve explicit supply curves and production using asingle input. However,
one can depict multiple products, factors and production processes. Such models have exogenous factor
supply

and product demand curves, but implicit factor demand and product supply. A modd of such acaseis
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z, X

Max Zdeh(Zh)th - Zng(Xi)dXi
h0 i0

Thissirg'roblem assumes thatzé number of different types of fi rrg%%ciﬂ)*gﬁé bé ng %odfg remf” Ifach firmhasa
finite set of production processes (k) which depict paticular \&%@&moﬁbi niflg fiReRadtors ) with
purchased factors (i) to produce commodities (h). The eymbokEbmk@@ formutggiorier@l | B,aK s the
inverse demand function far the ™ commodity; Z , ische quantity ofgommoddly Foinatli$,consuenedls
(X;) istheinverse supply curve for the i purchased input; X; is the quantity of the i factor supplied;
Q. isthelevel of production process k undertaken by firm g; C,, istheyield of output h from
production processk; by, isthe quantity of the | owned fixed factor used in producing Q,; &, isthe
amount of the i" purchased factor used in producing Q,, and Y, is the endowment of the j* owned factor
availableto firm p.

An investigation of the Kuhn-Tucker conditions would show that the shadow price on the first and
second rows are respectively the demand and supply prices. The conditions for the Q variable indicates
that production levels are set so the marginal value of the commodities produced is less than or equal to
the marginal costs of the owned and fixed factors for each Qﬁk

The model formulation assumes that: 1) the supply and demand equations are integrable (we will
return to this assumption later, but for now we assume path independent integrals); and, 2) product
demand and factor supply functions are truly exogenous to the model (i.e., there is no income effect).

Theintegral of the product demand and factor supply functions makes the objective function equal
consumers plus producers surplus or net social benefit. The solution of the model generates
equilibrium price and quantity for each output, and purchased input, along with the imputed values for
the owned factors of production.

The model formulation assumes that the sector is composed of many micro-units, none of which
can individually influence output or factor prices. Each micro-unit supplies output at the point where
marginal cost equals product price, and utilizes purchased inputs at the point where the marginal value
product of each purchased input equals its market price. Thus, the sectoral supply of output schedule
corresponds to an aggregate marginal cost schedule, and the sectoral derived demand schedule for

purchased inputs corresponds to the aggregate margina value product schedule. Hence, the model does
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not take product supply or factor demand schedules as input, rather these schedules are derived
internally based upon production possibilities, output demand and purchased input supply.

The competitive behavior smulating properties of this formulation provide a powerful tool for
policy makers. Excepting centrally planned economies, the government cannot dictate production
patterns consistent with its objectives. This formulation recognizes the difference and possible conflict
between government and producer objectives (see Candler, Fortuny, and McCarl for elaboration). The
model alows policy analysts to specify changes designed to meet some government objective, then
simulate sectoral response to the policy change. The model does not assume participants respond to
government "wants"; each producer optimally adjusts so as to maximize profits. Producer adjustment is
endogenous to the modd.

Example

Suppose we make some modifications to the block diagona problem in Chapter 7 adding
product demand and labor supply curves. Namely let us simplify the problem by only allowing sales
from the first plant dropping the sales activities from the other plants. We will also specify linear
product demand and

labor supply curves. The curves are passed through a known price quantity point which hasa
particular elasticity at that point. Namely given the elasticity (e), and known price quantity point (P, Q)

then the dope (b) isfound as follows. We know that dope equals

AQ
while the elagticity is
AQ
AP
€ = —.
Q
P

Thisimplies that
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T RS
and then if
P=a+DbQ
the intercept is
a=P-bQ.

In setting up the model, the assumed price, quantity and elasticity by commodity as well asthe

computed intercept and dope are given below

Product Sale
Commodity Price Quantity  Eladticity Computed Computed
Intercept (a) Slope (b)
Functional Chairs 82 20 -0.5 247 -8.2
Functional Tables 200 10 -0.3 867 -66.7
Functional Sets 600 30 -0.2 3600 -100
Fancy Chairs 105 5 -0.6 280 -35
Fancy Tables 300 10 -12 550 -25
Fancy Sets 1100 20 -0.8 2475 -68.8
Labor Supply
Plant Price Quantity  Eladticity Computed Computed
Intercept (a) Slope (b)
Plantl 20 175 1 0 114
Plant2 20 125 1 0 .160
Plant3 20 210 1 0 .095

The resultant model is given in Table 13.6 where the objective function terms for the demand variables

marked with "w" equal
a* Q+%b* Q?
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where Q depicts the quantity of the variable. The intercept and slope are as in the above table.
Similarly, those supply terms marked with "-Z"", equal

-(@* Q+% b+ Q)
where the intercept and slope are from the labor supply table above.

The solution to this problemis givenin Table 13.7 (see file ACTANAL).

Note the balances give the market prices of chairs and tables while the plant level l1abor balances
give the labor prices. The overall objective function value again equals consumers plus producers
surplus.

13.4 Aggregation

An important sector modeling topic involves aggregation. Namely, the implicit supply model
assumes that there are submodels present for each firm in the sector. Thisis usually not practical.
Such models typically deal with the aggregate response across groups of firms. Two approaches have
been proposed for the formation of such an aggregate representation. The first involves derivation of
conditions under which a set of models can each represent more than one entity. Such conditions
require that the problems have identical constraint matrices, proportiona right hand sides and objective
functions (Day, 1969). The second approach involves a reformulation of the programming model. We
will deal further with this reformulation here.

The reformulation approach is based upon Dantzig and Wolfe decomposition and suggestionsin
McCarl. Dantzig and Wolfe based their scheme on the property that the solution to a subproblem or
group of subprablems will occur at the extreme points of the subproblem(s). Thus, one can reformulate
the problem
so that it contains the extreme point solutions from the subproblems. Formally this can be expressed as

follows. Given the problem
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z, X;

Max thPdh(Zh)th - iEflpﬂ.(xi)olxi
0 0
st. Z - gE:ChﬁkQﬁk < 0 fordlh
- X, o+ %qﬁkQﬁk < 0 fordli
kEbjﬁkQﬁk < Y fordljandp
z, X, Qu > O forali, h kandp

suppose we group the firms p into subsets r.(8) where r,,, depicts the m™ aggregate firm grouping. In
turn,

suppose we have a set of s feasible solutions Q,, and add up their aggregate levels of production and

input usage such that
Z,® = Y XCgQx fordlm h ands
Perm(® K
X(™ = ¥ Yg,Qu fordlmi ands
Pern® K

Thisin turn can be used in the aggregate problem:

z, X,
Max Edeh(Zh)th - _Efp,ﬂ.(xi)dxi
h i
0 0
st. Z, - Xz™A., < 0 foralh
ms
- X+ EXX™r . < 0 forali
m s
M. < 1 foralm
S
Z, X, Ans > 0 forali, hy mands

Thismodel differsin two maor ways from those above. First, the firm response variables have data

requirements not in terms of individual production possibilities, but rather in terms of total production
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and consumption of the sector wide outputs and inputs accumulated across the firms in each group. In
addition, rather than using individual resource constraints we now require a convex combination of the
total output/input vectors. Thiswill be feasible in the subproblems since any combination of two
feasible subproblem solutionsisfeasible. Implicitly these solutions contain all the firm level resource
restrictions and production possibilities coded within them.

The candidate solution vectors (i.e., the values of X;™,Z,™) must be developed. These can be
generated either by formally solving the linear programming subproblems for different prices or by
selecting a historical set of observed feasible mixes or firms. Thisis discussed further in Onal and
McCarl (1989, 1991).

Example

Suppose we have a problem with four production subproblems falling into two states where the
first
two firms are in state 1 and the second two are in state 2. Further suppose the firms each produce two
goods and use miscellaneous inputs, labor and land. Suppose the land constraint is firm specific, the
labor
constraint is state specific and the miscellaneous inputs constraint is national. Suppose the supply and
demand curves arein Table 13.8 and the rest of the data are as given in the tableau (Table 13.9).
Aggregation is introduced into this problem by considering using two state level models. Suppose over
time we have observed state crop mixes asin Table 13.10. We may then reformulate the moddl and,
rather than include all the firms and resource constraints, we simply put in the total input and output use
for the observed solutions (Table 13.11). The resultant national solutions before (see file BEFORAGG)
and after (see file AFTERAGG) the aggregation process are given in Table 13.12aand 13.12b. Notice
that there is not a great deal of difference in these optimum solutions.

This exampleisindicative of a general approach to such problems. Namely, if we weretrying to
represent all of the farms in a sector and could obtain production and input usages by state, we could

modify the model to force a convex combination of historically observed activity. Thisisdonein the
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sector models used by McCarl (1982b); Hamilton, McCarl and Adams; and Chang et al.

13.5 A Digression on the Assumptions
To formulate the above models or any other multi-product or multi-input model, one must assume
integrability of product demand and purchased input supply functions as well as partia equilibrium. In
this section, we will discuss these assumptions and suggest ways of relaxing them. Integrability
requires that the Jacobians of the product demand equations and purchased input supply functions be

symmetric (Hurwicz and Uzawa). The system of product demand functionsis

and the system of purchased input supply functionsis

R =E + FX

The Jacobians of the demand and supply equations are H and F, respectively. Symmetry of H and F
implies that cross price effects across al commodity pairs are equal; i.e.,

P, /3Q, = oP, /dQ, fordlr # h
0P, /0Q, = dP, /oQ, fordlr = h

In the case of supply functions, classical production theory assumptions yield the symmetry conditions.
The Slutsky decomposition reveals that for the demand functions, the cross price derivatives consist of a

symmetric subgtitution effect and an income effect. The integrability assumption requires the income
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effect to be identical across all pairs of commodities or to be zero.

Some authors argue that there need be no concern regarding symmetry. Since the objective
function is a quadratic form. Then, given any square matrix, H, a quadratic form is the scaler quantity
that results when H is pre- and post- multiplied by a conformable vector,

v = x’HAX

where v is the value of the quadratic form. Mathematicaly, if we replace H with the symmetric matrix
B

B = 1/2(H + H)
One can easily show that

X" BX = X’/ HAX
Thus, if H isnot symmetric, it can be replaced by B, and the value of the objective function remains
unchanged. But, when the first order conditions are formed, the derivatives are atered. In particular if
one integrates the above demand curve, we get

A(GZ-12Z'HZ) _ 9GZ , dU2Z'HZ

= G + U2Z/(H+H')
9z oz 9z

which would not give the demand price. Thus margina cost and product price are no longer
equilibrated.

Models can be formed which can handle asymmetry. Price and quantity variables can be included
in the primal model (Plessner and Heady). Thus, both price and quantity equilibrium conditions are
imposed on the primal problem, as contrasted with the above specification in which only quantity
equilibrium conditions are imposed on the primal, and price equilibrium conditions are found in the
dua. Another approach is linear complementarity programming (Takayama and Judge; Stoecker; or
Palito). In this case, the objective function no longer represents consumers plus producers surplus.

For further discussion, see Takayama and Judge or Martin.
The partial equilibrium assumption arises because the formulation does not incorporate the

income generated by the sector as a simultaneous shifter of demand for products included in the model.
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If the entity modeled is small relative to the entire economy, this should not be a problem. If amagjor
proportion of consumers included in the model are aso producers, then the model inadequately
describes the linkages in the economy. A formulation which does not require the partial equilibrium
assumption was developed by Y aron, who specified a lagged relationship in which aggregate consumer
demand in the current period is a function of income in the previous period. Norton and Scandizzo have
relaxed this assumption in a simultaneous fashion in which demand is specified as a function of current
consumer income. Integrability is a consequence as an income shifter is explicitly introduced, leaving
only the symmetric substitution terms.

For further discussion of empirica specification of price endogenous models, see the review

papers by McCarl and Spreen or Norton and Schiefer.

13.6 Imperfect Competition
So far, we have basically dealt with price endogeneity starting from Samuelson's approach,
casting a set of first-order conditions and discovering the QP that would yield such aset. Another
approach, however, can be taken. Suppose one begins with a classic LP problem involving two goods

and asingle condtraint; i.e.,

Max PX - P,Q

st. X - Q=< O
X, Q=> 0
However, rather than P, and P, being fixed, suppose that we assume that they are functionally
dependent upon quantity as given by
P, = a - bX
P, = ¢ + dQ
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Now suppose one simply substitutes for P, and P, in the objective function. Thisyields the problem

Max aX - bX? - cQ - dQ?
st. X - Q
X, Q

IN

[\

Note the absence of the ¥Zsin the objective function. If one applies Kuhn-Tucker conditionsto this
problem, the conditions on the X variables, assuming they take on non-zero levels, are

a - 2bX - A
-(c + 2dQ) + A

0
0

The solution to this set of equations implies that the dual variable (1) is equated to something with
twice the dope of the demand curve. Readers familiar with the imperfect competition literature will
recognize this as an equation of marginal revenue with marginal cost. Such actions are only consistent
with the behavior of perfectly discriminating monopolists - monopsonists. This indicates a couple of
things about the approach to price equilibrating models: if one is not careful and does not put the
integralsin, one smulates imperfect competition. In fact, there are four cases involving the integrals

(¥2sin the quadratic case). Given the supply and demand relationships, one may model as follows

[l  Monopolist- Monopsonist

Max X(@a - bXx) - Q(C + dQ)
X - Q <0
[T  Monopoalist- Supply Competitor
Max X(a - bX) - Q(C + 1/2dQ)
X - Q <0
[I11] Demand Competitior - Monopsonist
Max X(@a - VU2bX) - Q(C + dQ)
X - Q <0
[IV] Compstitor in Both Markets
Max X(@a - Y2bX) - Q(C + 1/2dQ)
X - Q <0

The solutions to these problems are graphed in Figure 13.3. Using the wheat problem, the numerical
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solutions shown in Table 13.13 are determined under the four alternative behavioral assumptions. This
shows that one can obtain aternative forms of competition by selectively omitting or including integrals.
Nelson and McCarl provide a more general discussion of the topic of imperfect competition under

the quadratic case. They show that in each of the demand and supply curves, if the term

n + 1
2n

is subgtituted for the %, then one obtains a smulation of the effect of n firms discriminating against the
demand or supply curvesto this parameter is supplied. This particular term reduces to %2 when n
approaches «~, and 1 when n=1. Thus, it covers both the monopolistic and perfectly competitive cases.
But also, for example, when n=2, the equation says to use a 3/4 to reflect two firms acting under
imperfect competition against a particular supply curve. Readers should be careful in using this
formulation, asit indicates how one discriminates against the entity which the particular supply or
demand curve depicts, not how that entity discriminates against others. Nelson and McCarl present a

more careful discussion on handling other forms of imperfect competition.

13.7 Conclusion
In the preceding sections, price endogenous models have been developed for spatia equilibrium,
multi-market, multi-product, multi-factor models, aggregate, and imperfect competition. It should be
clear that these models may be combined with our earlier formulations. For example, Spreen et a.
integrated a multi-product industry formulation with a disequilibrium known life type formulation in a
study of the livestock sector in Guyana.
These types of models have been used in many studies, as listed in the review book by Judge and

Takayama, the review papers by McCarl and Spreen, Martin, and Norton and Schiefer.
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Table13.1. GAMS Formulation of Smple Price Endogenous Example

2

4  OPTION LIMCOL = O;

5 OPTION LIMROW = O;

6

7 SETS CURVEPARM CURVE PARAMETERS /INTERCEPT,SLOPE/

8 CURVES TYPES OF CURVES  /DEMAND,SUPPLY/

9

10 TABLE DATA(CURVES,CURVEPARM) SUPPLY DEMAND DATA

11

12 INTERCEPT SLOPE

13 DEMAND 6 -0.30

14 SUPPLY 1 0.20

15

16 PARAMETERS SIGN(CURVES) SIGN ON CURVES IN OBJECTIVE FUNCTION
17 /SUPPLY -1, DEMAND 1/

18

19 POSITIVE VARIABLES QUANTITY(CURVES) ACTIVITY LEVEL

20

21  VARIABLES 0BJ NUMBER TO BE MAXIMIZED
22

23 EQUATIONS 0BJJ OBJECTIVE FUNCTION
24 BALANCE COMMODITY BALANCE;

25

26 0BJJ.. OBJ =E= SUM(CURVES, SIGN(CURVES)*

27 (DATA(CURVES, " INTERCEPT"")*QUANTITY (CURVES)
28 +0.5*DATA(CURVES, ""SLOPE")*QUANTITY(CURVES)**2)) ;
29

30 BALANCE. . SUM(CURVES, SIGN(CURVES)*QUANTITY(CURVES)) =L= 0 ;
31

32 MODEL PRICEEND /ALL/ ;

33

34 SOLVE PRICEEND USING NLP MAXIMIZING OBJ ;

35
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Table 13.2.

Solution to Simple Price Endogenous M odel

Variables Level Reduced Cost Equation Slack Shadow Price
Qq 10 0 Objective function 0 -1
Qs 10 0 Commodity Balance 0 3
Table 13.3. Solution to Spatial Equilibrium Model
Objective function = 9193.6
Variables Vaue  Reduced Cost | Equation Leve Shadow
Price

Supply Supply Balance

uU.S. 79.6 0 U.S. 0 104.6

Europe 68.6 0 Europe 0 103.6
Demand Demand Baance

U.S. 454 0 U.S. 0 104.6

Europe 514 0 Europe 0 103.6

Japan 51.4 0 Japan 0 108.6
Shipments

U.S.toU.S. 454 0

U.S. to Europe 0 -4

U.S. to Japan 34.2 0

Europeto U.S. 0 -2

Europe to Europe 514 0

Europe to Japan 17.2 0
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Table 13.4. Solutions to Alternative Configurations of Spatial Equilibrium Model

Undistorted No Trade Scenario Quota Tax/Subsidy
Objective 9193.6 7506.3 8761.6 9178.6
U.S. Demand 454 62.5 61.5 46.4
U.S. Supply 79.6 62.5 635 78.6
U.S. Price 104.6 87.5 88.5 103.6
Europe Demand 514 60 40.7 50.4
Europe Supply 68.6 60 79.3 69.6
Europe Price 103.6 95 114.3 104.6
Japan Demand 514 0 40.7 514
Japan Price 108.6 160 119.3 108.6

Table 13.5. Solution to the Wheat Multiple Market Example

X 255.44
X 867.15
Xe 1608.72
Qq 413.04
Q 1391.29
Pl 0.648
Pac 0.540
Pae 3.239
Py 3.239
Py 3.239
Shadow Price 3.239
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Table 13.6. Formulation of the Implicit Supply Example

PLANT 1 PLANT 2 PLANT 3
Sell Make Sell Sell Transp Make Make Fancy Labor Transp Transport Make Make Make Fancy Labor Supply SHS
Sets Table Table Chair ort Functional Chairs Supply ort Chair Table Functional Chairs
FC FY FC FY FC FCFY Chair Chairs Norm MxSm MxLg Table FC FY FC FY Chairs Norm MxSm MxLg

Objective w W w W w W -Z -5 -5 -15  -16 -16 -25 -25 -26 -Z -7 -7 -7 -80 - -15 -16 -165 -25 -257 -266 -Z min
P Table 1 -1 1 -1 = 0
L

Invent 1 -1 1 -1 = 0
A
N Chair 4 1 -1 -1 = 0
T Invent 6 1 1 <0

Labor 3 5 -1 < 0

Top 1 1 < 50
1
PL Chair 1 -1 -1 -1 = 0
A Invent 1 -1 -1 -1 = 0
N
T Small 08 13 02 12 1.7 05 < 140

Large 05 02 13 07 03 15 <= 90

Chair 04 04 04 1 1 1 < 120
2 Labor 1 105 11 08 082 084 -1 = 0
P Table 1 -1 = 0
t Invent 1 -1 = 0
A
N Chair 1 -1 -1 -1 = 0
T Invent 1 B B | = 0

Small 08 13 02 12 17 05 < 130

Large 05 02 13 07 03 15 < 100
3 .

Chair 04 04 04 1 1 1 < 110

Labor 3 5 1 105 11 0.80 0.82 0.84 -1 <= 0

Top 1 1 < 40
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Table 13.7. Solution of the Implicit Supply Example

Shadow Columns Level Reduced
Rows Slack Price Variable Names Cost
Objective 95779.1 Sell FC Set 30.9 0
Table FC 0 165.1 PLANTL ' el Fy set 230 0
PLANTL | Taple FY 0 2285 Sell FC Tables 105 0
Chair FC 0 85.6 Sell FY Tables 129 0
Chair FY 0 110.8 Sell FC Chairs 19.6 0
Labor 0 217 Sell FY Chairs 4.8 0
Top Capacity 0 20.0 Make Table FC 30.1 0
PLANT 2 Chair FC 0 80.6 Make Table FY 20.0 0
Inventory FY 0 105.8 Hire Labor 189.9 0
Small Lathe 0 35.6 Transport FC 105.0 0
PLANT 2 Chair
Large Lathe 0 28.0 Transport FY 48.9 0
Chair
Carver 29.02 0 Make Table FC 0 -69.3
Labor 0 231 Make Table FY 0 -115.5
Make FC Chair N 105.1 0
S 0 -11.6
Table FC 0 145.1 L 0 -4.8
PLANT Inventory FY 0 208.5 Make FY Chair N 44.9 0
3 Chair FC 0 78.6 S 0 -7.76
Inventory FY 0 103.8 L 4.0 0
Small Lathe 0 35.1 Hire Labor 144.4 0
Large Lathe 0 27.6 Transport FC 114 0
PLANT 3 Table
Carver 0.80 0 Transport FY 159 0
Table
Labor 0 21.7 Transport FC 38.2 0
Chair
Top Capacity 12.69 0 Transport FY 93.9 0
Chair
Make FC Table 11.4 0
Make FY Table 159 0
Make FC Chair N 38.2 0
S 0 -11.3
L 0 -4.7
Make FY Chair N 75.0 0
S 0 -7.6
L 19.0 0
Hire Labor 2279 0
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Table 13.8. Demand and Supply Parametersfor Aggregation Example

Price Quantity Elasticity
Product Demands
Cotton 225 3326 -15
Corn 210 1087 -11
Hired Labor Supply
State 1 5 78.7 0.5
State 2 45 68.1 12
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Table 13.9. Before Aggregation Formulation of Aggregation Example

Farm Produce Misc
Sales Hired Labor Hired Labor Farm 1 Farm 2 Farm 3 Farm 4 Inputs
corn cotton State 1 State 2 Farm 1 Farm 2 Farm 3 Farm 4 corn cotton corn cotton corn cotton corn cotton
Obj. Func. a a -b -b -1
Misc Inputs 80 303 95 278 110 437 70 300 -1 = 0
Labor State 1 -1 1 1 < 0
Labor State 2 -1 1 1 < 0
Farm Labor Farm 1 -1 104 145 < 155
Farm Labor Farm 2 -1 12.9 175 < 131
Farm Labor Farm 3 -1 12.2 245 < 115
Farm Labor Farm 4 -1 9.6 14 < 113
Product Corn 1 -120 -180 -150 -150 < 0
Balance Cotton 1 -2.2 -2.6 -31 -25 < 0
Land Available Farm 1 1 1 < 6
Land Available Farm 2 1 1 < 4
Land Available Farm 3 1 1 < 5
Land Available Farm 4 1 1 < 3
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Table 13.10. Crop Mix Data for usein Aggregation Example

Mix 1 Mix 2
Region Farm Corn Cotton Corn Cotton
State 1 Farml 3
Farm 2 A
State 2 Farml 6 75 .25
Farm 2 .55 45 6 A4
Table 13.11. Aggregation Example after Aggregation
Crop Mixes
Sdles Hired Labor Statel State 2 Misc
corn cotton | Statel State2 | Mix 1 Mix 2 Mix 1 Mix 2 | Inputs
Obj. Func. a a -b -b -1
Misc Inputs 2455 2041 1725 1445 -1 = 0
Labor State 1 -1 119.2 110.6 < 0
Labor State 2 -1 97.6 87.7 < 0
Product Corn 1 -288 -576 -9.6 -6.9 < 0
Balance Cotton 1 -18.6 -13.9 -698 -833 < 0
Convexity Statel 1 1 < 1
Convexity State? 1 1 < 1
13-30
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Table 13.12. Solutions of Aggregation Example

A Before Aggregation

Rows Slack Shadow Price Variable Level Reduced Cost
Objt 77774
Misc Inputs 0 -1.000 Sales Cotton 316 0
Sales Corn 967.4 0
State Labor State 1 0 2318
State Labor State 2 0 4.288 Hired Labor State 1 57.6 0
Hired Labor State 2 64.3 0
Farm Labor 1 0 116
Farm Labor 2 0 116 Hire Labor Farm 1. State 1 35.8 0
Farm Labor 3 0 214 Hire Labor Farm 2. State 2 218 0
Farm Labor 4 0 214 Hire Labor Farm 3. State 3 555 0
Hire Labor Farm 4. State 4 88 0
Cotton 0 2326
Corn 0 231 Corn. Farm1 0 -6.2
Cotton. Farm 1 6.0 0
Land Farm 1 0 1914 Corn. Farm2 29 0
Land Farm 2 0 305.9 Cotton. Farm 2 11 0
Land Farm 3 0 230.8 Corn. Farm3 0 -204
Land Farm 4 0 255.9 Cotton. Farm 3 5.0 0
Corn. Fam4 30 0
Cotton. Farm 4 0 -5.0
Misc Inputs 4799 0
B After Aggregation
Rows Slack Shadow Price Variable Level Reduced Cost
Obj. Func. 7052.2 Sales Corn 282 0
Cost 0 1 Sales Cotton 985.5 0
Labor State 1 0 101 Hire Labor State 1 119.2 0
Labor State 2 0 6.1 Hire Labor State 2 975 0
Product Bal. Corn 0 2479 Crop State 1 Mix 1 1 0
Product Bal. Cotton 0 228 Crop State 1 Mix 2 0 -129
Convex State 1 1 16034 Crop State 2 Mix 1 1 0
Convex State 2 1 16415 Crop State 2 Mix 2 0 -21.6
Cost 4180 0
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Table13.13.  Alternative Solutions to Wheat Multiple Markets
Example under Varying Competitive Assumptions

I I I v
X 127.718 142.335 226.067 255.46
X 433.579 449.821 834.526 867.16
X e 804.357 1096.705 1021.340 1608.71
Qg 206.521 393.533 216.311 413.04
Q 695.642 806.589 989.330 1391.29
Pab 0.699 0.693 0.660 0.649
Pac 0.669 0.665 0.550 0.540
Pae 3.3196 3.29033 3.2979 3.239
Py 2.6196 3.18066 2.6489 3.239
Py 3.6196 3.18066 3.1999 3.239
Shadow Price 3.2391 3.18066 3.2979 3.239
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CHAPTER XIV: RISK MODELING

Risk is often cited as afactor which influences decisions. This chapter reviews methods for
incorporating risk and risk reactions into mathematical programming models.”

Mathematical programming risk models depict the risk inherent in model parameters. Risk
considerations are usually incorporated assuming that the parameter probability distribution (i.e., the risk)
is known with certainty.® Usualy, the task becomes one of adequately representing these distributions as
well as the decision makers response to parameter risk.

The question arises. Why model risk, why not just solve the model under all combinations of the
risky parameters and use the resultant plans? Such an approach is tempting, yet suffers from problems of
dimensionality and certainty. The dimensionality problem is manifest in the number of possible plans; (i.e.,
five possible values for each of three parameters would lead to 3° = 243 possible parameter specifications).
Often, there are more possible states of nature than can practically be enumerated. Furthermore, these enu-
merated plans suffer from a certainty problem. Every LP parameter is assumed known with perfect
knowledge. Consequently, solutions reflect "certain™ knowledge of the parameter valuesimposed. Thus,
when one solves many models one gets many plans and the question remains which plan should be used.

Usually, it is desirable to generate a robust solution which yields satisfactory results across the
distribution of parameter values. The risk modeling techniques discussed below are designed to yield such

aplan. The"optimal" plan for arisk model generally does not place the decision maker in the best

possible position for al (or maybe even any) possible events, but rather establishes a robust position across
the set of possible events.
14.1 Decision Making and Recour se
Many different programming formulations have been posed for risk problems. An important
assumption involves the potential decision maker reaction to information. The most fundamental
distinction is between cases where:

1) al decisions must be made now with the uncertain outcomes resolved later, after all
random draws from the distribution have been taken, and

2) some decisions are made now, then later some uncertainties are resolved followed by other
decisions yet later.

These two settings areillustrated as follows. In the first case, all decisions are made then events

" Therisk modeling problem is a form of the multiple objective programming problem so that there
are paralels between the material here and that in the multi-objective chapter.

& It should be noted that risk and uncertainty are used interchangeably. Any time we discuss risk or
uncertainty we assume that the probability distribution is known.
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occur and outcomes are realized. Thisis akin to a Situation where one invests now and then discovers the
returns to the investment at year end without any intermediate buying or selling decisions. In the second
case, one makes some decisions now, gets some information and makes subsequent decisions. Thus, one
might invest at the beginning of the year, but could sell and buy during the year depending on changesin
stock prices.

The main distinction is that under the first situation decisions are made before any uncertainty is
resolved and no decisions are made after any of the uncertainty isresolved. In the second situation,
decisions are made sequentially with some decisions made conditional upon outcomes that were subject to a
probability distribution at the beginning of the time period.

These two frameworks lead to two very different types of risk programming models. Thefirst type of
model is most common and is generally caled a stochastic programming model. The second type of model
was originally developed by Dantzig in the early 50's and falls into the class of stochastic programming
with recourse models. These approaches are discussed separately, athough many

stochastic programming techniques can be used when dealing with stochastic programming with recourse
problems.
14.2 An Aside: Discounting Coefficients

Before discussing formal modeling approaches, first let us consider a common, simple approach to
risk used in virtually al "risk free" linear programming studies. Suppose a parameter is distributed
according to some probability distribution, then a naive risk specification would simply use the mean.
However, one could also use conservative price estimates (i.e., a price that one feels will be exceeded 80%
of the time).

This reveals a common approach to risk. Namely, datafor LP models are virtually never certain.
Conservative estimates are frequently used, in turn producing conservative plans (see McCarl et al., for an
example of treatment of time available). Objective function revenue coefficients may be deflated while cost
coefficients areinflated. Technical coefficients and right hand sides may be treated similarly. The main
difficulty with a conservative estimate based approach is the resultant probability of the solution.
Conservative estimates for all parameters can imply an extremely unlikely event and an overly conservative
choice of the decision variables.

14.3 Stochastic Programming without Recour se

Stochastic programming techniques generally treat risk in the objective function coefficients,

technical coefficients or right hand sides separately or collectively.

14.3.1 Objective Function Coefficient Risk
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Several objective function coefficient risk models have been posed. This section reviewsthese. First,
however, some statistical background on distributions of linear sumsis necessary.
Given alinear objective function
Z=c¢c X, +¢C X,
where X,, X, are decision variables and ¢, , ¢, are uncertain parameters distributed with meansEl and Ez

aswell asvariances s, , S,,, and covariance s,,; then Z is distributed with mean

Z:clxl+czx2

and variance
2 2 2
07 = Sy X1 + 8, Xy, + 25, X X,

In matrix terms the mean and variance of Z are

(CX , X'SX)
where in the two by two case

S Spp
S -

c-.c¢
L S, S,

Defining terms

s;  isthevariance of the objective function coefficient of X;, which is calculated using the formula s, =
(Ck- C )2/N9where c, Isthe k™ observation on the objective value of X; and N isthe number of
observations.

s; fori % jisthe covariance of the objective function coefficients between X; and X;, calculated by the
formulas; =} (G- C)(Ci- cj)/N. Notes; = s;.

c, isthemean value of the objective function coefficient associated with X;, calculated by
C, =) Ci/N. (Assuming an equally likely probability of occurrence.)

14.3.1.1 Mean-Variance Analysis

The above expressions define the mean and variance of a LP objective function with risky ¢

parameters. Markowitz exploited thisin the origina mean-variance portfolio choice formulation.

The portfolio choice problem involves development of an "optima™ investment strategy. The
variables indicate the amount of funds invested in each risky investment subject to atotal funds constraint.
Markowitz motivated the formulation by observing that investors only place a portion, not all, of their
fundsin the highest-yielding investment. This, he argued, indicated that a L P formulation is inappropriate
since such an LP would reflect investment of al funds in the highest yielding aternative (since thereisa

single condtraint). This divergence between observed and modeled behavior led Markowitz to include a

®  One could also use the divisor N-1 when working with a sample.
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variance term resulting in the so-called expected value variance (E-V) model.
Freund (1956) developed arelated model, apparently independently, which has become the most

commonly used E-V modd. The portfolio context of hisformulation is

Max J_Ecjxj - @ j}:@kxjxk

st. Exj =1
j

X

[\

0 for dl j

Here the objective function maximizes expected income (CX ) lessa "risk aversion coefficient" (D)
times the variance of total income (X'SX). The model assumes that decision makers will trade expected in-
come for reduced variance.

In this context Markowitz discussed the E-V efficient frontier which is the locus of points exhibiting
minimum variance for a given expected income, and/or maximum expected income for a given variance of
income (Figure 14.1 gives the frontier for the example below). Such points are efficient for a decision
maker with positive preference for income, negative preference for variance and indifference to other
factors.

The E-V problem can handle problem contexts broader than the portfolio example. A genera

formulation in the resource allocation context is

Max CX - @ X/SX
st. AX < b

_ X > 0
whereCis average returns from producing X and S gives the associated variance-covariance matrix.

14.3.1.1.1 Example

Assume an investor wishes to develop a stock portfolio given the stock annual returns information
shown in Table 14.1, 500 dollars to invest and prices of stock one $22.00, stock two $30.00, stock three
$28.00 and stock four $26.00.

Thefirst stage in model application isto compute average returns and the variance-covariance
matrix of total net returns. The mean returns and variance - covariance matrix are shown in Table 14.2. In

turn the objective function is

[

4321 - 352 + 6.99 +0.04
-352 + 584 -13.68 +0.12
+6.99 -1368 +61.81 -1.64
+0.04 + 012 - 164 +0.36

[

N
N

Max [ 4.70 7.60 8.30 5.80 ] | ‘| -® [X, X, X, X,]

w
w

X X X X

X X X X
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or, in scaer notation
Max 4.70 X, o+ 7.60 X, + 8.30 Xy o+ 5.80 X,

+321 X7 -352XX, +699XX, +004XX,
- 352 X,X, +584 X7 - 1368 XX, + 012 X,X,

+ 699 XX, - 1368 XX, + 618l X5 - 164 XX,

+0.04 XX, +012X,X, -164XX, +036 X,

This objective function is maximized subject to a constraint on investable funds:
22X, + 30X, + 28X, + 26X, < 500
and non-negativity conditions on the variables.

Empiricaly, this problem is solved for various @ values as implemented in the GAMS instructions in
Table 14.3 or in the EVPORTFO file. The solutions, at selected values of ®, are shown in Table 14.4,
while Figure 14.1 gives the efficient frontier.

The modd yields the profit maximizing solution (X,=X,=X,=0,X3;=17.86) for low risk aversion
parameters (@ < 0.0005). Astherisk aversion parameter increases, then X, comesinto the solution. The
simultaneous use of X, and X coupled with their negative covariance reduces the variance of total returns.
This pattern continues as @ increases. For example, when @ equals 0.012 expected returns have fallen by
$17 or 11%, while the standard deviation of total returns has fallen by $117 or 80%. For yet higher values
of the risk aversion parameter, investment in X, increases, then later X, is added.

Three other aspects of these results are worth noting. First, the shadow price on investable capital
continually decreases as the risk aversion parameter ( @ ) increases. This reflects an increasing risk
discount as risk aversion increases. Second, solutions are reported only for selected values of ®. However,
any changein @ leads to adifferent solution and an infinite number of aternative @'s are possible; e.g., all
solutions between @ values of 0.0005 and 0.0075 are convex combinations of those two solutions. Third,
when @ becomes sufficiently large, the model does not use all its resources. In this particular case, when @
exceeds 2.5, not dl funds are invested.
14.3.1.1.2 Markowitz's E-V Formulation

Markowitz's origina formulation of the E-V problem minimized variance subject to a given level of
expected income as in the multi-objective programming lexicographic formulation.

Algebraically, this model is
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Min X’/SX
st.  CX
AX

X

IN
(on

[\

where 1 is parameterized over the relevant part of the range of possible expected incomesi.e. from the
lowest acceptable to the LP maximum.
14.3.1.1.3 Formulation Choice

Markowitz's (1959) and Freund's (1956) formulations yield identical efficient frontiers; however, we
favor Freund's (1956) formulation (a weighted multi-objective tradeoff model) due to a perceived
incompatibility of the Markowitz formulation with model use as argued in the multi-objective chapter.
Briefly, models are usually formulated for comparative statics analysis of arelated series of problems.
This type of analysisinvolves changesin the S, C_Z A and b parameters. In such an analysis, wefedl it is
not desirable to give alternative efficient frontiers; rather, we fed it is desirable to give specific plans (i.e.,
X variable values) for the S, C_Z A and b settings. Using the above E-V models one would first need to
select either anumerical value for @ or onefor A. A value of ® so adopted islargely afunction of the
decision makers preference between income and risk (see Freund (1956) or Bussey for theoretical

development of this point). The value of 1 adopted will be a function of both the risk-income tradeoff
and thevaluesof C, S, A, and b. Thus, the attainability of a given choice A would change with
aterations in these parameters. On the other hand, @ expresses a "pure" measure of the risk-tradeoff and is

more likely to be relevant for different parameter values. Thus, we prefer the Freund (1956) formulation.
14.3.1.1.4 Characteristics of E-V Model Optimal Solutions
Properties of optima E-V solutions may be examined via the Kuhn-Tucker conditions. Given

the problem

Max CX - & X'SX

st. AX <b
X >
Its Lagrangian function is
QX)) = CX - ®X'SX - H(AX-b)

and the Kuhn-Tucker conditions are
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oLIOX = C-2¢X'S-pA < 0
(0L/OX)X = (C-2¢X'S-pAX = 0
X > 0

oLdlou = - (AX -b) > 0
pH(oLlon) = H(AX -b) = 0
VI > 0

where pis the vector of dua variables (Lagrangian multipliers) associated with the primal constraint
AX<h.

A cursory examination of these conditions indicates two things. Firgt, the solution permits more
variables to be nonzero than would a L P basic solution. This occurs since variables can be nonzero to
satisfy the n potential conditions 0</0X = 0 and the m conditionswhere AX =bor i =0. Thus, the
solution can have more nonzero variables than constraints. Second, the 0</0X equation relates resource
cost (M) with marginal revenue (C_Z) and amarginal cost of bearing risk (-2 @ X'S). Consequently, the
optimal shadow prices are risk adjusted as are the optimal decision variable values.
14.3.1.1.5 E-V Modd Use - Theoretical Concerns

Use of the E-V model has been theoretically controversiad. Expected utility theory (von Neumann
and Morgenstern) provides the principal theoretical basis for choice under uncertainty. Debate has raged,
virtualy since the introduction of E-V analysis, on the conditions under which an E-V model makes choices
equivalent to expected utility maximization. Today the general agreement is that maximizing the E-V
problem is equivalent to maximizing expected utility when one of two conditions hold: 1) the underlying
income distribution is norma - which requires anormal distribution of the ¢; and the utility functionis
exponential (Freund, 1956; Bussey)?, and 2) the underlying distributions satisfy Meyer's location and scale
restrictions. In addition, Tsiang (1972, 1974) has shown that E-V analysis provides an acceptable
approximation of the expected utility choices when the risk taken is small relative to total initial wealth.
The E-V frontier has also been argued to be appropriate under quadratic utility (Tobin). There have dso
been empirical studies (Levy and Markowitz; Kroll, et al.; and Reid and Tew) wherein the closeness of E-V
to expected utility maximizing choices has been shown.
14.3.1.1.6 Specification of the Risk Aversion Parameter

E-V models need numerical risk aversion parameters (®). A number of approaches have been used

for parameter specification. First, one may avoid specifying a value and derive the efficient frontier. This

10 Normality probably validates a larger class of utility functions but only the exponential case has

been worked out.

copyright Bruce A. McCarl and Thomas H. Spreen 14-7



involves solving for many possible risk aversion parameters. Second, one may derive the efficient frontier
and present it to a decision maker who picks an acceptable point (ideally, where his utility function and the
E-V frontier are tangent) which in turn identifies a specific risk aversion parameter (Candler and Boeljhe).
Third, one may assume that the E-V rule was used by decision makersin generating historical choices, and
can fit the risk aversion parameter as equal to the difference between marginal revenue and marginal cost of
resources, divided by the appropriate marginal variance (Weins). Fourth, one may estimate arisk aversion
parameter such that the difference between observed behavior and the model solution is minimized (asin
Brink and McCarl (1979) or Hazell et a. (1983)). Fifth, one may subjectively elicit arisk aversion
parameter (see Anderson, et al. for details) and in turn fit it into the objective function (i.e., given a Pratt
risk aversion coefficient and assuming exponentia utility implies the E-V @ equals %2 the Pratt risk
aversion coefficient [Freund, 1956 or Bussey]). Sixth, one may transform arisk aversion coefficient from
another study or develop one based on probabilistic assumptions (McCarl and Besdler).

The E-V model hasalong history. The earliest application appears to be Freund's (1956). L ater,
Heady and Candler; McFarquhar; and Stovall al discussed possible uses of this methodology. A sample of
applications includes those of Brainard and Cooper; Lin, et a.; and Wiens. In addition, numerous
references can be found in Boisvert and McCarl; Robinson and Brake; and Barry.
14.3.1.2 A Linear Approximation - MOTAD

The E-V mode yields a quadratic programming problem. Such problems traditionally have been

harder to solve than linear programs (although McCarl and Onal argue thisis no longer true). Several LP
approximations have evolved (Hazell, 1971; Thomas et a; Chen and Baker; and others as reviewed in
McCarl and Tice). Only Hazell's MOTAD is discussed here due to its extensive use.

The acronym MOTAD refers to Minimization of Total Absolute Deviations. Inthe MOTAD mode,
absolute deviation isthe risk measure. Thus, the MOTAD model depicts tradeoffs between expected
income and the absolute deviation of income. Minimization of absolute values is discussed in the nonlinear
approximations chapter. Briefly reviewing, absolute value may be minimized by constraining the terms
whose absolute value is to be minimized (D,) equal to the difference of two non-negative variables ( D, =
d. - d.) and in turn minimizing the sum of the new variables Y’ (d." + d,). Hazell(1971) used this
formulation in developing the MOTAD model.*

Formally, the total absolute deviation of income from mean income under the k™ state of nature (D)

D=l =64 X - =¢ X |
( ) (i )

1 The approach was suggested in Markowitz (1959, p. 187).
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where ¢,; is the per unit net return to X; under the k™ state of nature and EJ is the mean.

Since both terms involve X; and sum over the same index, this can be rewritten as

Dk:’ JX:( ij - Cj ) Xj’

Total absolute deviation (TAD) isthe sum of D, across the states of nature. Now introducing

deviation variables to depict positive and negative deviations we get

TAD = XD, = X(d, + d, )
k k

where X(c,; - G ) X, - d¢ +d, = 0foralk
j

Then adding the sum of the deviation variables to the objective function the MOTAD model
maximizes expected net returns less arisk aversion coefficient (¥) times the measure of absolute deviation.

The finad MOTAD formulation is

MaX EE]X] - l|J E( kor + dk7 )
j K
st. X(cgC) X, - d. +d. = 0 fordlk
i
an” X < b fordli
X; d. ,d > 0 foradlijk

where d,* is the positive deviation of the k™ income occurrence from mean income and d, is the associated
negative deviation.*

There have been a number of additiona developments regarding the MOTAD formulation.
Hazell formulated a model considering only negative deviations from the mean, ignoring positive

deviations. Thisformulationis:

Max YeX, -6Xd
j k
st. X(c —Ej) X, + d. > 0 foradlk
i
an” X < b fordli
X;, d. > 0 foralijk

2 Note this formulation approach can be used within an E-V framework if one squaresd” and d in
the objective function.
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However, Hazell notes that when the deviations are taken from the mean, the solution to this problem is
equivalent to the total absolute value minimization where 0 =2% due to the symmetry of the deviations.
The negative deviations only model is the more commonly used MOTAD formulation (for example, see
Brink and McCarl).

Also, Hazell (1971) reviews Fisher's development which shows that the standard error of a normally
distributed population can be estimated given sample size N, by multiplying mean absolute deviation
(MAD), total absolute deviation (TAD), or total negative deviation (TND) by appropriate constraints.
Thus,

Ko} Ko} Ko} Ko}
0:) N rMAD=I N r TAD:| T rTAD:} 27 fTND
2 (N-1) 12 (N-1) N 2 N (N-1) N (N-1)

where T = 22/7 or 3.14176.

This transformation is commonly used in MOTAD formulations. A formulation incorporates such as

Max Z?jxj - yo
j
st. X(c-¢) X, + d > 0 foralk
j
an].j X < b foradli
-TND  + Xd - 0
k
0.5
—2" | TND -0 =0
N (N-1)
X, TND,  dg, o > 0 foraljk
14.3.1.2.1 Example

This example uses the same data as in the E-V Portfolio example. Deviations from the means (c,; -
Ej) for the stocks are shown in Table 14.5. The MOTAD formulation is givenin Table 14.6. The
equivalent GAMS statement is called MOTADPOR.

Here A is the constant which approximates standard error from the empirical value of TND as
discussed above. This problem is solved for over arange of valuesfor y. The associated solutions are
reported in Table 14.7 and contain information on investment in the nonzero X|'s, unused funds, mean
absolute deviation, and the approximation of the standard error. Also, the true variance and standard error
are calculated from the solution values and the original data. Note the approximate nature of the Fisher
standard error formula. For example, the approximated standard error at the first risk aversion rangeis

161.4, but the actual standard error is 140.4. The approximation initially overstates the true standard
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error, but later becomes quite close. The E-V and MOTAD frontiers correspond closely (see Figure 14.2).
However, thisis not adequate proof that the solutions will always be close (see Thomson and Hazell for a
comparison between the methods).

14.3.1.2.2 Comments on MOTAD

Many of the E-V model comments are appropriate here and will not be repeated. However, a number
of other comments are in order. First, a cursory examination of the MOTAD mode might lead one to
conclude covarianceisignored. Thisisnot so. The deviation equations add across all the variables,
allowing negative deviation in one variable to cancel positive deviation in another. Thus, in minimizing
total absolute deviation the model has an incentive to "diversify”, taking into account covariance.

Second, the equivalence of the total negative and total absolute deviation formulations depends
critically upon deviation symmetry. Symmetry will occur whenever the deviations are taken from the mean.
This, however, implies that the mean is the value expected for each observation. This may not aways be
the case. When the value expected is not the mean, then moving averages or other expectation models
should be used instead of the mean (see Brink and McCarl, or Young). In such cases, the deviations are
generally non-symmetric and consideration must be given to an appropriate measure of risk. For example,
Brink and McCarl use a mean negative deviation formulation with a moving average expectation.

Third, most MOTAD applications use approximated standard errors as a measure of risk. When
using such a measure, the risk aversion parameters can be interpreted as the number of standard errors one
wishes to discount income. Coupling this with a normality assumption permits one to associate a
confidence limit with the risk aversion parameter. For example, arisk aversion parameter equal to one
means that level of income which occurs at one standard error below the mean is maximized. Assuming
normality, this level of income is 84% sure to occur.

Fourth, one must have empirical values for the risk aversion parameter. All the E-V approaches are
applicable to its discovery. The most common approach with MOTAD models has been based on observed
behavior. The procedure has beento: a) take a vector of observed solution variables, (i.e. acreages); b)
parameterize the risk aversion coefficient in small steps (e.g., 0.25) from 0O to 2.5, at each point computing
ameasure of the difference between the model solution and observed behavior; and ¢) select the risk
aversion parameter value for which the smallest dispersion is found between the model solution values and
the observed values (for examples see Hazell et d.; Brink and McCarl; Simmons and Pomareda; or
Nieuwoudt, et al.).

Fifth, the MOTAD model does not have a genera direct relationship to a theoretical utility function.
Some authors have discovered special cases under which thereisalink (see Johnson and
Boeljhe(1981,1983) and their subsequent exchange with Buccola). Largely, the MOTAD model has been

presented as an approximation to the E-V model. However, with the advances in nonlinear programming
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algorithms the approximation motivation is largely gone (McCarl and Ona), but MOTAD may have
application to non-normal cases (Thomson and Hazell).

Sixth, McCarl and Besder derive alink between the E-standard error and E-V risk aversion
parameters as follows:

Consider the models

Max cX-¥ o?(X) Max cX-£& o(X)
st. AX < b Versus st. AX <
X >0 X >

Thefirst order conditions assuming X is nonzero are

CZ‘PO(X)%AA:O CE%AA=O

For these two solutions to be identical in terms of X and A, then

g
2 o(X)

Thus, the E-V risk aversion coefficient will equal the E-standard error model risk aversion coefficient

divided by twice the standard error. This explainswhy E-V risk aversion coefficients are usualy very
small (i.e., an E-standard error risk aversion coefficient usually ranges from O - 3 which implies when the
standard error of income is $10,000 the E-V risk aversion coefficient range of 0 - .000015). Unfortunately,
since £ isafunction of ¢ which depends on X, this condition must hold ex post and cannot be imposed a
priori. However, one can develop an approximate a priori relationship between the risk aversion
parameters given an estimate of the standard error.

The seventh and final comment regards model sensitivity. Schurle and Erven show that several plans
with very different solutions can be feasible and close to the plans on the efficient frontier. Both results
place doubt on strict adherence to the efficient frontier as a norm for decision making. (Actualy the issue
of near optimal solutions is much broader than just itsrole in risk models.) The MOTAD model has been
rather widely used. Early uses were by Hazell (1971); Hazell and Scandizzo; Hazell et al. (1983);
Simmons and Pomareda; and Nieuwoudt, et a. In the late 1970's the model saw much use. Articles from
1979 through the mid 1980s in just the American Journal of Agricultural Economics include Gebremeskel
and Shumway; Schurle and Erven; Pomareda and Samayoa; Mapp, et al.; Apland, et a. (1980); and Jabara

and Thompson. Boisvert and McCarl provide a recent review.
14.3.1.3 Toward A Unified Model
The E-V and MOTAD models evolved before many software developments. As a consequence, the

models were formulated to be easily solved with 1960's and 70's software. A more extensive unified model

formulation is possible today. The E-standard error form of this model is as follows
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Max e - @{kzpk [(d ) + (d )] }"'5

st. quxj < b forali
j
chijj - Inc, = 0 fordl k
Yp, Inc, - 1Inc -0
k
Inc, - Inc - d. + dg = 0 foralk
X,, d., dg > 0 foraljk
— <
Inc,, Inc N 0 for al k

In this moddl the resource constraints continue to appear. But we introduce a new variable (Inc,)
which isincome under state of nature k. Thisis equated with income arising under the k™ state of nature.
In turn, avariable is entered for average income ( W:) which is equated to the probabilities (p,) timesthe
income levels. This variable appears in the objective function reflecting expected income maximization.
Finally, deviations between the average and state of nature dependent income levels are treated in deviation
constraints where d,* indicates income above the average level whereas d,” indicates shortfalls. The
objective function is then modified to include the probabilities and deviation variables. Several possible
objective function formulations are possible. The objective function formulation above is E-standard error
without approximation. Note that the term in parentheses contains the summed, probabilistically weighted,
squared deviations from the mean and is by definition equal to the variance. In turn, the square root of this
term is the standard deviation and ® would be arisk aversion parameter which would range between zero
and 2.5 in most circumstances (as explained in the MOTAD section).

This objective function can also be reformulated to be equivalent to either the MOTAD or E-V cases.
Namely, in the E-V case if we drop the 0.5 exponent then the bracketed term is variance and the mode!
would be E-V. Similarly, if we drop the 0.5 exponent and do not square the deviation variables then a
MOTAD moddl arises.

This unifying framework shows how the various models are related and indicates that covarianceis
considered in any of the models. An example is not presented here although the files UNIFY, EV2 and
MOTAD2 give GAMS implementations of the unified E-standard error, E-V and MOTAD versions. The
resultant solutions are identical to the solution for E-V and MOTAD examples and are thus not discussed
further.
14.3.1.4 Sefety First

Roy posed a different approach to handling objective function uncertainty. This approach, the Safety

First model, assumes that decision makers will choose plans to first assure a given safety level for income.

The formulation arises as follows: assume the model income level under al k states of nature (Y’ ¢ X;)
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must exceed the safety level (S). This can be assured by entering the constraints
_L""kj N 2 O 11U al N

jiZ

The overall problem then becomes

Max  XcX,
J
st.  XaX, < b forali
J
XX, = S foradl k
J
X, > 0 fordlj

where Sisthe safety level.
14.3.1.4.1 Example

A formulation using the data from the E-V example and a safety level of Sisgivenin Table 14.8 and
a GAMS implementation isin the file SAFETY. This example was solved for safety levels ranging from -
$100 to +$50. The solution (Table 14.9) at S = $100 gives the profit maximizing linear programming
solution. Asthe safety level isincreased the solutions reflect a diversification between X5 and X,. These
solutions exhibit the same sort of behavior as in the previous examples. Asthe safety level increases a
more diversified solution arises with an accompanying reduction in risk and a decrease in expected value.
For example at S = $50 the mean has dropped from $148.00 to $135.00, but the standard error is cut by
more than two-thirds.
14.3.1.4.2 Comments

The safety first model has not been extensively used empirically although Target MOTAD as
discussed in the next section is a more frequently used extension. However, the Safety First model is
popular as an andytical model in characterizing decision making. For areview and more extensive
discussion see Barry.
14.3.1.5 Target MOTAD

The Target MOTAD formulation devel oped by Tauer, incorporates a safety level of income while

also alowing negative deviations from that safety level. Given atarget level of T, the formulation is
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st XaX; < b foralli
i
Yo X, o+ Dev, > T foradlk
i
kZpk Dev, < A
Xj, Dev, > 0 forall jk

All definitions are as above except p, isthe probability of the k™ state of nature; T isthe target
income level (somewhat analogous to S in the safety first model); the variable Dev, is the negative
deviation of income, allowing income under the k™ state of nature to fall below target income; and 1 isthe
maximum average income shortfall permitted. The equation containing T gives the relationship between
income under the k™ state of nature and a target income level. The variable Dev, is non-zero if the k™
income result fallsbelow T. The constraint with the right hand side of A limits the average shortfall. Thus,
the Target MOTAD model has two parameters relating to risk (T and 1) which must be specified. Thesg,
in turn, can be parameterized to yield different risk solutions.
14.3.1.5.1 Example

Using the data from the earlier examples and assuming each state of nature is equally probable (P, =
1/10) yields the formulation given in Table 14.10 and the GAMS formulation isin the file TARGET.

The Target MOTAD example was solved with a safety level of $120.00 with the allowable deviation
from the safety level varied from allowing as much as $120.00 average deviation to as little as $3.60. The
solution behavior (Table 14.11) again largely mirrors that observed in the prior examples. Namely, when a
large deviation is allowed, the profit maximizing solution is found, but as the allowable deviation gets
smaller, then X, enters and then finally X,. Again a sacrifice in expected income yields lessrisk.
14.3.1.5.2 Comments

Target MOTAD has not been applied as widely as other risk programming models. However, it is
consistent with second degree stochastic dominance (Tauer). Use of Target MOTAD requires specification
of two parameters, T and 1. No attempt has been made to determine consistency between a T, 2 choice and
the Arrow-Pratt measure of risk aversion. Nor isthere theory on how to specify T and A. The target
MOTAD and origina MOTAD models can berelated. If one makes . avariable with a cost in the
objective function and makes the target level a variable equal to expected income, this becomes the
MOTAD model.

Another thing worth noting is that the set of Target MOTAD solutions are continuous so that thereis

an infinite number of solutions. In the example, any target deviation between $24.00 and $12.00 would be
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a unique solution and would be a convex combination of the two tabled solutions.

McCamley and Kliebenstein outline a strategy for generating all target MOTAD solutions, but it is
still impossible to relate these solutions to more conventional measures of risk preferences.

Target MOTAD has been used in a number of contexts. Zimet and Spreen formulate afarm
production implementation while Curtis et al., and Frank et ., studied crop marketing problems.
14.3.1.6 DEMP

Lambert and McCarl (1985) introduced the Direct Expected Maximizing Nonlinear Programming
(DEMP) formulation, which maximizes the expected utility of wealth. DEMP was designed as an
aternative to E-V analysis, relaxing some of the restrictions regarding the underlying utility function. The
basic DEMP formulation requires specification of a utility of wealth function U(W), aleve of initia
wedlth (W,), and the probability distribution of the objective function parameters (Cy;). The basic

formulationis

Max Xp, U(W, )
k

N

st. YaX; < b forali
i

W, - Xcy X, = W, fordl k

W, = 0 foradlk
>
X > 0 fordl]

where p, isthe probability of the k™ state of nature;

W, isinitial wealth;

W, is the wealth under the k™ state of nature; and

C,; is the return to one unit of the j* activity under the k™ state of nature.
14.3.1.6.1 Example

Suppose an individual has the utility function for wealth of the form U = ( W) P with an initial
wealth (W) of 100, and is confronted with the decision problem data as used in the E-V example. The
relevant DEMP formulation appears in Table 14.12 with the solution for varying values of the exponent
appearing in Table 14.13. The GAMS formulation is called DEMP.

The example model was solved for different values of the exponent (power). The exponent was
varied from 0.3 to 0.0001. Asthiswas varied, the solution again transitioned out of sole reliance on stock
three into reliance on stocks two and three. During the model calculations, transformations were done on
the shadow price to convert it into dollars. Following Lambert and McCarl, this may be converted into an

approximate value in dollar space by dividing by the marginal utility of average incomei.e., dividing the
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shadow prices by the factor.

. dU(W)
=pu/==—7
M M
Preckel, Featherstone, and Baker discuss a variant of this procedure.

14.3.1.6.2 Comments
The DEMP modedl has two important parts. First, note that the constraints involving wealth can be
rearranged to yield

W, = W, + S X,
j

This sets wealth under the k™ state of nature equal to initial wealth plus the increment to wealth due to the
choice of the decision variables.

Second, note that the objective function equals expected utility. Thus the formulation maximizes
expected utility using the empirical distribution of risk without any distributional form assumptions and an
explicit, exact specification of the utility function.

Kaylen, et a., employ avariation of DEMP where the probability distributions are of a known
continuous form and numerical integration is used in the solution. The DEMP model has been used by
Lambert and McCarl(1989); Lambert; and Featherstone et al.

Yassour, et d., present arelated expected utility maximizing model called EUMGF, which embodies
both an exponential utility function and distributional assumptions. They recognize that the maximization
of expected utility under an exponential utility function is equivalent to maximization of the moment
generating function (Hogg and Craig) for a particular probability distribution assumption. Moment
generating functions have been devel oped analytically for a number of distributions, including the
Binomial, Chi Square, Gamma, Normal and Poisson distributions. Collender and Zilberman and Moffit et
al. have applied the EUMGF model. Collender and Chalfant have proposed a version of the model no
longer requiring that the form of the probability distribution be known.
14.3.1.7 Other Formulations

The formulations mentioned above are the principal objective function risk formulations which have

been used in applied mathematical programming risk research. However, a number of other formulations
have been proposed. Alternative portfolio models such as those by Sharpe; Chen and Baker; Thomas et
al.(1972) exist. Other concepts of target income have also been pursued (Boussard and Petit) as have
models based upon game theory concepts (Mclnerney [1967, 1969]; Hazell and How; Kawaguchi and
Maruyama; Hazell(1970); Agrawa and Heady; Maruyama; and Low) and Gini coefficients (Yitzhaki).
These have al experienced very limited use and are therefore not covered herein.

14.3.2 Right Hand Side Risk
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Risk may also occur within the right hand side (RHS) parameters. The most often used approach to

RHS risk in a nonrecourse setting is chance-constrained programming. However, Paris(1979) has tried to

introduce an dternative.

14.3.2.1 Chance Constrained Programming

The chance-constrained formulation was introduced by Charnes and Cooper and deals with uncertain
RHS's assuming the decision maker is willing to make a probabilistic statement about the frequency with
which constraints need to be satisfied. Namely, the probability of a constraint being
satisfied is greater than or equal to a prespecified value o.

P(Zainjgbi)zoc
i

If the average value of the RHS ( Bi ) is subtracted from both sides of the inequality and in turn both
sides are divided by the standard deviation of the RHS (g, ) then the constraint becomes

= A 7Y, b. - b
Pl g(' ) > o
a, g,

Those familiar with probability theory will note that the term
(b - b)
Ob.
gives the number of standard errorsthat b, is away from the mean. Let Z denote this term.
When a particular probability limit («) is used, then the appropriate value of Z isZ, and the

constraint becomes

Assuming we discount for risk, then the constraint can be restated as

Eaij Xj gHi - Z,0,
j i

which states that resource use (2 a;X;) must be less than or equal to average resource availability lessthe
standard deviation times a critical value which arises from the probability level.

Values of Z, may be determined in two ways: a) by making assumptions about the form of the
probability distribution of b (for example, assuming normality and using values for the lower tail from a
standard normal probability table); or b) by relying on the conservative estimates generated by using
Chebyshev's inequality, which states the probability of an estimate falling greater than M standard
deviations away from the mean is less than or equal to one divided by M2. Using the Chebyshev inequality
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one needs to solve for that value of M such that (1-«) equals /M2, Thus, given a probability «, the
Chebyshev value of Z, is given by the equation Z =(1-«)®®. Following these approaches, if one wished an
87.5 percent probability, a normality assumption would discount 1.14 standard deviations and an
application of the Chebyshev inequality would lead to a discount of 2.83 standard deviations. However,
one should note that the Chebyshev bound is often too large.
14.3.2.1.1 Example

The example problem adopted for this analysisis in the context of the resource allocation problem
from Chapter V. Here three of the four right hand sides in that problem are presumed to be stochastic with
the distribution as given in Table 14.14. Treating each of these right hand side observations as equally
likely, the mean value equals those numbers that were used in the resource allocation problem and their

standard errors respectively are as given in Table 14.14. Then the resultant chance constrained formulation

is
Max 67X, + 66X, + 663X, + 80X, + 785X, + 784X,
st 08X, + 13X, + 02X, + 12X, + 17X + 05X, < 140-963Z,
05X, + 02X, + 13X, + 07X, + 03X; + 15X, =< 90-3.697Z,
04X, + 04X, + 04X, + X, + Xs + Xs < 120-800Z,

X, + 105X, + 11X, + 08X, + 082X, + 084X, < 125

The GAMS implementation is the file CHANCE. The solutions to this model were run for Z values
corresponding to 0, 90,95, and 99 percent confidence intervals under a normality assumption. The right
hand sides and resultant solutions are tabled in Table 14.15. Notice asthe Z, valueisincreased, then the
value of the uncertain right hand side decreases. In turn, production decreases as does profit. The chance
constrained model discounts the resources available, so one is more certain that the constraint will be met.
The formulation aso shows how to handle smultaneous congtraints. Namely the constraints may be
treated individually. Note however this requires an assumption that the right hand sides are completely
dependent. The results also show that there is a chance of the constraints being exceeded but no adjustment
is made for what happens under that circumstance.
14.3.2.1.2 Comments

Despite the fact that chance constrained programming (CCP) is awell known technique and has been
applied to agriculture (e.g., Boisvert, 1976; Boisvert and Jensen, 1973; and Danok et a., 1980) and water
management (e.g., Eisal; Loucks; and Maji and Heady) its use has been limited and controversial. Seethe
dialoguein Blau; Hogan, et al.; and Charnes and Cooper (1959).

The mgjor advantage of CCP isits simplicity; it leads to an equivalent programming problem of
about the same size and the only additional data requirements are the standard errors of the right hand side.

However, its only decision theoretic underpinning is Simon's principle of satisficing (Pfaffenberger and
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Walker).

This CCP formulation applies when either one element of the right hand side vector is random or
when the distribution of multiple elements is assumed to be perfectly correlated. The procedure has been
generalized to other forms of jointly distributed RHS's by Wagner (1975). A fundamental problem with
chance congtrained programming (CCP) is that it does not indicate what to do if the recommended solution
isnot feasible. From this perspective, Hogan et ., (1981), conclude that "... there is little evidence that
CCP is used with the care that is necessary” (p. 698) and assert that recourse formulations should be used.
14.3.2.2 A Quadratic Programming Approach

Paris(1979) proposed a quadratic programming model which permits RHS risk in an E-V context. In
contrast to chance constrained programming, the formulation treats inter-dependencies between the RHSSs.
The formulation is developed through an application of non-linear duality theory and is

Max cX - ¢ X'SX - OY'SY

b

IN

st. AX -0 S§Y

X ., Y >0
where X isthe vector of activities; ¢ and @ are risk aversion coefficients with respect to variance in returns

and the RHS. S, and S, are variance-covariance matrices of returns and the RHS's, respectively; Y isthe
vector of dual variables, A isthe matrix of technical coefficients, and b is the vector of expected values of
the RHSS.

This primal model explicitly contains the dua variables and the variance-covariance matrix of the
RHS's. However, the solutions are not what one might expect. Namely, in our experience, as right hand
side risk aversion increases, so does expected income. The reason liesin the duality implications of the
formulation. Risk aversion affects the dua problem by making its objective function worse. Since the dual
objective function value is always greater than the primal, aworsening of the dual objective viarisk
aversion improves the primal. A manifestation of this appears in the way the risk terms enter the
constraints. Note given positive ©® and S, then the sum involving ® and Y on the left hand side augments
the availability of the resources. Thus, under any nonzero selection of the dual variables, as the risk
aversion parameter increases so does the implicit supplies of resources. Dubman et al., and Paris(1989)
debate these issues, but the basic flaw in the formulation is not fixed. Thus we do not recommend use of
this formulation and do not include an example.

14.3.3 Technical Coefficient Risk

Risk can aso appear within the matrix of technical coefficients. Resolution of technical coefficient
uncertainty in a non-recourse setting has been investigated through two approaches. These involve an E-V
like procedure (Merrill), and one similar to MOTAD (Wicks and Guise).
14.3.3.1 Merrill's Approach
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Merrill formulated a nonlinear programming problem including the mean and variance of the risky
a;'sinto the constraint matrix. Namely, one may write the mean of the risky part as E:J. XJ. and its
varianceas )Y, X;X, o;; where g; isthe mean value of the a;'s and o, is the covariance of the g,
coefficients for activitiesn and j in row i. Thus, a constraint containing uncertain coefficients can be

rewritten as

Ya; X, + ¢ jEnZXj X, 6y < b forali

]

or, using standard deviation,

Ya, X + & (XX, X, 0,) <b forali
j ik

Note that the term involving o, is added inflating resource use above the average to reflect
variability, thus a safety cushion is introduced between average resource use and the reserve limit. The
parameter @ determines the amount of safety cushion to be specified exogenously and could be done using
distributional assumptions (such as normality) or Chebyshev's inequality as argued in McCarl and Besdler.
The problem in this form requires usage of nonlinear programming techniques.

Merrill's approach has been unused largely since it was developed at atime when it was incompatible
with available software. However, the MINOS agorithm in GAMS provides capabilities for handling the
nonlinear constraint terms (although solution times may be long -- McCarl and Onal). Nevertheless the
simpler Wicks and Guise approach discussed below is more likely to be used. Thus no exampleis given.
14.3.3.2 Wicks and Guise Approach

Wicks and Guise provided a LP version of an uncertain a; formulation based on Hazell(1971) and

Merrill's models. Specifically, given that the i constraint contains uncertain a;'s, the following constraints

may be set up.
J_Lauxj + oD, < b
J_E(akij*?'j)xj - dy o+ dy = 0 for al k
;(dg +d;) - D =0

Here the first equation relates the mean value of uncertain resource usage plusarisk term (¢ D)) to
the right hand side, while the second computes the deviation ( g - 5“. ) incurred from the k™ joint
observation on all g;'s and sumsit into a pair of deviation variables (d; , d,; ). These deviation variables
are in turn summed into a measure of total absolute deviation (D;) by the third equation. Theterm ¢ D,
then gives the risk adjustment to the mean resource use in constraint i where ¢ is a coefficient of risk

aversion.
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The Wicks and Guise formulation is essentially this; however, Wicks and Guise convert the total
absolute deviation into an estimate of standard deviation using a variant of the Fisher constant but we will
use the one discussed above

AD-06=0

where A = (n/(2n(n-1)))° and ois the standard error approximation. The general Wicks Guise formulation

is
Meax Xg X,
J
st. JE?J X; + ¢o < b forali
(&g - a) X - dg + dg - 0 foralik
J
kE(olk*i v+ d;) - D - 0 forali
AD, - o = 0 forali
X;, d.,  dg, D, o > 0 foraljki
14.3.3.2.1 Example

Suppose we introduce ingredient uncertainty in the context of the feed problem as discussed in
Chapter V. Suppose oneis using three feed ingredients corn, soybeans, and wheat while having to meet
energy and protein requirements. However, suppose that there are four states of nature for energy and
protein nutrient content as given in Table 14.16. Assume that the unit price of cornis 3 cents, soybeans 6
cents, and wheat 4 cents and that the energy requirements are 80% of the unit weight of the feed while the
protein requirement is 50%. In turn, the GAMS formulation of thisis called WICKGUIS and atableau is
givenin Table 14.17.

The solution to the Wicks Guise example model are given in Table 14.18. Notice in this table when
the risk aversion parameter is 0 then the model feeds corn and wheat, but as the risk aversion parameter
increases the modd first reduces its reliance on corn and increases wheat, but asthe risk aversion
parameter gets larger and larger one begins to see soybeans come into the answer. Notice across these
solutions, risk aversion generally increases the average amount of protein with reductions in protein
variability. Astherisk aversion parameter increases, the probability of meeting the constraint increases.
Also notice that the shadow price on protein monotonically increases indicating that it is the risky
ingredient driving the model adjustments. Meanwhile average energy decreases, as does energy variation
and the shadow price on energy is zero, indicating there is sufficient energy in all solutions.
14.3.3.2.2 Comments

The reader should note that the deviation variables do not work well unless the constraint including
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the risk adjustment is binding. However, if it is not binding, then the uncertainty does not matter.

The Wicks and Guise formulation has not been widely used. Other than the initial application by
Wicks and Guise the only other application we know of is that of Tice.

Severa other efforts have been made regarding a; uncertainty. The method used in Townsley and
later by Chen (1973) involves bringing a single uncertain constraint into the objective function. The
method used in Rahman and Bender involves developing an over-estimate of variance.

14.3.4 Multiple Sour ces of Risk

Many problems have C's, A's and b's which are simultaneously uncertain. The formulations above
may be combined to handle such acase. Thus, one could have a E-V model with severa constraints
handled via the Wicks Guise and/or chance constrained techniques. There are aso techniques for handling
multiple sources of risk under the stochastic programming with recourse topic.

14.4 Sequential Risk-Stochastic Programming with Recour se

Sequential risk arises as part of the risk as time goes on and adaptive decisions are made. Consider
the way that weather and field working time risks are resolved in crop farming. Early on, planting and
harvesting weather are uncertain. After the planting season, the planting decisions have been made and the
planting weather has become known, but harvesting weather is still uncertain. Under such circumstances a
decision maker would adjust to conform to the planting pattern but would still need to make harvesting
decisions in the face of harvest time uncertainty. Thus sequential risk models must depict adaptive
decisions along with fixity of earlier decisions (a decision maker cannot always undo earlier decisions such
as planted acreage). Nonsequential risk, on the other hand, implies that a decision maker chooses a
decision now and finds out about all sources of risk later.

All the models above are nonsequential risk models. Stochastic programming with recourse (SPR)
models are used to depict sequential risk. The first of the models was originally developed as the
"two-stage” LP formulation by Dantzig (1955). Later, Cocks devised a model with N stages, calling it
discrete stochastic programming. Over time, the whole area has been called stochastic programming with
recourse (SPR). We adopt this name.

14.4.1 Two stage SPR formulation

Suppose we set up atwo stage SPR formulation. Such formulations contain a probability tree
(Figure 14.3). The nodes of the tree represent decision points. The branches of the tree represent
aternative possible states. A two stage model has one node and set of decision variables (X) at the first
stage, with the second stage containing branches associated with the resolved uncertainty from the first
stage and associated decision nodes (Z,).

Suppose the variables X; indicate the amount of the j*" alternative which is employed in the first stage.

Thereis an associated set of resource constraints where the per unit usage of the i*" resource by X; is a; and
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the endowment of the resources by. Suppose that the outcome of X; is uncertain and dependent on state of
nature where the quantity of the m™ output item produced is d,; where k designates state of nature. Let us
aso define ¢ as the objective function coefficient for X;. In the second stage, the variables are Z,,,, where n
represents the n™ alternative for production and k identifies state of nature. Here we have different decision
variables for each second stage state of nature. For example, we have the amount of stock sold if the
market has been moving up and the amount of stock sold if the market is moving down, with second stage
decisions that depend upon the resultant state of nature after the first stage. We aso have parameters
which give the amount of the m™ output item carrying over from stage one (f,,,,) While g, givesthe
amount of the w" resource utilized by Z,,.. Finally, the objective function parameter for Z, ise,. The
model also requires definition of right hand side parameters where s, is the amount of the w" resource
available under the k™ state of nature. In setting this model up we also define a set of accounting variables
Y, which add up income under the states of nature. Finally suppose p, gives the probability of state k.

The composite modd formulation is

Max kZpk Y,
st. - Y, + chj X, o+ nEenk Z, = O for al k
Ya; X, < b foradli
- Zjdmjk X, + XfZy < 0 fordl mk
n
| 20k Zk < Su foral wk
Y, % 0 foralk
Xj, Z, > 0 for al j,nk

In this problem we have income variables for each of the k states of nature (Y, ) which are
unrestricted in sign. Given that p, is the probability of the k™ state of nature, then the model maximizes
expected income. Note the income variable under the k™ state of nature is equated to the sum of the
nonstochastic income from the first stage variables plus the second stage state of nature dependent profit
contribution. Also note that since Z has taken on the subscript k, the decision variable value will in genera
vary by state of nature.

Severa points should be noted about this formulation. First, let us note what isrisky. In the second
stage the resource endowment (S, constraint coefficients (i, fr. Guwri) @nd objective function
parameters (e,) are dependent upon the state. Thus, all types of coefficients (RHS, OBJand A;) are
potentially risky and their values depend upon the path through the decision tree.

Second, this model reflects a different uncertainty assumption for X and Z. Note Z is chosen with
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knowledge of the stochastic outcomes; however, X is chosen apriori, with it's value fixed regardless of the
stochastic outcomes. Also notice that the first, third, and fourth constraints involve uncertain parameters
and are repeated for each of the states of nature. This problem then hasasingle X solution and aZ
solution for each state of nature. Thus, adaptive decision making is modeled as the Z variables are set
conditional on the state of nature. Note that irreversabilities and fixity of initial decisonsis modeled. The
X variables are fixed across al second stage states of nature, but the Z variables adapt to the state of
nature.

Third, let us examine the linkages between the stages. The coefficients reflect a potentialy risky link
between the predecessor (X) and successor (Z) activities through the third constraint. Notethelink is
essential since if the activities are not linked, then the problem is not a sequential decision problem. These
links may involve the weighted sum of a number of predecessor and successor variables (i.e., an uncertain
guantity of lumber harvested via severa cutting schemes linked with usein severa products). Also,
multiple links may be present (i.e., there may be numerous types of lumber). The subscript m defines these
links. A fourth comment relates to the nature of uncertainty resolution. The formulation places all
uncertainty into the objective function, which maximizes expected income.
14.4.1.1 Example

Let us consider a simple farm planning problem. Suppose we can raise corn and wheat on a 100 acre

farm. Suppose per acre planting cost for corn is $100 while wheat costs $60. However, suppose crop
yields, harvest time requirements per unit of yield, harvest time availability and crop prices are uncertain.
The deterministic problem is formulated as in Table 14.20 and file SPREXAM1. Here the harvest
activities are expressed on a per unit yield basis and the income variable equal s sales revenue minus
production costs.

The uncertainty in the problem is assumed to fall into two states of nature and is expressed in Table
14.19. These datagive ajoint distribution of all the uncertain parameters. Here RHS's, g;'s and objective
function coefficient's are uncertain.

Solution of the Table 14.20 L P formulation under each of the states of nature gives two very different
answers. Namely under the first state of nature all acreage isin corn while under the second state of nature
all production isin wheat. These are clearly not robust solutions.

The SPR formulation of this example isgiven in Table 14.21. This tableau contains one set of first
stage variables (i.e., one set of corn growing and wheat growing activities) coupled with two sets of second
stage variables after the uncertainty is resolved (i.e., there are income, harvest corn, and harvest whesat
variables for both states of nature). Further, there is a single unifying objective function and land
constraint, but two sets of constraints for the states of nature (i.e., two sets of corn and wheat yield

balances, harvesting hour constraints and income constraints). Notice underneath the first stage corn and
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whest production variables, that there are coefficients in both the state of nature dependent constraints
reflecting the different uncertain yields from the first stage (i.e., corn yields 100 bushels under the first state
of nature and 105 under the second; while wheat yields 40 under the first and 38 under the second).
However, in the second stage resource usage for harvesting is independent. Thus, the 122 hours available
under the first state of nature cannot be utilized by any of the activities under the second state of nature.
Also, the crop prices under the harvest activities vary by state of nature as do the harvest time resource
usages.

The example model then reflects, for example, if one acre of corn is grown that 100 bushels will be
available for harvesting under state of nature one, while 105 will be available under state of nature two. In
the optimum solution there are two harvesting solutions, but one production solution. Thus, we model
irreversibility (i.e., the corn and wheat growing variable levels maximize expected income across the states

of nature, but the harvesting variable levels depend on state of nature).

The SPR solution to this example is shown in Table 14.22. Here the acreage is basically split 50-50
between corn and wheat, but harvesting differs with almost 4900 bushels of corn harvested under the first
state, where as 5100 bushels of corn are harvested under the second. This shows adaptive decision making
with the harvest decision conditional on state of nature. The model also shows different income levels by
state of nature with $18,145 made under state of nature one and $13,972 under state of nature two.
Furthermore, note that the shadow prices are the marginal values of the resources times the probability of
the state of nature. Thus, wheat is worth $3.00 under the first state of nature but taking into account that
the probability of the first state of nature is 60% we divide the $3.00 by .6 we get the origina $5.00 price.
This shows the shadow prices give the contribution to the average objective function. 1f one wishes shadow
prices relevant to income under a state of nature then one needs to divide by the appropriate probability.

The income accounting feature also merits discussion. Note that the full cost of growing cornis
accounted for under both the first and second states of nature. However, since income under the first state
of nature is multiplied by .6 and income under the second state of nature is multiplied by .4, then no double
counting is present.

14.4.2 Incor porating Risk Aversion

The two stage model as presented above isrisk neutral. This two stage formulation can be altered to
incorporate risk aversion by adding two new sets of constraints and three sets of variables following the
method used in the unified model above. An EV formulation is
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Max Y - ¢ Xp (di+ d )
K

st. -Y + kEpk Y, = 0
-Y + Y, - d. + dg - 0 foralk
+ Xo X - Y, + Xe,Z, = 0 foralk
] n
Ya; X, < b forali
]
X. + Xf Z < 0 foral mk

mik “ ] mnk “nk
n

Y0uwZy < S for all w,k

S 0 foralk
>

X, d., dq, Z, > 0 foradljnk

Note that within this formulation the first new constraint that we add ssimply accounts expected income into
avariable Y, while the second constraint computes deviations from expected income into new deviation
variables d,*, d,” which are defined by state of nature. Further, the objective function is modified o it
contains expected income minus arisk aversion parameter times the probabilistically weighted squared
deviations (i.e., variance). Thisisasan EV model. The model may also be formulated in the fashion of the
unified model discussed earlier to yield either aMOTAD or an E-standard deviation model.

14.4.2.1 Example

Suppose we use the data from the above Wicks Guise example but also alow decision makers once

they discover the state of nature, to supplement the diet. In this case, suppose the diet supplement to
correct for excess protein deviation costs the firm $0.50 per protein unit while insufficient protein costs
$1.50 per unit. Similarly, suppose excess energy costs $1.00 per unit while insufficient energy costs $0.10.
The resultant SPR tableau, portraying just two of the four states of nature included in the tableau, is shown
in Table 14.23 (This smaller portraya is only done to preserve readability, the full problem is solved).
Notice we again have the standard structure of an SPR. Namely the corn, soybeans, and wheat activities
arefirst stage activities, then in the second stage there are positive and negative nutrient deviations for each
state as well as state dependent objective function and deviation variable accounting. Notice the average
cost row adds the probabilistically weighted sums of the state of nature dependent variables into average
cost while the cost deviation rows compute deviation under a particular state of nature. In turn, these
deviations are weighted by the probability times the risk aversion parameter and are entered in the objective
function. The deviation variables could be treated to form an E-V, MOTAD or E-Standard error
formulation as in the unified model above. An E-standard deviation model will be used here and is
implemented in the GAMS file FEEDSPR. Also note these activities repeat for the second state of nature
and also would for the third and fourth if they were portrayed here.
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Therisk neutral solution to this problem is given in Table 14.24. Two solution aspects are worth
discussing. First, notice that the first stage solution is to buy .283 pounds of corn, .362 pounds of
soybeans, .355 pounds of wheat at an average cost of 6.7 cents. Cost varies across the states of nature
with cost under the first state equaling 8.1 cents, while under the second state it is 8.3, 5.2 under the third
state and 5.1 under the fourth state. The cost variation arises as the protein and energy shortfall and excess
variables take on different values in order to mitigate nutrient fluctuation.

The model was a so solved for risk aversion. The results in Table 14.25 show the solutions from the
example model under varying risk aversion coefficients for a standard deviation implementation. Table
14.25 gives the changes in corn, soybean, and wheat usage, as well as average income and standard error
of income as the risk aversion parameter is changed for an E-standard deviation formulation as
implemented in the file FEEDSPR. Here the risk aversion parameter was varied from 0.0 up to 0.6. As
risk aversion increases the average cost of the diet increases, but the standard error of the cost of the diet
falswith cost variation between the various states of nature narrowing. Namely under risk neutrality cost
ranges from 5.1 centsto 8.1 cents with a standard error of 1.5 cents, however by the time the risk aversion
parameter is up to .4 the cost varies from only 6.7 to 7.4 cents with a standard error of two tenths of a cent,
at the expense of a 0.4 cent increase in average diet cost. Thus, as risk aversion increases, the model
adopts a plan which stabilizes income across all of the states of nature.

14.4.3 Extending to Multiple Stages

The models above are two stage models with a set of predecessor activities followed by sets of
successor activities for each state of nature. It is possible to formulate a multiple stage model as done by
Cocks. In such amodel however, it isrelatively cumbersome to express agenera formulation. Thus, we
will express this model only in terms of an example (See Cocks for an N stage formulation and Boisvert
and McCarl for athree stage one). Let usformulate arelatively simple stock model. Suppose that afirm
starts with an initial inventory 100 units of common stock and is trying to maximize average ending worth.
In doing this, suppose that the stock can be sold in one of threetime periods. The first onewhichis
nonstochastic, the second one which is characterized by two states of nature, and the third which is
characterized by two additional states of nature. In describing the states of nature the following data are
relevant. In period one (today) the firm knows the price is $2.00. In period two, the firm is uncertain of
the interest rate between periods and the future price. Assume that under state of nature 1, the interest rate
between period one and two for any stock sold is one percent whileit is two percent under the second state
of nature 2. Simultaneously the stock price is $2.20 under the first state of nature and $2.05 under the
second. Going into the third state of nature, the interest rate is conditional on which state of nature was
drawn for the second state. Thus, in the third stage if the first state arose the third stage interest rates are
then either 6% (A) or 4% (B). On the other hand if the second state occurs, the interest rate will either be
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7% (A) or 3% (B). Third stage crop prices are dependent of which of the two third stage states of nature
occur. Under the first state of nature (A) the price is $2.18, while under the second oneit is $2.44. The
third stage probabilities are also conditional. Namely, after the first stage one gets state 1 occurring 70%
of the time while state 2 occurs 30%of the time. When state 2 results out of stage one then the third stage
probability for state A is 60% and is 40% for state B. On the other hand, these probahilities change to .7
and .3 if the second state happened out of stage 1.

The resultant formulation of this problem is given in Table 14.26 and file SELLSPR. Here, again,
there is one set of period one variables which refer to either keeping or selling the stock; two sets of period
two variables, which refer again to keep or sell the stock under each second stage state of nature; and four
sets of period three variables for selling the stock and accounting ending net worth under all the third stage
states of nature. Notein thefirst period, if the stock is kept, it carries over from the first period to both
states of nature in the second stage. Then in the second period the keep activity from the first period
provides stock that could either be sold or kept on into the third. In turn, if stock is kept in the second
stage, it isheld over to both third period states of nature which follow that second period state of nature.
Notice the probabilities of each of the final states are reflected in the average ending worth. The worth
under period three state A following period two state one is multiplied 0.42 which reflects the 70%
probability of period two state one times the 60% conditional probability of period three state A. Also,
notice the prices as they enter the ending worth by state of nature are the sales price in the relevant period
times 1 plus interest earned in the interim periods. Thus, the ending worth of period one sales following
period two state one and period three state A is2.1412. This reflects the origina sales price of $2.00, the
1% interest into the second period and the 6% interest into the third period. The solution to thismodel is
givenin Table 14.27.

14.4.4 Model Discussion

The SPR model is perhaps the most satisfying of the risk models. Conceptually it incorporates all
sources of uncertainty: right hand side, objective function and technical coefficients while allowing adaptive
decisions. However, the formulations suffer from the "curse of dimensiondlity.” Each possible final state
of nature leads to another set of stage two or later activities and large models can result from relatively
simple problems. For example, consider having ten values of two right hand sides which were
independently distributed. Thiswould lead to 100 terminal states or sets of rows. However, such models
can be computationally tractable, since the sparsity and repeated structure tend to make such problems
easier to solve than their size would imply. Thus, one of the things to be cautious about when using this
particular formulation is size. When dealing with such amode, it is often advisable to determine the
critical sources of uncertainty which should be extensively modeled. Uncertainties other than the "most

critica" may be handled with such methods as MOTAD, Wicks and Guise, or chance-constrained as
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discussed above. Sources of uncertainty which are not important in the problem may be held at their
expected values (see Tice for an example). Thus, with careful application, this type of model can be quite
useful.

Agricultural economics applications include Yaron and Horowit (1972a); Garoian, et a.; Apland, et
al.(1981); Lambert and McCarl(1989); Leatham and Baker; McCarl and Parandvash; and the early papers
by Rae (19714, 1971b). Hansotia; Boisvert and McCarl; and Apland and Kaiser provide literature
reviews.

14.5 General Comments On Modeling Uncertainty

As demonstrated above, there are a number of ways of handling uncertainty when modeling. Severa
aspects of these types of models need to be pointed out. Firgt, al the formulations convert the problemsto
adeterministic equivalent. Basically, it is assumed that the decision maker is certain of the risk and reacts
to it optimally by discounting the objective function, g; or right hand sides. Obviously this means the
modeler must assume knowledge of the distribution of risk faced by a decision maker and the risk aversion
coefficient.

The second set of comments regards data. |mportant parameters within the context of risk models are
the expectation of the coefficient value and its probability distribution around that expectation. The most
common practice for specification of these parametersisto use the historical mean and variance. This,
however, is neither necessary nor always desirable. Fundamentally, the measures that are needed are the
value expected for each uncertain parameter and the perceived probability distribution of deviations from
that expectation (with joint distributions among the various uncertain parameters). The parameter
expectation is not always a historical mean. Thisis most unredlistic in cases where there has been a strong
historical trend (as pointed out by Chen, 1971). Thereisalarge body of literature dealing with
expectations and/or time series analysis (see Judge for an introduction), and some use of these results and
procedures appears desirable.

Data are most often generated historically; however, observations could be generated by several other
means. For example, observations could be developed from a smulation model (see Dillon, et a.), from a
forecasting equation (see Lambert and McCarl(1989)), or from subjective interrogation of the decision
maker (see Sri Ramaratnam et al.). There are cases where these other methods are more appropriate than
history due to such factors as limited historical data (say, on the price of a new product) or major structural
changes in markets. Naturally, the form in which the data are collected depends on the particular
application involved.

A fina comment on data regards their probabilistic nature. Basically when using historically based
means and variance one is assuming that all observations are equally probable. When this assumption is
invaid, the model is modified so that the value expected is the probabilistically weighted mean (if desired)
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and the variance formula includes the consideration of probability (see Anderson, et a. [pp. 28- 29] for
examples). Deviation models must also be adjusted so that the deviations are weighted by their probability
as done in the MOTAD version of the discrete stochastic model in section 14.23.

A third and again independent line of comment relates to the question "should uncertainty be modeled
and if so, how?' Such aconcern is paramount to this section. It is obvious from the above that in
modeling uncertainty, data are needed describing the uncertainty, and that modeling uncertainty makes a
model larger and more complex, and therefore harder to interpret, explain, and deal with. It isnot the
purpose of these comments to resolve this question, but rather to enter some considerations to the resolution
of this question. First and fundamentally, if amodel solution diverges from reality because the decision
maker in reality has somehow considered risk, then it is important to consider risk. Thisleadsto the
subjective judgment on behalf of the modeling team as to whether risk makes a difference. Given that risk
isfelt to make a difference, then, how should risk be modeled? In the approaches above, the formulation
mode! depends upon whether there is conditional decision making and on what is uncertain. These
formulations are not mutually exclusive; rather, it may be desirable to use combinations of these
formulations (see, for example, Wicks and Guise, Tice or Klemme).

Several uncertainty models have not been covered the above discussion. There are more advanced
applications of chance constrained programming such as those found in the books by Sengupta; Vada; and
Kolbin. Another approach is called "Cautions Suboptimizing" by Day (1979). This approach bounds the
adjustments in variables to a maximum amount in any one year. We also have not covered Monte Carlo
programming as espoused by Anderson, et a., mainly because we do not fed it fallsinto the class of
programming techniques but rather is a simulation technique.

Finaly, it is relevant to discuss how risk should be modeled. There have been arguments presented in
literature (e.g. see, for example, Baker and McCarl or Musser, et a.) that risk model solutions are biased if
the model structure is not adequate before risk modeling is incorporated. Baker and McCarl argue that one
should not include risk until the model structure is fully specified in terms of the needed constraints, the

time disaggregation of constraints, and activities.

copyright Bruce A. McCarl and Thomas H. Spreen 14-31



References

Agrawal, R.C. and E.O. Heady. "Agplication of Game Theory in Agriculture.” Journal of Agricultura
Economics. 19(1968):207-218.

Anderson, JR., JL. Dillon and J.B. Hardaker. Agricultural Decison Analysis. Ames, lowa: The lowa
State University Press, 1977.

Apland, JD., B.A. McCarl, and T. Baker. "Crop Residue for Energy Generation: A Prototype
Application to Midwestern USA Grain Prices.” Energy in Agriculture. 1(1981):55-78.

Apland, J.D., B.A. McCarl, and W.L. Miller. "Risk and the Demand for Supplemental Irrigation: A Case
Study in the Corn Belt." American Journal of Agricultural Economics. 62(1980):142-145.

Apland, J.D. and H. Kaiser. "Discrete Stochastic Sequential Programming: A Primer." Staff Papers
Series, Paper P84-8. Institute of Agriculture, Forestry and Home Economics. St. Paul: University
of Minnesota, 1984.

Baker, T.G. and B.A. McCarl. " ?resenti ng Farm Resource Availability Over Time in Linear Programs:
A Case Study." North Central Journal of Agricultural Economics. 4(1982):59-68.

Barry, P. J. (ed.) Risk Management in Agriculture. Ames, lowa: lowa State University Press, 1984.

Blau, R.A. "Stachastic Programming and Decision Analysis. An Apparent Dilemma" Management
Science. 21(1974):271-276. 9 y PP

Boisvert, R. "Available Field Time, Yield Losses and Farm Planning.” Canadian Journal of Agricultural
Economics. 24(1976):21-32.

Boisvert, R.N. and H. Jensen. "A Method for Planning Under Uncertain Weather Conditions, with

Applications to Corn-Soybean Farming in southern Minnesota." University of Minnesota
Agricultural Experiment Station Tech. Bulletin No. 292, 1973.

Boisvert, R.N. and B.A. McCarl. Agricultural Risk Modeling{ Using Mathematical Pro%rammi ng.
Southern Cooperative Series Bulletin No. . Corn niversity, New York. July )

Brink, L. and B.A. McCarl. "The Adequacy of aCr?E Planning Model for Determining Income, Income
Change, and Crop Mix." Canadian Journal of Agricultural Economics. 27(1979?:13—15.

Brainard, W.C. and R.N. Cooper. "Uncertainty and Diversification in International Trade." Federa
Reserve Indtitute Studies. 8(1968):257-85.

Buccola, S.T. "Minimizing Mean Absolute Deviations to Exactly Solve Expected Utility Problems:
Comment." American Journal of Agricultural Economics. 64(1982):789-91.

BU$e{él7_8E. The Economic Analysis of Industrial Projects. Englewood Cliffs, N.J.: Prentice-Hall, Inc.,

Candler, W. and M. Boeljhe. "Use of Linear Programming in Capital Budgeting with Multiple Goals."
American Journal of Agricultural Economics. 53(1977):325-330.

Charn%, A. and W.W. Cooper. "Chance Constrained Programming.” Management Science. 6(1959):73-

Chen, J.T. "Quadratic Programming for Least-Cost Feed Formulations Under Probabilistic Protein
Constraints." American Journal of Agricultural Economics. 55(1973):175-183.

Chen, J.T. "A Linear Alternative to Quadratic and semivariance Programming for Form Planning Under
Uncertainty: Comment." American Journal of Agricultural Economics. 53(1971):662-663.

Chen, J.T. and C.B. Baker. "Marginal Risk Constraint Linear Program for Activity Analysis." American
Journal of Agricultural Economics. 56(1976):456-465.

Cocks, K.D. "Discrete Stochastic Programming.” Management Science. 15(1968):72-79.

copyright Bruce A. McCarl and Thomas H. Spreen 14-32



Collender, R.N. and JA. Chalfant. "An Alternative Approach to Decisions Under Uncertainty Using the
Empirica Moment-Generating Function.” American Journal of Agricultural Economics.
68(1986):727-731.

Collender, R.N. and D. Zilberman. "Land Allocation Under Uncertainty for Alternative Technologies With
Stochastic Yield." American Journal of Agricultural Economics. 67(1985):779-793.

Curtis, C.E., G.H. Pfieffer, L.L. Lutgen and S.D. Frank. "A Target MOTAD Approach to Marketin%
g(t)rgtegy Selection for Soybeans." North Central Journal of Agricultural Economics. 9(1987)195-

Danok, A.B., B.A. McCarl and T.K. White. "Machinery Selection Modelin%;: Incorporation of Weather
Variability." American Journal of Agricultural Economics. 62(1980):/00-08.

Dantzig, G. "Linear Programming Under Uncertainty.” Management Science. 1(1955):197-206.

Day, R. "Cautious Suboptimizing." Risk, Uncertainty and Agricultura Development. Editors J.
Roumasset, J. Boussard and |. Singhe, Agricultura Development Council, New Y ork.

Dillon, C.R., JW. Mjelde and B.A. McCarl. "Biophysical Simulation in Support of Crofp Production
Decisions. A Case Study in the Blacklands Region of Texas." Southern Journal of Agricultural
Economics. 21(1989):73-86.

Dubman, RW., L. F. Gunter and B.R. Miller. "Revenue and Cost Uncertainty, Generalized Mean-
Variance and the Linear Complementarity Problem: Comment." American Journal of Agricultural
Economics. 61(1989):806-809.

Eisdl, L. "Chance Constrained Reservoir Model." Water Resources Research. 8:(1972):339-347.
Featherstone, A.M., C.B. Moss, T.G. Baker and P.V. Preckel. "The Theoretical Effects of Farm Policies
on Optimal Leverage and the Probability of Equity Losses." American Journal of Agricultural

Economics. 70(1988):572-579.

Frank, S.D., SH. Irwin, G.H. Pfeiffer, and C.E. Curtis. "Further Evidence on Soybean Marketing
%rgtegles The Role of Options." North Central Journa of Agricultural Economics. 11(1989):213-

Freund, R. "The Introduction of Risk into a Programming Model." Econometrica. 21(1956):253-263.

Garoian, L., JR. Conner and C.J. Scifres. "A Discrete Stochastic Programming Model to Estimate
Oé)tl mal Burning Schedules on Rangeland.” Southern Journal of Agricultural Economics.
19(1987):53-60.

Gebremeskel, T. and C.R. Shumway. "Farm Planning and Calf Marketing Strategies for Risk _
Management: An Application of Linear Programming and Statistical Decision Theory." American
Journal of Agricultural Economics. 61(1979%:363—3 :

Hansotia, B.J. "Stochastic Linear Programming With Recourse: A Tutorial." Decision Sciences.
11(1980):151-168.

Hazell, P.B.R. "Game Theory - An Extension of Its Application to Farm Planning Under Uncertainty."
Journal of Agricultural Economics. 21(1970):239-252.

Hazell, P.B.R. "A Linear Alternative to Quadratic and Semivariance Programming for Farm Planning
under Uncertainty." American Journal of Agricultural Economics. 53(1971):53-62.

Hazell, P.B.R. and R.B. How. "Obtaining Acceptable Farm Plans Under Uncertainty." Pra_gers and
Reports 14th International Conference of Agricultural Economigts. pp. 338-47. Oxford: Tnslitute
for Agricultural Affairs. 1971

Hazell, P.B.R. and P.L.Scandizzo. "Market Intervention Policies when Production is Risky." American
Journal of Agricultural Economics. 57(1975):641-649.

Hazell, P.B.R., R.D. Norton, M. Parthasarthy and C. Pomereda. "The Importance of Risk in Agricultural

copyright Bruce A. McCarl and Thomas H. Spreen 14-33



Planning Models." The Book of CHAC: Programming Studies for Mexican Agriculture. R.D.
Norton and L. Salis (eds.), Batimore, Md: Johns Hopkins University Press, 1983.

Heady, E.O. and W. Candler. Linear Programming Methods. Ames: lowa State University Press, 1958.

Hogan, A.J., J.G. Morrisand H.E. Thompson. "Decision Problems Under Risk and Chance Constrained
Programming: Dilemmasin the Transition." Management Science. 27(1981):716.

Hogg,1 57\6 and A.T. Craig. Introduction to Mathematical Statistics. New York: Macmillan Company,

Jabara, C.L. and R.L. Thompson. "Agricultural Comparative Advantage Under International Price
llJég:ertalnty: The Case of Senegal." American Journal of Agricultural Economics. 62(1980):188-

Johnson, D.A. and M.D. Boehlje. "Managing Risk by Coordinating Investment, Marketing and Production
Strategies." Western Journal of Agricultural EConomics. 6(1983):155-169.

Johnson, D. and M.D. Boehlje. "Minimizing Mean Standard Deviations to Exactla/ Solve Expected Utility
Problems.” American Journal of Agricultural Economics. 63(1981):728-29.

Judge, G.G. "Estimation and Statistical Inference in Economics.” A Survey of American Agricultural
Econor_nlcs Literature. Vol. 2., L.R. Martin, ed. Minneapolis. University of Minnesota Press,

Kawaguchi, T. and Y. Maruyama. "Generalized Constrained Games in Farm Planning." American
urnal of Agricultural Economics. 54(1972):591-702.

Kaylen, M.S,, R.V. Preckel and E.T. Loehman. "Risk Modeling Via Direct Utility Maximization Using
Numerical Quadrature.” American Journal of Agricultural Economics. 69(1987):701-706.

Klemme, R.M. "An Economic Analysis of the On-farm Grain Handling Decision Problem.” Unpublished
Ph.D. Dissertation, Purdue University, May 1980.

Kolbin, V.V. Stochastic Programming. Boston:D. Reidel Publishing Co. 1977.

Kroll, Y., H. Levy, and H.M. Markowitz. "Mean-Variance Versus Direct Utility Maximization." Journal
of Finance.” 59(1984):47-62.

Lambert, D.K. "Calf Retention and Production Decisions Over Time." Western Journal of Agricultural
Economics. 14(1989):9-19.

Lambert, D.K. and B.A. McCarl. "Seguential Modeling of White Wheat Marketing Strategies." North
Central Journal of Agricultural Economics. 11(1989):105-115.

Lambert, D. and B.A. McCarl. "Risk Modeling Using Direct Solution of Nonlinear Aggroximations of the
Utility Function." American Journal of Agricultural Economics. 67(1985):846-852.

Leatham, D.J. and T.G. Baker. "Farmers Choice of Fixed and Adjustable Interest Rate Loans." American
Journal of Agricultural Economics. 70(1988):803-812.

Levy, H. and H. Markowitz. "Approximating Expected Utility by a Function of Mean and Variance".
American Economic Review. 69(1979):308-317.

Lin, W., G.W. Dean and C.V. Moore. "An Empirical Test of Utility vs. Profit Maximization in
Agricultural Production.” American Journal of Agricultural Economics. 56(1974):497-508.

Loucks, D. "An Evaluation of Some Linear Decision Rules in Chance Constrained Models for Reservoir
Planning and Operation." Water Resource Research. 11(1975):777-82.

Low, A.R.C. "Decision Making Under Uncertainty: A Linear Programming Model of Peasant Farmer
Behavior." Journal of Agricultural Economics. 25(1974):311-322.

Maji, C. and E. Heady. "Intertemporal Allocation of Irrigation Water in the Mayurakshi Project (India):
An A9p7pllcat|on of Chance Constrained Linear Programming.” Water Resources Research.
14(1978):190-205.

copyright Bruce A. McCarl and Thomas H. Spreen 14-34



Mapp, H.P. Jr., M.L. Hardin, O.L. Walker and T. Persand. "Analésis of Risk Management Strategies for
Agricultural Producers.” American Journa of Agricultural Economics. 61(1979):1071-1077.

Markowitz, H.M. Portfolio Selection: Efficient Diversification of Investments. New York: John Wiley
and Sons, Inc., 1959.

Maruyama, Y. "A Truncated Maximum Approach to Farm Planning Under Uncertai nt; with Discrete
Probability Distributions.” American Journal of Agricultural Economics. 54(1972):192-200.

McCamley, F. and J.B. Kliebenstein. "Describing and Identifyi n%the Complete Set of Target MOTAD
Solutions." American Journal of Agricultural Economics. 69(1987):669-76.

McCarl, B.A. and D. Besser. "Estimating an Upper Bound on the Pratt Risk Aversion Coefficient When
the Utility Function is Unknown." Australian Journal of Agricultural Economics. 33(1989):56-63.

McCarl, B.A., W. Candler, D. Doster, and P. Robbins. "Experiences with Farmer Oriented Linear
Programming for Crop Farming." Canadian Journal of Agricultural Economics. 24(1977):17-30.

McCarl, B.A. and H. Onal. "Linear A\jr())proximation of Us glg MOTAD and Separable Programmi ng:
Should It Be Done." American Journal of Agricultural Economics. 71(1989):158-165.

McCarl, B.A. and G.H. Parandvash. "Irrigation Develop Versus Hydroelectric Generation: Can
Izr}tgrruptable Irrigation Play aRole." Western Journal of Agricultural Economics. 13(1988):267-

McCarl, B.A. and T. Tice. "Should Quadratic Programmi ng Problems be Approximated?’ American
Journal of Agricultural Economics. 64(1982):585-589.

McFarquhar, A.M.M. "Rational Decision Making and Risk in Farm Planning - An Application of
Quadratic Progsrammlng in British Arable Farming." Journa of Agricultural Economics.
14(1961):552-563.

Mclnerney, J.P. "Maximum Programming - An A groach to Farm Planning Under Uncertainty.” Journal
of Agricultural Economics. 18(1967):279-290.

Mclnerney, J.P. "Linear Programming and Game Theory Models - Some Extensions." Journal of
Agricultural Economics. 20(1969):269-278.

Merrill, W.C. "Alternative Programming Models Involving Uncertainty.” Journal of Farm Economics.
47(1965):595-610.

Meyer, J. "Two-Moment Decision Models and Expected Utility Maximization." American Economic
Review. 77(1987):421-430.

Moffit, L.J., T.M. Burrows, J.L. Baritelleand V. Sevacherian. "Risk Evaluation of Early Termination for
pest Control in Cotton." Western Journal of Agricultural Economics. 9(1984):145-151.

Musser, W.N., B.A. McCarl and G.S. Smith. "An Investigation of the Relationship Between Constraint
Omission and Risk Aversion in Firm Risk Programming Models." Southern Journal of Agricultural
Economics. 18(1986):147-154.

Nieuwoudt, W.L., J.B. Bullock and G.A. Mathia. "An Economic Evaluation of Alternative Peanut
Policies.” American Journa of Agricultural Economics. 58(1976):485-495.

Paris, Q. "Revenue and Cost Uncertainty, Generalized Mean-Variance, and the Linear Complementarity
Problem.” American Journal of Agricultural Economics. 61(1979):268-275.

Paris, Q. "Revenue and Cost Uncertainty, Generalized Mean-Variance and the Linear Complementarity
Problem: Reply." American Journal of Agricultural Economics. 61(1989):810-812.

Pfaffenberger, R.C. and D.A. Walker. Mathematical Programming for Economics and Business. Ames:
lowa State University Press, 1976.

Pomareda, C. and O. Samayoa. "Areaand Yield Response to Price Policy: A Case Study in Guatemala,
C.A." American Journal of Agricultural Economics. 61(1979):683-86.

Preckel, P.V., A.M. Featherstone, and T.G. Baker. "Interpreting Dual Variables for Optimization with

copyright Bruce A. McCarl and Thomas H. Spreen 14-35



Nonmonetary Objectives." American Journal of Agricultural Economics. 69(1987):849-851.

Rae, A.N. "Stochastic Pro%tammi ng, Utility, and uential Decision Problems in Farm Management.”
American Journa of Agricultural Economics. 53(1971a):448-60.

Rae, A.N. "An Empirical Application and Evaluation of Discrete Stochastic Programmi ngin Farm
Management." American Journal of Agricultural Economics. 53(1971b):625-38.

Rahman, S.A. and F.E. Bender. "Linear Programmi n%Approxi mation of Least-Cost Feed Mixes with
Probability Restrictions.” American Journal of Agricultural Economics. 53(1971):612-18.

Reid, D.W. and B.V. Tew. "An Evauation of Expected Value and Expected Value-Variance Criteriain
Achieving Risk Efficiency in Crop Selection." Northeastern Journal of Agricultural and Resource
Economics. 16(1987):93-101.

Robinson, L.J. and J.R. Brake. "Application of Portfolio Theori/ to Farmer and Lender Behavior."
American Journal of Agricultural Economics. 61(1979):159-164.

Roy, A.D. "Safety-First and the Holding of Assets." Econometrica. 20(1952):431-449.

Schurle, B.W. and B.L. Erven. "Sensitivity of Efficient Frontiers Devel oged for Farm Enterprise Choice
Decisions." American Journal of Agricultural Economics. 61(1979):506-511.

Sengupta, JK. Stochastic Programming: Methods and Applications. New York: American Elsevier
blishing Company, Inc. 1972.

Sharpe, W. "A Linear Programming Algorithm for Mutual Fund Portfolio Selection.” Management
pScience. 14(1967):489—510. 99

Simmons, R.L. and C. Pomareda. " ;]uilibri um Quantity and Timi ng] of Mexican Vegetable Exports.”
American Journal of Agricultural Economics. 57(1975):472-479.

Sri Ramaratnam, S., M.E. Rister, D.A. Bessler, and James Novak. "Risk Attitudes and Farm/Producer
Attributes: A Case Study of Texas Coastal Bend Grain Sorghum Producers.” Southern Journal of
Agricultural Economics. 18(1986):85-95.

Stovalll,s%g"lncome Variation and Selection of Enterprises.” Journal of Farm Economics. 48(1966):1575-

Tauer, L. "Target MOTAD." American Journal of Agricultural Economics. 65(1983):606-610.

Thomas, W., L. Blakeslee, L. Rogers and N. Whittlesey. "Separable Programming for Considering Risk in
Farm Planning.” American Journal of Agricultural Economics. 54?1972):2 -266.

Thomson, K. and P.B.R. Hazell. "Reliability of Using the Mean Absolute Deviation to Derive Efficient E-
V farm Plans." American Journal of Agricultural Economics. 54(1972):503-506.

Tice, T.F. "An Investigati on of Nitrogen Application Under Uncertainty.” Unpublished Ph.D.
Dissertation, Purdue University, August 1979.

Tobin, J. "Liquidity Preference as Behavior toward Risk." Review of Economic Studies. 25(1958):65-86.

Towndey, R. "Derivation of Optimal Livestock Rations Using Quadratic Programming.” Journal of
Agricultural Economics. 19(1968):347-354.

Ts an% S. "The Rationale of the Mean-Standard Deviation Analysis, Skewness, Preference and the
emand for Money." American Economic Review. 62(1972):354-371.

Ts an%: S. "The Rationale of the Mean-Standard Deviation Analysis: Reply and Errate for Original
rticle” American Economic Review. 64(1974):442-450.

Vada, S. Probabilistic Programming. New York: Academic Press, 1972.

von Neumann, J. and O. Morgenstern. Theory of Games and Economic Behavior. Princeton, N.J.:
Princeton University Press, 1947.

copyright Bruce A. McCarl and Thomas H. Spreen 14-36



Wagner, H.M. Principles of Operations Research. Englewood Cliffs, N.J.: Prentice Hall, Inc. 1975.

Weins, JA. "Peasant Risk Aversion and Allocative Behavior: A Quadratic Programming Experiment.”
American Journal of Agricultural Economics. 58(1976):629-635.

Wicks, JA. and JW.B. Guise. "An Alternative Solution to Linear programming Problems with Stochastic
Input-Output Coefficients.” Australian Journal of Agricultural Economics. 22(1978):22-40.

Yaron, D., and V. Horowitz. "A Sequential Programming Model of Growth and %eioital Accumulation of
a Farm Under Uncertainty.” American Journal of Agricultural Economics. 54(1972):441-451.

Yassour, J.D., D. Zilberman and G.C. Rausser. "Optiona Choices Among Alternative Technologies with
Stochastic Yield." American Journal of Agricultural Economics. 63(1981):718-723.

Yitzhaki, S. "Stochastic Dominance, Mean Variance and Gini's Mean Difference." American Economic
Review. 72(1982):178-185.

Young, D.L. "Evaluati ng Procedures for Computing Ob]rgctive Risk from Historical Time Series." Paper
presented at Annual Meeting of Western Regional Research Project W-149, Tucson, Arizona.
January 16-18, 1980.

Zimet, D.J. and T.H. Spreen. "A Target MOTAD Analysis of a Crop and Livestock Farm in Jefferson
County, Florida" Southern Journal of Agricultural Economics. 18(1986):175-185.

copyright Bruce A. McCarl and Thomas H. Spreen 14-37



Table 14.1. Datafor E-V Example -- Returns by Stock and Event

----Stock Returns by Stock and Event----

Stock1 Stock2 Stock3 Stock4
Eventl 7 6 8 5
Event2 8 4 16 6
Event3 4 8 14 6
Event4 5 9 -2 7
Event5 6 7 13 6
Event6 3 10 11 5
Event7 2 12 -2 6
Event8 5 18 6
Event9 4 12 5
Event10 3 9 -5 6

Stock1 Stock2 Stock3 Stock4
Price 22 30 28 26

Table 14.2. Mean Returnsand Variance Parametersfor Stock Example

Stock1l Stock2 Stock3 Stock4
Mean Returns 4.70 7.60 8.30 5.80

Variance-Covariance Matrix
Stock1 Stock2 Stock3 Stock4

Stock1 321 -3.52 6.99 0.04
Stock?2 -3.52 5.84 -13.68 0.12
Stock3 6.99 -13.68 61.81 -1.64
Stock4 0.04 0.12 -1.64 0.36

Table 14.3. GAMS Formulation of E-V Problem

5 SETS STOCKS POTENTIAL INVESTMENTS / BUYSTOCK1*BUYSTOCK4 /
6 EVENTS EQUALLY LIKELY RETURN STATES OF NATURE

7 /EVENT1*EVENT10 7/ ;
8

9  ALIAS (STOCKS,STOCK);

10

11 PARAMETERS PRICES(STOCKS) PURCHASE PRICES OF THE STOCKS
12 / BUYSTOCK1 22

13 BUYSTOCK2 30

14 BUYSTOCK3 28

15 BUYSTOCK4 26 / ;
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17 SCALAR FUNDS TOTAL INVESTABLE FUNDS / 500 7/ ;

19 TABLE RETURNS(EVENTS,STOCKS) RETURNS BY STATE OF NATURE EVENT

21 BUYSTOCK1 BUYSTOCK2 BUYSTOCK3 BUYSTOCK4
22 EVENT1 7 6 8 5
23 EVENT2 8 4 16 6
24 EVENT3 4 8 14 6
25 EVENT4 5 9 -2 7
26 EVENTS 6 7 13 6
27 EVENT6 3 10 11 5
28 EVENT7 2 12 -2 6
29 EVENTS 5 4 18 6
30 EVENT9 4 7 12 5
31 EVENT10 3 9 -5 6
32

33 PARAMETERS

34 MEAN (STOCKS) MEAN RETURNS TO X(STOCKS)

35 COVAR(STOCK,STOCKS) VARIANCE COVARIANCE MATRIX;
36

37  MEAN(STOCKS) = SUM(EVENTS , RETURNS(EVENTS,STOCKS) / CARD(EVENTS) );

38  COVAR(STOCK,STOCKS)

39 = SUM (EVENTS , (RETURNS(EVENTS,STOCKS) - MEAN(STOCKS))

40 *(RETURNS(EVENTS, STOCK) - MEAN(STOCK)))/CARD(EVENTS);
42 DISPLAY MEAN , COVAR ;

44  SCALAR RAP  RISK AVERSION PARAMETER / 0.0 / ;

46 POSITIVE VARIABLES INVEST(STOCKS) MONEY INVESTED IN EACH STOCK

48  VARIABLE 0BJ NUMBER TO BE MAXIMIZED ;

50  EQUATIONS 0BJJ OBJECTIVE FUNCTION

51 INVESTAV INVESTMENT FUNDS AVAILABLE

54  0BJJ..
55 OBJ =E=  SUM(STOCKS, MEAN(STOCKS) * INVEST(STOCKS))

56 - RAP*(SUM(STOCK, SUM(STOCKS,

57 INVEST(STOCK)* COVAR(STOCK,STOCKS) * INVEST(STOCKS))));

59 INVESTAV. . SUM(STOCKS, PRICES(STOCKS) * INVEST(STOCKS)) =L= FUNDS ;
61 MODEL EVPORTFOL /ALL/ ;

63 SOLVE EVPORTFOL USING NLP MAXIMIZING OBJ ;

65 SCALER VAR THE VARIANCE ;

66 VAR = SUM(STOCK, SUM(STOCKS,

67 INVEST.L(STOCK)* COVAR(STOCK,STOCKS) * INVEST.L(STOCKS))) ;
68  DISPLAY VAR ;
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70 SET RAPS RISK AVERSION PARAMETERS /R0*R25/

71

72 PARAMETER RISKAVER(RAPS) RISK AVERSION COEFICIENTS

73 /RO 0.00000, R1 0.00025, R2 0.00050, RS3 0.00075,
74 R4  0.00100, RS 0.00150, R6 0.00200, R7 0.00300,
75 R8 0.00500, R9 0.01000, R10 0.01100, R11 0.01250,
76 R12 0.01500, R13 0.02500, R14 0.05000, R15 0.10000,
77 R16 0.30000, R17 0.50000, R18 1.00000, R19 2.50000,
78 R20 5.00000, R21 10.0000, R22 15. , R23 20.

79 R24 40. , R25 80./

80

81 PARAMETER OUTPUT(*,RAPS) RESULTS FROM MODEL RUNS WITH VARYING RAP

83 OPTION SOLPRINT = OFF;

84

85 LOOP (RAPS,RAP=RISKAVER(RAPS);

86 SOLVE EVPORTFOL USING NLP MAXIMIZING OBJ ;

87 VAR = SUM(STOCK, SUM(STOCKS,

88 INVEST.L(STOCK)* COVAR(STOCK,STOCKS) * INVEST.L(STOCKS))) ;
89 OUTPUT("'0BJ"*,RAPS)=0BJ.L;

90 OUTPUT("'RAP"*,RAPS)=RAP;

91 OUTPUT(STOCKS ,RAPS)=INVEST.L(STOCKS) ;

92 OUTPUT("'MEAN"",RAPS)=SUM(STOCKS, MEAN(STOCKS)*INVEST.L(STOCKS));
93 OUTPUT("'VAR",RAPS) = VAR;

94 OUTPUT("'STD"*,RAPS)=SQRT(VAR) ;

95 OUTPUT (""'SHADPRICE" ,RAPS)=INVESTAV . M;

96 OUTPUT("'IDLE",RAPS)=FUNDS- INVESTAV. L

97 ;

98 DISPLAY OUTPUT;
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Table 14.4. E-V Example Solutionsfor Alternative Risk Aversion Parameters

RAP 0 0.00025 0.0005 0.00075 0.001
BUYSTOCK2 1.263 5.324 7.355
BUYSTOCK3 17.857 17.857 16.504 12.152 9.977
0BJ 148.214 143.287 138.444 135.688 134.245
MEAN 148.214 148.214 146.581 141.331 138.705
VAR 19709.821 19709.821 16274.764 7523.441 4460.478
STD 140.392 140.392 127.573 86.738 66.787
SHADPRICE 0.296 0.277 0.261 0.260 0.260
RAP 0.0015 0.002 0.003 0.005 0.010
BUYSTOCK2 9.386 10.401 11.416 12.229 12.838
BUYSTOCK3 7.801 6.713 5.625 4.755 4.102
0BJ 132.671 131.753 130.575 129.005 125.999
MEAN 136.080 134.767 133.454 132.404 131.617
VAR 2272.647 1506.907 959.949 679.907 561.764
STD 47.672 38.819 30.983 26.075 23.702
SHADPRICE 0.259 0.257 0.255 0.251 0.241
RAP 0.011 0.012 0.015 0.025 0.050
BUYSTOCK1 1.273 4.372 4.405
BUYSTOCK2 12.893 12.960 12.420 11.070 8.188
BUYSTOCK3 4.043 3.972 3.550 2.561 1.753
BUYSTOCK4 4.168
0BJ 125.441 124.614 123.380 120.375 116.805
MEAN 131.545 131.459 129.839 125.939 121.656
VAR 554.929 547.587 430.560 222 .576 97.026
STD 23.557 23.401 20.750 14.919 9.850
SHADPRICE 0.239 0.236 0.234 0.230 0.224
RAP 0.100 0.300 0.500 1.000 2.500
BUYSTOCK1 4.105 3.905 3.865 3.835 1.777
BUYSTOCK2 6.488 5.354 5.128 4.958 2.289
BUYSTOCK3 1.340 1.064 1.009 0.968 0.446
BUYSTOCK4 6.829 8.602 8.957 9.223 4.296
0BJ 113.118 102.254 92.010 66.674 27.185
MEAN 119.327 117.774 117.463 117.230 54.370
VAR 62.086 51.734 50.905 50.556 10.874
STD 7.879 7.193 7.135 7.110 3.298
SHADPRICE 0.214 0.173 0.133 0.032 0
IDLE FUNDS 268.044

Notes: RAP istherisk aversion parameter (@) value
Stocki gives the amount invested in stocki
Obj gives the objective function value
Mean gives expected income
Var gives the variance of income
STD gives the standard deviation of income _ .
Shadprice gives the shadow price on the capital available constraint
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Table 14.5.

Deviations from the M ean for Portfolio
Example

Stock1 Stock2 Stock3 Stock4

Eventl
Event2
Event3
Event4
Event5
Event6
Event7
Event8
Event9
Event10

23 -1.6 -0.3 -0.8
3.3 -3.6 7.7 0.2
-0.7 04 57 0.2
0.3 14 -10.3 12
13 -0.6 4.7 0.2
-1.7 24 2.7 -0.8
-2.7 4.4 -10.3 0.2
0.3 -3.6 9.7 0.2
-0.7 -0.6 3.7 -0.8
-1.7 14 -13.3 0.2
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Table 14.6. Example MOTAD Model Formulation

Max 470 X, + 7.60 X, + 830X, + 580X, -yo

st. 2 X, + 30X, + 28X, + 26X, 500

IN

+2.300 X, -1.600 X, -0.300 X, -0.800 X, +d,

[\

+3300 X, -3.600 X, +7.700 X, +0.200 X, +d,

[\

-0.700 X, +0.400 X, +5.700 X, +0.200 X,

+

o
w\

v

+0.300 X, +1.400 X, -10.300 X, +1.200 X, +d,

[\

+1.300 X, -0.600 X, +4.700 X, +0.200 X,

+

o
U'I‘

v

~1.700 X, +2.400 X, +2.700 X, -0.800 X, +dg

-2.700 X, +4.400 X, -10.300 X, +0.200 X, +d,

[\

+0.300 X, -3.600 X, +9.700 X, +0.200 X, -+dy

[\

-0.700 X, -0.600 X, +3.700 X, -0.800 X, +d,

[\

-1.700 X, +1.400 X, -13.300 X, +0.200 X,

+
o
5
\2 \2
o o o o (] o o o o o o

>
—
=z
O
|
a
[
o
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Table 14.7. MOTAD Example Solutionsfor Alternative Risk Aversion Parameters

RAP 0.050 0.100 0.110 0.120
BUYSTOCK2 11.603
BUYSTOCK3 17.857 17.857 17.857 17.857 5.425
0BJ 148.214 140.146 132.078 130.464 129.390
MEAN 148.214 148.214 148.214 148.214 133.213
MAD 122.143 122.143 122.143 122.143 24.111
STDAPPROX 161.367 161.367 161.367 161.367 31.854
VAR 19709.821 19709.821 19709.821 19709.821 883.113
STD 140.392 140.392 140.392 140.392 29.717
SHADPRICE 0.296 0.280 0.264 0.261 0.259
RAP 0.130 0.150 0.260 0.400 0.500
BUYSTOCK1 2.663
BUYSTOCK2 11.603 11.603 11.916 12.379 10.985
BUYSTOCK3 5.425 5.425 5.090 4.594 3.995
0BJ 129.072 128.435 125.179 121.204 118.606
MEAN 133.213 133.213 132.809 132.210 129.161
MAD 24.111 24.111 22.212 20.827 15.979
STDAPPROX 31.854 31.854 29.345 27.515 21.110
VAR 883.113 883.113 771.228 643.507 455.983
STD 29.717 29.717 27.771 25.367 21.354
SHADPRICE 0.258 0.257 0.250 0.242 0.237
RAP 0.750 1.000 1.250 1.500 1.750
BUYSTOCK1 5.145 7.119 2.817 2.817 2.817
BUYSTOCK2 10.409 9.879 5.617 5.617 5.617
BUYSTOCK3 2.661 1.564 1.824 1.824 1.824
BUYSTOCK4 0.123 8.402 8.402 8.402
0BJ 114.168 111.009 108.372 106.086 103.801
MEAN 125.384 122.240 119.799 119.799 119.799
MAD 11.320 8.501 6.920 6.920 6.920
STDAPPROX 14.955 11.231 9.142 9.142 9.142
VAR 211.996 121.386 83.886 83.886 83.886
STD 14.560 11.018 9.159 9.159 9.159
SHADPRICE 0.228 0.222 0.217 0.212 0.208
RAP 2.000 2.500 5.000 10.000 12.500
BUYSTOCK1 2.817 2.817 2.858 2.858 2.858
BUYSTOCK2 5.617 5.617 4.178 4.178 4.178
BUYSTOCK3 1.824 1.824 1.242 1.242 1.242
BUYSTOCK4 8.402 8.402 10.654 10.654 10.654
0BJ 101.515 96.944 76.540 35.790 15.415
MEAN 119.799 119.799 117.289 117.289 117.289
MAD 6.920 6.920 6.169 6.169 6.169
STDAPPROX 9.142 9.142 8.150 8.150 8.150
VAR 83.886 83.886 57.695 57.695 57.695
STD 9.159 9.159 7.596 7.596 7.596
SHADPRICE 0.203 0.194 0.153 0.072 0.031

Note:  The abbreviations are the same asin Table 14.4 with the addition of MAD which gives the mean
absolute deviation and STDAPPROX which gives the standard deviation approximation.
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Table 14.8. Example Formulation of Safety First Problem

Max 4.70 X, + 7.60 X, + 8.30 X, + 5.80 X,

st. 22 X, o+ 30 X, + 28 X, + 26 X, < 500

7 X, + 6 X, + 8 X, + 5 X, > S

8 X, + 4 X, + 16 X, + 6 X, > S

4 X, + 8 X, + 14 X, + 6 X, > S

5 X, + 9 X, - 2 X, + 7 X, > S

6 X, + 7 X, + 13 X, + 6 X, > S

3 X, + 10 X, + 11 X, + 5 X, > S

2 X, + 12 X, - 2 X, + 6 X, > S

5 X, + 4 X, + 18 X, + 6 X, > S

4 X, + 7 X, + 12 X, + 5 X, > S

3 X + 9 X - 5X + 6 X > S

Table14.9.  Safety First Example Solutidnsfor Alternative Safety Level$

RUIN -100.000 -50.000 0.0 25.000 50.000
BUYSTOCK2 0.0 2.736 6.219 7.960 9.701
BUYSTOCK3 17.857 14.925 11.194 9.328 7.463
0BJ 148.214 144 .677 140.174 137.923 135.672
MEAN 148.214 144 .677 140.174 137.923 135.672
VAR 19709.821  12695.542 6066 .388 3717.016 2011.116
STD 140.392 112.674 77.887 60.967 44 .845
SHADPRICE 0.296 0.280 0.280 0.280 0.280

Note: IThgl abbreviations are the same as in the previous example solutions with RUIN giving the safety
evel.
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Table14.10. Example Formulation of Target MOTAD Problem

Max 470 X, + 7.60 X, + 830X, + 580X,
st. 22X, + 30X, + 28X, + 26X, < 500
7 X, + 6 X, + 8 X, + 5 X, Dev, > T
8X, + 4X, + 16X, + 6 X, Dev, > T
4X, + 8X, + 14X, ~+ 6 X, Dev, > T
5X, + 9X, - 2X; + 7X, Dev, > T
6X, + T7TX, + 13X, + 6 X, Dev, > T
3X, + 10X, + 11X, + 5X, Devg, > T
2X, o+ 12X, -  2X; o+ 6 X, Dev, > T
5X, + 4X, + 18X, + 6 X, Devg > T
44X, + TX, + 12X, ~+ 5X, Devy, > T
3X, + 9X, 5X; o+ 6 X, Dev,, > T
kEDe\/k < A
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Table14.11. Target MOTAD Example Solutionsfor Alternative Deviation Limits

TARGETDEV 120.000 60.000 24.000 12.000 10.800
BUYSTOCK2 0.0 0.0 7.081 10.193 10.516
BUYSTOCK3 17.857 17.857 10.270 6.936 6.590
0BJ 148.214 148.214 139.059 135.037 134.618
MEAN 148.214 148.214 139.059 135.037 134.618
VAR 19709.821 19709.821 4822.705 1646.270 1433.820
STD 140.392 140.392 69.446 40.574 37.866
SHADPRICE 0.296 0.296 0.286 0.295 0.295
TARGETDEV 8.400 7.200 3.600
BUYSTOCK1 0.0 0.0 3.459
BUYSTOCK2 11.259 11.782 11.405
BUYSTOCK3 5.794 5.234 2.919
0BJ 133.659 132.982 127.168
MEAN 133.659 132.982 127.168
VAR 1030.649 816.629 277.270
STD 32.104 28.577 16.651
SHADPRICE 0.298 0.298 0.815

Note: The abbreviations are again the same with TARGETDEYV giving the A value.
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Table14.12. Example Formulation of DEMP Problem

Max (W, )P
k

st. 22X, + 30X, + 28X, 26 X, < 500
W, - TX 6X, - 8X, 5X, = 100
W, - 8X; 4X, - 16X, 6 X, = 100
WA - 4 X 8X, - 14X, 6 X, = 100
w, - 5X; 9X, + 2X, 7X, = 100
W, - 66X 7X, 13 X, 6 X, = 100
W, - 383X, - 10X, - 11X, 5X, = 100
W, - 02X, - 12X, + 22X, 6 X, = 100
W, - 5X; 4X, - 18X, 6 X, = 100
W, - 4X 7X, - 12X, 5X, = 100
W, - 33X 9X, + 5X, 6 X, = 100
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Table 14.13. DEMP Example Solutionsfor Alternative Utility Function Exponents

POWER 0.950 0.900 0.750 0.500 0.400
BUYSTOCK2 4.560 8.563 9.344
BUYSTOCK3 17.857 17.857 12.972 8.683 7.846
0BJ 186.473 140.169 60.363 15.282 8.848
MEAN 248.214 248.214 242 .319 237.144 236.134
VAR 19709.821 19709.821 8903.295 3054.034 2309.233
STD 140.392 140.392 94 .357 55.263 48.054
SHADPRICE 0.287 0.277 0.269 0.266 0.265
POWER 0.300 0.200 0.100 0.050 0.030
BUYSTOCK2 9.919 10.358 10.705 10.852 10.907
BUYSTOCK3 7.230 6.759 6.388 6.230 6.171
0BJ 5.127 2.972 1.724 1.313 1.177
MEAN 235.390 234.822 234.374 234.184 234.113
VAR 1843.171 1534.736 1320.345 1236.951 1207.076
STD 42.932 39.176 36.337 35.170 34.743
SHADPRICE 0.264 0.264 0.263 0.263 0.263
POWER 0.020 0.010 0.001 0.0001

BUYSTOCK2 10.934 10.960 10.960 10.960

BUYSTOCK3 6.143 6.115 6.115 6.115

0BJ 1.115 1.056 1.005 1.001

MEAN 234.079 234.045 234.045 234.045

VAR 1192.805 1178.961 1178.961 1178.961

STD 34.537 34.336 34.336 34.336

SHADPRICE 0.263 0.263 0.263 0

Note: The abbreviations are again the same with POWER giving the exponent used.
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Table 14.14.

Chance Congtrained Example Data

Event Small Lathe Large Lathe Carver
1 140 0 120
2 120 9 132
3 133 88 110
4 154 97 118
5 133 87 133
6 142 86 107
7 155 90 120
8 140 % 114
9 142 89 123
10 141 85 123
Mean 140 0 120
Standard Error 9.63 3.69 8.00

Table 14.15. Chance Constrained Example Solutionsfor Alternative Alpha L evels
zZ. 0.00 1.280 1.654 2.330
PROFIT 10417.291 9884.611 9728.969 9447.647
SMLLATHE 140.000 127.669 124.067 117.554
LRGLATHE 90.000 85.280 83.900 81.407
CARVER 120.000 109.760 106.768 101.360
LABOR 125.000 125.000 125.000 125.000
FUNCTNORM 62.233 78.102 82.739 91.120
FANCYNORM 73.020 51.495 45.205 33.837
FANCYMXLRG 5.180 6.788 7.258 8.108

Note: Z, istherisk aversion parameter.
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Table 14.16. Feed Nutrients by State of Nature for Wicks Guise Example

Nutrient State CORN SOYBEANS WHEAT
ENERGY S1 1.15 0.26 1.05
ENERGY S2 1.10 0.31 0.95
ENERGY S3 1.25 0.23 1.08
ENERGY S4 1.18 0.28 1.12
PROTEIN S1 0.23 1.12 0.51
PROTEIN S2 0.17 1.08 0.59
PROTEIN S3 0.25 1.01 0.46
PROTEIN S4 0.15 0.99 0.56
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Table 14.17.

Wicks Guise Example

Objective
Volume
Energy
Protein

Energysl
Energys2
Energys3
Energys4
EnergyMAD
Energyo
Proteinsl
Proteins2
Proteins3
Proteins4

ProteinMAD

Proteino

Corn  Soybeans Wheat

0.03
1

117

0.20

-0.02
-0.07
+0.08
+0.01

-0.02
-0.07
+0.08
+0.01

0.06
1

0.27

1.05

-0.01
+0.04
-0.04
+0.01

-0.01
+0.04
-0.04
+0.01

0.04
1

1.05

0.53

+0.00
-0.10
+0.03
+0.07

+0.00
-0.10
+0.03
+0.07

EnDev

+

dy +dy
dé +dgp
d;a +0g

dey +dgy

EnMAD Enc

Y(dg +dg)i4 -1
k

- A

+

1

PrDev

- d’

PrMAD Pro
- ¢

1
-A +1

o o o o o

o O o o o o

Note: EnDev isthe energy deviation

EnMAD isthe energy mean absolute deviation
Eno isthe energy standard deviation approximations

PrDev isthe protein deviation

PrMAD isthe protein mean absolute deviation
Pro isthe protein standard deviation approximation
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Table 14.18. Results From Example Wicks Guise Model Runs With Varying RAP

RAP 0.250 0.500 0.750 1.000
CORN 0.091 0.046 0.211 0.230 0.221
SOYBEANS 0.105 0.129 0.137
WHEAT 0.909 0.954 0.684 0.641 0.642
0BJ 0.039 0.040 0.040 0.040 0.041
AVGPROTEIN 0.500 0.515 0.515 0.521 0.529
STDPROTEIN 0.054 0.059 0.030 0.028 0.029
AVGENERGY 1.061 1.056 0.993 0.977 0.969
STDENERGY 0.072 0.072 0.061 0.059 0.058
SHADPROT 0.030 0.033 0.036 0.037 0.038
RAP 1.250 1.500 2.000
CORN 0.211 0.200 0.177
SOYBEANS 0.146 0.156 0.176
WHEAT 0.643 0.644 0.647
0BJ 0.041 0.041 0.042
AVGPROTEIN 0.536 0.545 0.563
STDPROTEIN 0.029 0.030 0.031
AVGENERGY 0.961 0.953 0.934
STDENERGY 0.057 0.056 0.055
SHADPROT 0.039 0.040 0.042

Notee RAP givestherisk aversion parameter used
CORN gives the amount of corn used in the solution _
SOY BEANS gives the amount of soybeans used in the solution
WHEAT gives the amount of wheat used in the solution
OBJ givesthe objective function value o .
AV GPROTEIN gives the average amount of protein in the diet
STDPROTEIN gives the standard error of protein in the diet
AVGENERGY gives the average amount of energy in the diet
STDENERGY gives the standard error of energy in the diet _
SHADPROT gives the shadow price on the protein requirement constraint
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Table14.19. Data on Uncertain Parametersin First SPR Example

Vaue Under

Parameter State of Nature 1 State of Nature 2
Probability 6 4
CornYieldin bu 100 105
Wheat Yieldin bu 40 38

Corn Harvest Rate hours per bu .010 .015
Wheat Harvest Rate hours per bu .030 .034

Corn Price per bu 3.25 2.00
Wheat Price per bu 5.00 6.00
Harvest Time hours 122 143

Table14.20. Risk Free Formulation of First SPR Example
Grow Grow Income Harvest Corn Harvest RHS
Corn Wheat Whesat
Objective 1
Land 1 1 < 100
Corn Yied -yied, 1 < 0
Balance
\Whesat Yield -yidd, 1 < 0
Balance
Harvest Hours +harvtime,  +harvtime, < harvavail
Income -100 -60 -1 +price, +price, = 0
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Table14.21. Formulation of First SPR Example

State 1 State 2
Gm we | Emo Wm0 & Wit RS
sl sl s2 s2
Objective .6 A4 max
Land 1 1 < 100
S | Cornsl -100 1 < 0
fa Wheat sl -40 1 < 0
te Harvest Hours sl .010 .030 < 122
! Income sl -100 -60 -1 3.25 5.00 = 0
S | Corns2 -105 1 <
fa Wheat s2 -38 1 <
Ea Harvest Hours s2 .015 .034 < 143
2 Income s2 -100 -60 -1 2.00 6.00 = 0
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Table 14.22.

Solution of First SPR Example

Equation Slack Shadow Price
Objective 16476
Land 0 24.28
Cornsl 0 -1.95
Wheat sl 0 0.67
Harvest Hours sl 11.75 0
Income sl 0 -0.6
Corn s2 0 -3.00
Wheat s2 0 0.94
Harvest Hours s2 0 98.23
Income 2 0 -04
Variable S(\)/Ig[iu%n M E(]ngis[] A
Grow Corn 48.8 0
Grow Wheat 51.2 0
Income S1 18144 0
Harvest Corn sl 4876 0
Harvest Wheat sl 2049 0
Income S2 13972 0
Harvest Corn s2 5120 0
Harvest Wheat s2 1947 0
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Table 14.23.

Second SPR Example Formulation (Partial Tableau)

Corn Soy Wht Avg| Pos Neg Pos Neg Cost Pos Neg| Pos Neg Pos Neg Cost Pos Neg

Cost| Prot Prot Eng Eng sl Cost s | Prot Prot Eng Eng s2 Cost Cost

Dev Dev Dev Dev Dev Cost| Dev Dev Dev Dev Dev Dev

sl sl sl sl sl Dev] s2 2 82 <2 2 2

sl

Objective 1 + + + +
Total Feed 1 1 1 1
Average Cost 1 -25 -25 0
Protein-s1 0.23 1.12 051 -1 1 0.6
Energy -sl1 1.15 0.26 1.05 -1 1 0.9
Cost-sl 0.03 0.06 0.04 050 150 1.00 010 -1 0
Cost dev sl -1 1 -1 1 0
Protein-s2 0.17 1.08 0.59 -1 1 0.6
Energy -2 1.10 0.31 0.95 -1 1 0.9
Cost-s2 .03 .06 .04 050 150 1.00 010 -1 0
Cost dev 2 -1 1 -1 1 0
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Table 14.24.

Second SPR Example Risk Neutral Solution

Shadow Shadow
Slack Price Slack Price
Objective 0.067 Corn Purchase 0.283 0
Total Feed 0 -0.14 Soybean Purchase 0.362 0
Average Cost 0.00 1 Wheat Purchase 0.355 0
Protein-s1 0 0.125 Average Cost 0.067 0
Energy -s1 0 0.025 Pos Protein Dev sl 0.052 0
Cost-s1 0 252.66 Neg Protein Dev sl 0. 0.50
Cost dev sl 0 0.00 Pos Energyn Dev sl 0.00 0
Protein-s2 0 0.125 Neg Energy Dev sl 0.108 0
Energy -2 0 0.025 Cost - sl 0.081 0
Cost-s2 0 0.25 Pos Cost Dev - sl 0.014 0
Cost dev s2 0 0 Neg Cost Dev - sl 0.00 0
Protein-s3 0 -.366 Pos Protein Dev s2 0.049 0
Energy -s3 0 0.025 Neg Protein Dev s2 0.000 0.50
Cost-s3 0 0.25 Pos Energyn Dev s2 0. 0.275
Cost dev s3 0 0 Neg Energyn Dev s2 0.140 0
Protein-s4 0 .08 Cost - 82 0.083 0
Energy -s4 0 .025 Pos Cost Dev - s2 .016 0
Cost-s4 0 0.25 Neg Cost Dev - 2 0.00 0
Cost dev 4 0 0.00 Pos Protein Dev s3 0. 0.491
Neg Protein Dev s3 0. 0.009
Pos Energy Dev s3 0.275
Neg Energy Dev s3 0.080 0
Cost - s3 0.052 0
Pos Cost Dev - s3 0.00 0
Neg Cost Dev - s3 0.014 0
Pos Protein Dev s4 0. 0.205
Neg Protein Dev s4 0. 0.295
Pos Energyn Dev s4 0. 0.275
Neg Energy Dev s4 0.067 0
Cost - 4 0.051 0
Pos Cost Dev - 4 0. 0
Neg Cost Dev - 4 0.016 0
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Table14.25. SPR Second Example Problem Soution Under Varying Risk

Aversion
RAP 0 0.1 0.2 0.3 0.4 0.500 0.600
Corn 0.283 0.249 0.245 0.244 0.288 0.296 0.297
Soybeans 0.362 0.330 0.327 0.326 0.340 0.342 0.342
Wheat 0.355 0.422 0.428 0.430 0.372 0.363 0.361
Avgcost 0.067 0.067 0.067 0.067 0.071 0.071 0.071
Cost sl 0.081 0.074 0.073 0.073 0.071 0.071 0.071
Cost s2 0.083 0.080 0.080 0.080 0.074 0.073 0.073
Cost s3 0.052 0.066 0.067 0.068 0.071 0.071 0.071
Cost A 0.051 0.048 0.048 0.048 0.067 0.070 0.071
Std Error 0.015 0.012 0.012 0.012 0.002 0.001 0.001

RAP istherisk aversion parameter.
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Table 14.26.

Example Tableau for Third SPR Problem

Average Period 1 Period 2 Stage 3
Ending
Net Period 2 State 1 Period 2 State 2
Worth
State 1 State 2
Period 3 State A Period 3 State B Period 3 State A Period 3 State B
Sell Keep Sell Keep Sell Keep Sell End Sell End Sell End Sell End
Worth Worth Worth Worth
Objective 1 max
Starting Stock 1 1 < 100
Avg End Worth 1 -0.42 -0.28 -0.21 -0.09 = 0
Stock Kept pd 1to 2 s1 -1 1 1 < 0
Stock Kept pd 1to 2 s2 -1 1 1 < 0
P2 Stock Kept pd 2to 3 -1 1 < 0
S1 sl-sA
Ending Worth s1-sA 2.1412 2.332 2.18 -1 = 0
Stock Kept pd 2to 3 -1 1 < 0
s1-sB
Ending Worth s1-sB 2.1008 2.288 2.44 -1 = 0
P2 Stock Kept pd 2to 3 -1 1 < 0
S2 s2-sA
Ending Worth s2-sA 2.1828 2.193 2.18 -1 = 0
Stock Kept pd 2to 3 -1 1 < 0
s2-sB
Ending Worth s2-sB 2.1012 2111 2.44 -1 = 0
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Table 14.27.  Solution for Third SPR Example

Variable Value Reduced Cost Variable Slack Shadow Price
Average Ending Net Worth 229.748 0 Objective 229.748

Sell In Period 1 0 -0.162 Starting Stock 0 2.297
Keep From Period 1to 2 100 0 Avg End Worth 0 1
Sell In Period 2 Under State 1 100 0 Stock Kept pd 1to2sl 0 1.62
Keep From Period 2to 3 Under State 1 0 -0.021 Stock Kept pd 1to2sl 0 0.677
Sell In Period 2 Under State 2 0 -0.027 Stock Kept pd 2to 3 s1-sl1 0 0.916
Keep From Period 2to 3 Under State 2 100 0 Ending Worth sl1-sl1 0 -0.42
Sell in Period 3 Under Statel -- State A 0 0 Stock Kept pd 2to 3 s1-s2 0 0.683
Ending Worth Under Statel -- State A 233.2 0 Ending Worth s1-s2 0 -0.28
Sell In Period 3Under State 1 -- State B 0 0 Stock Kept pd 2to 3 s2-s1 0 0.458
Ending Worth Under Statel -- StateB 228.8 0 Ending Worth s2-s1 0 -0.21
Sell In Period 3 Under State 2 -- State A 100 0 Stock Kept pd 2to 3 s2-s2 0 0.22
Ending Worth Under State2 -- State A 218 0 Ending Worth s2-s2 0 -0.09
Sdll In Period 3 Under State2 -- State B 100 0

Ending Worth Under State?2 -- StateB 244 0
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14.1. E-V Model Efficient Frontier
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CHAPTER XV: APPLIED INTEGER PROGRAMMING

L P assumes continuity of the solution region. LP decision variables can equal whole numbers or any
other real number (3 or 4 aswell as 3.49876). However, fractional solutions are not always acceptable.
Particular items may only make sense when purchased in whole units (e.g., tractors, or airplanes). Integer
programming (1P) requires a subset of the decision variables to take on integer values (i.e., 0, 1, 2, etc.). IP
also permits modeling of fixed costs, logical conditions, discrete levels of resources and nonlinear
functions.

IP problems usually involve optimization of alinear objective function subject to linear constraints,
nonnegativity conditions and integer value conditions. The integer valued variables are called integer
variables. Problems containing integer variablesfall into several classes. A problem inwhich al variables
are integer is a pure integer |P problem. A problem with some integer and some continuous variables, isa
mixed-integer 1P problem. A problem in which the integer variables are restricted to equal either zero or
oneiscalled azero-one IP problem. There are pure zero-one I P problems where al variables are zero-one
and mixed zero-one | P problems containing both zero-one and continuous variables. The most general

formulation of the IP problem is:

Max CW + CX + CY

st. AW + AX + AY < b
w > 0
X > 0 and integer
Y = 0or1l

where the W's represent continuous variables; the X's integer variables, and the Y's zero-one variables.
Our coverage of integer programming is divided into two chapters. This chapter covers basic integer
programming problem formulation techniques, and a few characteristics relative to the solution and
interpretation of integer programming problems. The next chapter goesinto a set of example problems.
15.1 Why Integer Programming
The most fundamental question regarding the use of integer programming (IP) iswhy useit. Obvioudly,
IP alows one to depict discontinuous decision variables, such as those representing acquisition of
indivisible items such as machines, hired labor or animals. In addition, IP aso permits modeling of fixed
costs, logical conditions, and discrete levels of resources as will be discussed here.
15.1.1 Fixed Cost

Production processes often involve fixed costs. For example, when manufacturing multiple products,

copyright Bruce A. McCarl and Thomas H. Spreen 15-1



fixed costs may arise when shifting production between products (i.e., milk plant operators must incur

cleaning costs when switching from chocolate to white milk). Fixed costs can be modeled using the

following mixed integer formulation strategy:

Let: X

Y
C
F

denote the continuous number of units of a good produced;

denote a zero-one variable indicating whether or not fixed costs are incurred;

denote the per unit revenue from producing X;

denote the fixed cost incurred when producing a nonzero quantity of regardless of how
many units are produced; and

denote alarge number.

The formulation below depicts this problem:

Max CX - FY
st. X - MY <O
X > 0
= 0or1l

Y =
Here, when X =0, the condtraint relating X and Y allowsY tobe O or 1. Given F > 0 then the objective

function would cause Y to equal 0. However, when 0 < X< M, then Y must equal 1. Thus, any non-zero

production level for X causes the fixed cost (F) to be incurred. The parameter M is an upper bound on the
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production of X (a capacity limit).

The fixed cost of equipment investment may be modeled similarly. Suppose one is modeling the
possible acquisition of severa different-sized machines, all capable of doing the sametask. Further,
suppose that per unit profits are independent of the machine used, that production is disaggregated by
month, and that each machine's monthly capacity is known. This machinery acquisition and usage decision

problem can be formulated as:
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Max X~ C X - YFRY,
m k
st. X, - 2XCap,Y, < O for dl m
k
Xn 2 0 Y, =0or1l for dl k and m,
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where m denotes month, k denotes machine, C,, is the profit obtained from production in month m; X, is
the quantity produced in month m; F, is the annualized fixed cost of the k™ machine; Y, is a zero-one
variable indicating whether or not the k™ machine is purchased; and Cap,,, is the capacity of the k™ machine
in the m™ month.

The overall formulation maximizes annual operating profits minus fixed costs subject to
congtraints that permit production only when machinery has been purchased. Purchase of severa
machinery items with different capacity characteristics is allowed. Thisformulation permits X, to be
non-zero only when at least one Y, isnon-zero. Again, machinery must be purchased with the fixed cost
incurred beforeit is used. Once purchased any machine allows production up to its capacity in each of the
12 months. Thisformulation illustrates alink between production and machinery purchase (equivalently
purchase and use of a piece of capital equipment) through the capacity constraint. One must be careful to
properly specify the fixed costs so that they represent the portion of cost incurred during the time-frame of
the modd.

15.1.2 L ogical Conditions

IP aso allows oneto depict logica conditions. Some examples are:

a) Conditional Use - A warehouse can be used only if constructed.

b) Complementary Products - If any of product A is produced, then a minimum quantity of

product B must be produced.

(o)) Complementary Investment - If a particular class of equipment is purchased then only

complementary equipment can be acquired.

d) Sequencing - Operation A must be entirely complete before operation B starts.

All of these conditions can be imposed using a zero-one indicator variable. Anindicator variable

tellswhether asum is zero or nonzero. The indicator variable takes on avaue of one if the sum is nonzero

and zero otherwise. An indicator variable isimposed using a constraint like the following:

_EXi - MY < O
i
where M is alarge positive number, X; depicts a group of continuous variables, and Y is an indicator
variable restricted to be either zero or one. Theindicator variable Y indicates whether or not any of the X's
are non-zero with Y=1 if so, zero otherwise. Note this formulation requires that M must be as large as any
reasonable value for the sum of the X's.
Indicator variables may be used in many ways. For example, consider a problem involving two

mutually exclusive products, X and Z. Such a problem may be formulated using the constraints
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Here, Y, indicates whether or not X is produced, while Y, indicates whether or not Z is produced. The
third constraint, Y, + Y, < 1, in conjunction with the zero-one restriction on Y, and Y ,, imposes mutual
exclusivity. Thus, when Y; = 1 then X can be produced but Z cannot. Similarly, when Y, = 1 then X must
be zerowhile 0 < Z < M. Consequently, either X or Z can be produced, but not both.
15.1.2.1 Either-or-Active Constraints

Many types of logical conditions may be modeled using indicator variables and mutual exclusivity.

Suppose only one of two congtraints isto be active, i.e.,
either A X < b,

oo AX < b,
Formulation of this situation may be accomplished utilizing the indicator variable Y asfollows

AX - MY < b
AX — MEL-Y) < b,

X > 0, Y = 0ol
Thisis rewritten as

AX - MY < b,
AX o+ MY < b, + M
X >0 Y =001

Here M isalarge positive number and the value of Y indicates which congtraint is active. When'Y =1 the
second constraint is active while the first constraint is removing it from active consideration. Conversely,
when'Y = 0 thefirst constraint is active.

15.1.2.2 An Aside: Mutual Exclusivity

The above formulation contains a common trick for imposing mutual exclusivity. The formulation

could have been written as:
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AX - MY, < b,
AX - MY, < b,
Y, + , = 1

X =0 Y, Y, = Oorl.

However, one can solve for Y, in the third constraint yielding Y, = | - Y. In turn, subgtituting in the first
two equations gives
AX - MY, <b,
AX - M(1-Y,) <b,
which is the compact formulation above. However, Williams (1978b) indicates that the more extensive
formulation will solve faster.
15.1.2.3 Multiple Active Constraints
The formulation restricting the number of active constraints may be generalized to logical

conditions where P out of K congtraints are active (P < K). Thisis represented by
AX - MY, < b
AX - MY, < b,

AX - MY, < b
¥, = K-P

X Oor1 foradli

v

o

<
I

Here, Y, identifies whether constraint i isactive (Y; = 0) or not (Y; = 1). Thelast constraint requires
exactly K - P of the K constraints to be non-active, thus P constraints are active.

15.1.2.4 Conditional Restrictions
Logical conditions and indicator variables are useful in imposing conditional restrictions. For

example, nonzero values in one group of variables (X) might imply nonzeros for another group of variables

(Y). Thismay be formulated as

3X, - MZ <0
i
%, - RZ >0
k
X, Y >0 Z =20orl

Here X, are the elements of the first group; Z is an indicator variable indicating whether any X; has been

purchased; Y, are the elements of the second group; and M isalarge number. Z can be zero only if dl the
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X'sare 0 and must be one otherwise. The sum of the Y's must be greater than R if the indicator variable Z
isone.
15.1.3 Discrete L evels of Resour ces

Situations may arise where variables are constrained by discrete resource conditions. For example,
suppose afarm has three fields. Farmers usually plant each field to asingle crop. Thus, a situation might
require crops to be grown in acreages consistent with entire fields being planted to asingle crop. This
restriction can be imposed using indicator variables. Assume that there are 3 fields of sizesF;, F,, and F;,

each of which must be totally allocated to either crop 1 (X,) or crop 2 (X,). Constraints imposing such a

condition are
X, - FY, - EY, - F,Y, = 0
X, - F@-Y) - F-Y,) - F(1-Y,) = 0
x X, + FY, + FY, + FY, = F +F +F
X, 2 0 Y, = 0ol for al k and i

The variable Y, indicates whether field i is planted to crop 1 (Y;=1) or crop 2 (Y,=0). The X; variables
equal the total acreage of crop i which is planted. For example, when Y =1 and Y,, Y5 =0, then the
acreage of crop 1 (X,) will equa F, while the acreage of crop 2 (X,) will equal F, + F;. The discrete
variablesinsure that the fields are assigned in a mutually exclusive fashion.
15.1.4 Distinct Variable Values

Situations may require that decision variables exhibit only certain distinct values (i.e., avariable
restricted to equal 2, 4, or 12). This can be formulated in two ways. First, if the variable can take on

distinct values which exhibit no particular pattern then:

X - V)Y, - VY, - V.Y,

Yl+ Y2+ Y3:1

X >0 Y = Oor 1l
Here, the variable X can take on either the discrete value of V,, V,, or V5, where V; may be any redl

number. The second constraint imposes mutual exclusivity between the allowable values.

On the other hand, if the values fall between two limits and are separated by a constant interval,
then a different formulation is applicable. The formulation to be used depends on whether zero-one or
integer variables are used. When using zero-one variables, abinary expansion is employed. If, for

example, X were restricted to be an integer between 5 and 20 the formulation would be:

X - Y, - 2V,

Oor1l

X
v
o
<
I
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Here each Y, is a zero-one indicator variable, and X is a continuous variable, but in the solution, X will
equa aninteger value. When al the Y's equal zero, then X =5. If Y, and Y, both equal 1 then X = 15.
Through this representation, any integer value of X between 5 and 20 can occur. 1n general through the use
of N zero-one variables, any integer value between the right hand side and the right hand side plus 2V-1 can
be represented. Thus, the constraint
N
X - X2, = a
k=1
restricts X to be any integer number between aand a+2V-1. This formulation permits one to model general

integer values when using a zero-one IP algorithm.
15.1.5 Nonlinear Representations
Another usage of IP involves representation of the multiplication of zero-one variables. A term
involving the product of two zero-one variables would equal one when both integer variables equal one and
zero otherwise.  Suppose Z equals the product of two zero-one variables X, and X,
Z = XX,

We may replace this term by introducing Z as a zero-one variable as follows:

-Z + X, o+ X, <1
2Z - X, X, <0
Z, X X Oor1l

11 21
The first constraint requires that Z+1 be greater than or equal to X, + X,. Thus, Z isforced to equal 1 if

both X, and X, equal one. The second constraint requires 2Z to be lessthan or equa to X; + X,. This
permits Z to be nonzero only when both X; and X, equa one. Thus, Z will equal zero if either of the
variables equal zero and will equal one when both X, and X, are one. One may not need both constraints,
for example, when Z appears with positive returns in a profit maximizing objective function the first
congtraint could be dropped, although as discussed later it can be important to keep many constraints when
doing applied IP.
15.1.6 Approximation of Nonlinear Functions

IPisuseful for approximating nonlinear functions, which cannot be approximated with linear
programming i.e., functions with increasing margina revenue or decreasing marginal cost. (LP step
approximations cannot adequately approximate this; the resultant objective function is not concave.) One
can formulate an I P to require the approximating points to be adjacent making the formulation work

appropriately. If one has four step variables, an adjacency restriction can be imposed as follows:
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ot h ok - 1
A - Z < 0
A - Z, < 0
Ay - Z, < 0
Ay -7z, <0
1 v Ly v Ly v 2, <2
1 43 <1
1 vz, <1
Z, + Z, <1
A =0 Z = O0orl

The lambdas (1) are the approximation step variables; the Z;'s are indicator variables indicating whether a
particular step variableis non-zero. Thefirst constraint containing Z, through Z, allows no more than two
nonzero step variables. The next three constraints prohibit non-adjacent nonzero A's.

There is aso a second type of nonlinear approximation using zero-one variables. Thiswill be
demonstrated in the next chapter on economies of scale.

15.2 Feasible Region Characteristics and Solution Difficulties

IP problems™ are notorioudly difficult to solve. This section supplies insight as to why thisis so.
Nominally, IP problems seem easier to solve than LP problems. LP problems potentialy have an infinite
number of solutions which may occur anywhere in the feasible region either interior, along the constraints,
or at the constraint intersections. However, it has been shown that LP problems have solutions only at
congtraint intersections (Dantzig, 1963). Thus, one has to examine only the intersections, and the one with
the highest objective function value will be the optimum LP solution. Further, in an LP given any two
feasible points, al pointsin between will be feasible. Thus, once inside the feasible region one need not
worry about finding infeasible solutions. Additionally, the reduced cost criterion provides a decision rule
which guarantees that the objective function will increase when moving from one feasible point to another
(or at least not decrease). These properties greatly aid solution.

However, IP isdifferent. Thisis best shown through an example. Suppose that we define a pure
I P problem with nonnegative integer variables and the following constraints.

2X + 3Y < 16
33X + 2Y < 16.

3 We will reference pure IP in this section.
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A graph of thissituation is given by Figure 15.1. The diamonds in the graph represent the integer points,
which are the potential integer solutions. Obvioudy the feasible integer solution points fall below or on the
congtraints while smultaneously being above or onthe X and Y axes. For this example the optimal
solution is probably not on the constraint boundaries (i.e. X=Y may be optimal), much less at the constraint
intersections. This introduces the principal difficulty in solving IP problems. There is no particular
location for the potential solutions. Thus, while the equivalent LP problem would have four possible
solutions (each feasible extreme point and the origin), the IP problem has an unknown number of possible
solutions. No general statement can be made about the location of the solutions.

A second difficulty isthat, given any two feasible solutions, al the points in between are not
feasible (i.e., given [3 3] and [2 4], adl pointsin between are non-integer). Thus, one cannot move fregly
within the IP area maintaining problem feasibility, rather one must discover the IP points and move totally
between them.

Thirdly, it isdifficult to move between feasible points. Thisis best illustrated by a dightly

different example. Suppose we have the constraints

/\l h l/\2

Y

0.1

X. + 10X. 54

IA

where X, and X, are nonnegative integer variables. A graph of the solution space appearsin Figure 15.2.
Note here the interrelationship of the feasible solutions do not exhibit any set patterns. In the first graph
one could move between the extreme feas ble solutions by moving over one and down one. In Figure 15.2,
different patterns are involved. A situation which greatly hampers IP algorithmsis that it is difficult to
maintain feasibility while searching for optimality. Further, in Figure 15.2, rounding the continuous
solution at say (4.6, 8.3) leads to an infeasible integer solution (at 5, 8).

Another cause of solution difficultiesis the discontinuous feasible region. Optimization theory
traditionaly has been developed using calculus concepts. Thisisillustrated by the LP reduced cost (Z;-C))
criteria and by the Kuhn-Tucker theory for nonlinear programming. However, in an IP setting, the
discontinuous feasible region does not allow the use of calculus. Thereis no neighborhood surrounding a
feasible point that one can usein developing first derivatives. Margina revenue-marginal cost concepts are
not readily usablein an IP setting. Thereis no decision rule that allows movement to higher valued points.
Nor can one develop a set of conditions (i.e., Kuhn-Tucker conditions) which characterize optimality.

In summary, IP feasible regions contain afinite number of solution aternatives, however, thereis
no rule for either the number of feasible solution alternatives or where they are located. Solution points
may be on the boundary of the constraints at the extreme points or interior to the feasible region. Further,

one cannot easily move between feasible points. One cannot derive margina revenue or marginal cost
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information to help guide the solution search process and to more rapidly enumerate solutions. This makes
IP's more difficult to solve. There are avast number of solutions, the number of which to be explored is
unknown. Most IP agorithms enumerate (either implicitly or explicitly) all possible integer solutions
requiring substantial search effort. The binding constraints are not binding in the linear programming
sense. Interior solutions may occur with the constraint restricting the level of the decision variables.
15.2.1 Extension to Mixed Integer Feasible Regions

The above comments reference pure I|P. Many of them, however, are also relevant to mixed

IP. Consider agraph (Figure 15.3) of the feasible region to the constraints

2X, + 3X, < 16

3X, + 2X, < 16

Xy > 0 integer
X, = 0

The feasible region isa set of horizontal lines for X, at each feasible integer value of X;. Thisyieldsa
discontinuous area in the X, direction but a continuous area in the X, direction. Thus, mixed integer
problems retain many of the complicating features of pure integer problems along with some of the niceties
of LP problem feasible regions.

15.3 Sensitivity Analysis and Integer Programming

The reader may wonder, given the concentration of this book on problem formulation and solution
interpretation, why so little was said above about integer programming duality and associated vauation
information. There are severa reasons for this lack of treatment. Duality is not awell-defined subject in
the context of IP. Most LP and NLP dudity relationships and interpretations are derived from the calculus
congtructs underlying Kuhn-Tucker theory. However, calculus cannot be applied to the discontinuous
integer programming feasible solution region. In general, dual variables are not defined for IP problems,
although the topic has been investigated (Gomory and Baumol; Williams, 1980). All one can generdly
state is that dual information is not well defined in the general IP problem. However, there are two aspects
to such a statement that need to be discussed.

First, most commonly used algorithms printout dual information. But the dual information is often
influenced by constraints which are added during the solution process. Most solution approaches involve
the addition of constraints to redefine the feasible region so that the integer solutions occur at extreme
points (see the discussions of algorithms below). Thus, many of the shadow prices reported by 1P codes
are not relevant to the original problem, but rather are relevant to a transformed problem. The principal
difficulty with these dua pricesisthat the set of transformations is not unique, thus the new information is

not unique or complete (see the discussion arising in the various duaity papers such as that by Gomory and
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Baumol or those referenced in von Randow). Thus, in many cases, the | P shadow price information that
appears in the output should be ignored.

Second, there does seem to be a maor missing discussion in the literature. Thisinvolves the
reliability of dual variables when dealing with mixed 1P problems. 1t would appear to follow directly from
LP that mixed IP shadow prices would be as reliable as L P shadow prices if the constraints right hand sides
are changed in arange that does not imply a change in the solution value of an integer variable. The dual
variables from the constraints which involve only continuous variables would appear to be most accurate.
Dual variables on congtraints involving linkages between continuous and integer variable solution levels
would be less accurate and constraints which only involve integer variables would exhibit inaccurate dual
variables. Thiswould be an interesting topic for research as we have not discovered it in the IP literature.

The third dual variable comment regards "binding" constraints. Consider Figure 15.1. Suppose
that the optimal solution occurs at X=3 and Y=3. Note that this point is strictly interior to the feasible
region. Consequently, according to the complementary slackness conditions of LP, the constraints would
have zero dual variables. On the other hand, if the first constraint was modified so that its right hand side
was more than 17, the solution value could move to X=4 and Y=3. Consequently, the first constraint is not
strictly binding but arelaxation of its right hand side can yield to an objective function increase. Therefore,
conceptually, it has adua variable. Thus, the difficulty with dual variablesin IP isthat they may be
nonzero for nonbinding constraints.

15.4 Solution Approachesto Integer Programming Problems

IP problems are notoriously difficult to solve. They can be solved by several very different
algorithms. Today, algorithm selection is an art as some agorithms work better on some problems. We
will briefly discuss algorithms, attempting to expose readersto their characteristics. Those who wish to
gain a deep understanding of 1P algorithms should supplement this chapter with material from the literature
(e.g., see Balinski or Bazaraa and Jarvis; Beale (1965,1977); Garfinkel and Nemhauser; Geoffrion and
Marsten; Hammer et a.; Hu; Plane and McMillan; Salkin (1975b); Taha (1975); von Randow; Zionts;
Nemhauser; and Woolsey). Consultation with experts, solution experimentation and a review of the liter-
ature on solution codes may aso be necessary when one wishes to solve an IP prablem.

Let us develop a brief history of |P solution approaches. LP was invented in the late 1940's.
Those examining LP relatively quickly came to the redization that it would be desirable to solve problems
which had some integer variables (Dantzig, 1960). Thisled to algorithms for the solution of pure IP
problems. The first algorithms were cutting plane agorithms as devel oped by Dantzig, Fulkerson and
Johnson (1954) and Gomory (1958, 1960, 1963). Land and Doig subsequently introduced the branch and
bound algorithm. More recently, implicit enumeration (Balas), decomposition (Benders), lagrangian

relaxation (Geoffrion, 1974) and heuristic (Zanakis and Evans) approaches have been used. Unfortunately,
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after 20 years of experience involving literally thousands of studies (see VVon Randow) none of the available
algorithms have been shown to perform satisfactorily for al 1P problems. However, certain types of algo-
rithms are good at solving certain types of problems. Thus, a number of efforts have concentrated on
algorithmic development for specidly structured | P problems. The most impressive recent developments
involve exploitation of problem structure. The section below briefly reviews historic approaches as well as
the techniques and successes of structural exploitation. Unfortunately, complete coverage of these topicsis
far beyond the scope of thistext. In fact, a single, comprehensive treatment also appears to be missing
from the general IP literature, so references will be made to treatments of each topic.

There have been awide variety of approachesto IP problems. The ones that we will cover below
include Rounding, Branch and Bound, Cutting Planes, Lagrangian Relaxation, Benders Decomposition,
and Heurigtics. In addition we will explicitly deal with Structural Exploitation and a catchall other
category.

15.4.1 Rounding

Rounding is the most naive approach to I P problem solution. The rounding approach involves the
solution of the problem as a L P problem followed by an attempt to round the solution to an integer one by:
a) dropping all the fractiona parts; or b) searching out satisfactory solutions wherein the variable values
are adjusted to nearby larger or smaller integer values. Rounding is probably the most common approach
to solving IP problems. Most LP problems involve variables with fractional solution values which in reality
areinteger (i.e., chairs produced, chickens cut up). Fractional termsin solutions do not make strict sense,
but are sometimes acceptable if rounding introduces a very small change in the value of the variable (i.e.
rounding 1003421.1 to 1003421 or even 1003420 is probably acceptable).

Thereis, however, amgor difficulty with rounding. Consider the example

X, - TX, < -225
X, + 10X, < 54
X X, > 0 and integer

as graphed in Figure 15.2. In this problem rounding would produce a solution outside the feasible region.

In general, rounding is often practical, but it should be used with care. One should compare the
rounded and unrounded solutions to see whether after rounding: @) the constraints are adequately satisfied;
and b) whether the difference between the optima LP and the post rounding objective function value is
reasonably small. If so IPisusualy not cost effective and the rounded solution can be used. On the other
hand, if one finds the rounded objective function to be significantly altered or the constraints violated from

apragmatic viewpoint, then aformal 1P exercise needs to be undertaken.
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15.4.2 Cutting Planes

Thefirst formal |P agorithmsinvolved the concept of cutting planes. Cutting planes remove part
of the feasible region without removing integer solution points. The basic idea behind a cutting planeis that
the optimal integer point is close to the optimal LP solution, but does not fall at the constraint intersection
so additional constraints need to be imposed. Consequently, constraints are added to force the noninteger
L P solution to be infeasible without eliminating any integer solutions. Thisis done by adding a constraint
forcing the nonbasic variables to be greater than a small nonzero value. Consider the following integer

program: Maximize X, + X,

2X, + 3X, < 16

3X, + 2X, < 16
X X, > 0 and integer

The optimal LP solution tableau is
Xl XZ Sl SZ b
oj 14 1 0 O
X 1 0 6 -4 32
XZ
ijCj 0 0 2 2 64

which has X;=X,=3.2 which is noninteger. The simplest form of a cutting plane would be to require the

1
0O 1 -4 6 32

sum of the nonbasic variables to be greater than or equal to the fractional part of one of the variables. In
particular, generating a cut from the row where X, is basic alows a constraint to be added which required
that 0.6 S, - .4 S, > 0.2. The cutting plane algorithm continually adds such constraints until an integer
solution is obtained.

Much more refined cuts have been developed. The issue is how should the cut constraint be
formed. Methods for devel oping cuts appear in Gomory (1958, 1960, 1963).

Severa points need to be made about cutting plane approaches. First, many cuts may be required
to obtain an integer solution. For example, Beale (1977) reports that alarge number of cutsis often
required (in fact often more are required than can be afforded). Second, the first integer solution found is
the optimal solution. This solution is discovered after only enough cuts have been added to yield an integer
solution. Consequently, if the solution algorithm runs out of time or space the modeler is left without an
acceptable solution (thisis often the case). Third, given comparative performance vis-a-vis other
algorithms, cutting plane approaches have faded in popularity (Beale,1977).

15.4.3 Branch and Bound
The second solution approach developed was the branch and bound agorithm. Branch and bound,

originally introduced by Land and Doig, pursues a divide-and-conquer strategy. The algorithm starts with a
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L P solution and a so imposes constraints to force the LP solution to become an integer solution much as do
cutting planes. However, branch and bound constraints are upper and lower bounds on variables. Given
the noninteger optimal solution for the example above (i.e., X; = 3.2), the branch and bound algorithm
would impose constraints requiring X, to be at or below the adjacent integer values around 3.2; i.e., X; < 3

and X; > 4. Thisleads to two digoint problems, i.e.,

[ Maximize 14X, + X, ' [ Maximize 14X, + X,
2X, + 3X, < 16 2X, + 3X, < 16
3X, + 2X, < 16 | and 3X, + 2X, < 16
X, < 3 X, > 4
X, X, > 0 X, X, = 0

The branch and bound solution procedure generates two problems (branches) after each LP
solution. Each problem excludes the unwanted noninteger solution, forming an increasingly more tightly
congtrained LP problem. There are severa decisions required. One must both decide which variable to
branch upon and which problem to solve (branch to follow). When one solves a particular problem, one
may find an integer solution. However, one cannot be sureit is optimal until all problems have been
examined. Prablems can be examined implicitly or explicitly. Maximization problems will exhibit
declining objective function values whenever additiona congtraints are added. Consequently, given a
feasible integer solution has been found, then any solution, integer or not, with a smaller objective function
value cannot be optimal, nor can further branching on any problem below it yield a better solution than the
incumbent ( since the objective function will only decline). Thus, the best integer solution found at any
stage of the algorithm provides a bound limiting the problems (branches) to be searched. The bound is
continually updated as better integer solutions are found.

The problems generated at each stage differ from their parent problem only by the bounds on the
integer variables. Thus, a LP algorithm which can handle bound changes can easily carry out the branch

and bound calculations.

The branch and bound approach is the most commonly used genera purpose IP solution agorithm
(Bedle, 1977; Lawler and Wood). It isimplemented in many codes (e.g., OSL, LAMPS, and LINDO)
including al of those interfaced with GAMS. However, its use can be expensive. The agorithm doesyield
intermediate solutions which are usable although not optimal. Often the branch and bound algorithm will
come up with near optimal solutions quickly but will then spend alot of time verifying optimality. Shadow

prices from the algorithm can be mideading since they include shadow prices for the bounding constraints.
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A specidized form of the branch and bound agorithm for zero-one programming was developed by
Baas. Thisagorithmiscaled implicit enumeration. This method has also been extended to the mixed
integer case as implemented in LINDO (Schrage, 1981b).
15.4.5 L agrangian Relaxation

Lagrangian relaxation (Geoffrion (1974), Fisher (1981, 1985)) is another area of IP algorithmic
development. Lagrangian relaxation refersto a procedure in which some of the constraints are relaxed into
the objective function using an approach motivated by Lagrangian multipliers. The basic Lagrangian
Relaxation problem for the mixed integer program:

Maximize CX + FY

st. AX + GY < b
DX + HY < e
X > 0, Y > 0 and integer,

involves discovering a set of Lagrange multipliers for some constraints and relaxing that set of constraints
into the objective function. Given that we choose to relax the second set of constraints using lagrange

multipliers (1) the problem becomes

Maximize CX + FY - AMDH + HY - ¢
st. AX + GY
X > 0, Y

b
0 and integer,

IN

vV

The main ideaisto remove difficult constraints from the problem so the integer programs are much easier
to solve. IP problems with structures like that of the transportation problem can be directly solved with
LP. Thetrick then isto choose the right constraints to relax and to develop values for the lagrange
multipliers (1,) leading to the appropriate solution.

Lagrangian Relaxation has been used in two settings: 1) to improve the performance of bounds on
solutions; and 2) to devel op solutions which can be adjusted directly or through heuristics so they are
feasible in the overall problem (Fisher (1981, 1985)). Animportant Lagrangian Relaxation result is that
the relaxed problem provides an upper bound on the solution to the unrelaxed problem at any stage.
Lagrangian Relaxation has been heavily used in branch and bound algorithms to derive upper bounds for a
problem to see whether further traversal down that branch is worthwhile.

Lagrangian Relaxation has been applied extensively. There have been studies of the travelling
salesman problem (Bazaraa and Goode), power generation systems (Muckstadt and Koenig); capacitated
location problem (Cornugjols, et a.); capacitated facility location problem (Geoffrion and McBride); and
generalized assignment problem (Ross and Soland). Fisher (1981,1985) and Shapiro (1979a) present
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survey articles.
15.4.6 Bender s Decomposition

Another agorithm for IP is called Benders Decomposition. This agorithm solves mixed integer
programs via structural exploitation. Benders devel oped the procedure, thereafter called Benders
Decomposition, which decomposes a mixed integer problem into two problems which are solved iteratively
- an integer master problem and alinear subproblem.

The success of the procedure involves the structure of the subproblem and the choice of the
subproblem. The procedure can work very poorly for certain structures. (e.g. see McCarl, 1982a or
Bazarra, Jarvis and Sherali.)

A decomposable mixed IP problem is:

Maximize FX + CZ
st. GX < b,
HX + AZ < b,
DZ < b

Development of the decomposition of tkid orivikeer proceeds by itadatively developing feasible
points X" and solving the subproblem:

Maximize CZ

s.t. AZ < b, - HX=x (o)
DZ < b, (v)
Z >0

Solution to this subproblem yields the dua variables in parentheses. In turn a"master” problem is formed

as follows

Maximize FX + Q
X, 0 v Q
Q<ab, - HX) + ybyi = 1,2 ..p
GX < b
X integer
Q-0
<

This problem contains the dual information from above and generates anew X value. The constraint
involving Q gives a prediction of the subproblem objective function arising from the dual variables from the

i" previous guess at X. In turn, this problem produces a new and better guess at X. Each iteration adds a
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congtraint to the master problem. The objective function consists of FX + Q, where Q is an approximation
of CZ. The master problem objective function therefore constitutes a monotonically nonincreasing upper
bound as the iterations proceed. The subproblem objective function (CZ) at any iteration plus FX can be
regarded as alower bound. The lower bound does not increase monotonically. However, by choosing the
larger of the current candidate lower bound and the incumbent lower bound, a monotonic nondecreasing
sequence of boundsisformed. The upper and lower bounds then give a monotonically decreasing spread
between the bounds. The algorithm user may stop the solution process at an acceptably small bound
spread. The last solution which generated a lower bound is the solution which is within the bound spread
of the optimal solution. The form of the overall problem guarantees global optimality in most practical
cases. Global optimality will occur when al possible X's have been enumerated (either implicitly or
explicitly). Thus, Benders decomposition convergence occurs when the difference between the boundsis
driven to zero. When the problem is stopped with a tolerance, the objective function will be within the
tolerance, but there is no relationship giving distance between the variable solutions found and the true
optimal solutions for the variables. (i.e., the distance of Z* and X* from the true optimal Z's and X's).
Convergence will occur in apractica setting only if for every X arelevant set of dual variablesis returned.
Thiswill only be the case if the subproblem is bounded and has a feasible solution for each X that the
master problem yields. This may not be generaly true; artificial variables may be needed.

However, the boundedness and feasibility of the subproblem says nothing about the rate of
convergence. A modest sized linear program will have many possible (thousands, millions) extreme point
solutions. Thereal art of utilizing Benders decomposition involves the recognition of appropriate problems
and/or problem structures which will converge rapidly. The general statements that can be made are:

1 The decomposition method does not work well when the X variables chosen by the master
problem do not yield afeasible subproblem. Thus, the more accurately the constraintsin
the master prablem portray the conditions of the subproblem, the faster will be
convergence. (See Geoffrion and Graves; Danok, McCarl and White (1978); Polito;
Magnanti and Wong; and Sherai for discussion.)

2. The tighter (more constrained) the feasible region of the master problem the better. (See
Magnanti and Wong; and Sherdli.)

3. When possible, constraints should be entered in the master problem precluding feasible yet
unrealistic (suboptimal) solutions to the overall problem. (See the minimum machinery
congtraints in Danok, McCarl and White, 1978.)

The most common reason to use Bendersis to decompose large mixed integer problem into asmall,

difficult master problem and alarger simple linear program. This alows the solution of the problem by

two pieces of software which individually would not be adequate for the overall problem but collectively
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are sufficient for the resultant pieces. In addition, the decomposition may be used to isolate particular
easy-to-solve subproblem structures (see the isolation of transportation problems as in Geoffrion and
Gravesor Hilger et a.). Finaly, multiple levels of decomposition may be done in exploiting structure (see
Polito).
15.4.7 Heuristics

Many |P problems are combinatorial and difficult to solve by nature. In fact, the study of NP
complete problems (Papadimitrou and Steiglitz) has shown extreme computational complexity for problems
such as the traveling salesman problem. Such computational difficulties have led to alarge number of
heurigtics. These heurigtics (following Zanakis and Evans) are used when: @) the quality of the data does
not merit the generation of exact optimal solutions; b) a smplified model has been used, and/or ¢) when a
reliable exact method is not available, computationally attractive, and/or affordable. Arguments for heur-
istics are a so presented regarding improving the performance of an optimizer where a heuristic may be
used to save time in a branch and bound code, or if the problem is repeatedly solved. Many IP heuristics
have been developed, some of which are specific to particular types of problems. For example, there have
been a number of traveling salesman problem heuristics as reviewed in Golden et . Heuristics have been
developed for general 0-1 programming (Senju and Toyoda; Toyoda) and generd IP (Glover;
Kochenberger, McCarl, and Wyman), as well as 0-1 polynomial problems (Granot). Zanakis and Evans
review several heuristics, while Wyman presents computational evidence on their performance. Generally,
heuristics perform well on specia types of problems, quite often coming up with errors of smaller than two
percent. Zanakis and Evans; and Wyman both provide discussions of selections of heuristics vis-a-vis one
another and optimizing methods. Heuristics aso do not necessarily reveal the true optimal solution, and in
any problem, one is uncertain as to how far one is from the optimal solution although the Lagrangian
Relaxation technique can make bounding statements.
15.4.8 Structural Exploitation

Y ears of experience and thousands of papers on |P have indicated that general-purpose IP
algorithms do not work satisfactorily for al 1P problems. The most promising developments in the last
severa years have involved structural exploitation, where the particular structure of a problem has been
used in the development of the solution agorithm. Such approaches have been the crux of the development
of anumber of heuristics, the Benders Decomposition approaches, Lagrangian Relaxation and a number of
problem reformulation approaches. Specialized branch and bound algorithms adapted to particular
problems have a so been developed (Fuller, Randolph and Klingman; Glover et a. ,1978). The application
of such algorithms has often led to spectacular results, with problems with thousands of variables being
solved in seconds of computer time (e.g., see the computational reportsin Geoffrion and Graves; Zanakis;

and the references in Fisher, 1985). The main mechanisms for structural exploitation are to develop an
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algorithm especially tuned to a particular problem or, more generally, to transform a problem into a smpler
problem to solve.
15.4.9 Other Solution Algorithmsand Computer Algorithms

The above characterization of solution algorithmsis not exhaustive. A field asvast asIP has
spawned many other types of agorithms and algorithmic approaches. The interested reader should consult
the literature reviews in von Randow; Geoffrion (1976); Balinski; Garfinkel and Nemhauser; Greenberg
(1971); Woolsey; Shapiro (1979a, 1979b); and Cooper as well as those in textbooks.

15.5 The Quest for Global Optimality: Non-Convexity

Mogt of the IP solution material, as presented above, showed the IP agorithms as involving some
sort of an iterative search over the feasible solution region. All possible solutions had to be either explicitly
or implicitly enumerated. The basic idea behind most IP agorithmsis to search out the solutions. The
search process involves implicit or explicit enumeration of every possible solution. The implicit
enumeration is done by limiting the search based on optimality criterion (i.e., that solutions will not be
examined with worse objective functions than those which have been found). The enumeration concept
arises because of the nonconvex nature of the constraint set; in fact, in IP it is possible to have a digoint
condtraint set. For example, one could implement an 1P problem with afeasible region requiring X to be
either greater than 4 or less than 5. Thus, it isimportant to note that 1P algorithms can guarantee global
optimality only through an enumerative search. Many of the algorithms also have provisions where they
stop depending on tolerances. These particular algorithms will only be accurate within the tolerance factor

specified and may not reveal the true optimal solution.

15.6 Formulation Tricksfor Integer Programming - Add More Congtraints

IP problems, as alluded to above, involve enumerative searches of the feasible region in an effort to
find the optimal 1P solutions. Termination of a direction of search occurs for one of three reasons. 1) a
solution is found; 2) the objective function is found to go below some certain value, or 3) the direction is
found to possess no feasible integer solutions. This section argues that this processis speeded up when the
modeler imposes as many reasonable constraints as possible for defining the feasible and optimal region.
Reasonable means that these constraints are not redundant, each uniquely helping define and reduce the size
of the feasible solution space.

LP agorithms are sendgitive to the number of constraints. Modelers often omit or eliminate
congtraints when it appears the economic actions within the model will make these constraints unnecessary.
However, in IP, it is often desirable to introduce constraints which, while appearing unnecessary, can
greatly decrease solution time. In order to clarify this argument, three cases are cited from our experiences
with the solution of 1P models.
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In the first example, drawn from Danok’s masters thesis (1976), Danok was solving amixed |P
problem of machinery selection. The problem was solved using Benders decomposition, in which the
integer program for machinery selection was solved iteratively in association with a LP problem for
machinery use. Danok solved two versions. In the first, the machinery items were largely unconstrained.
In the second, Danok utilized the amount of machinery bought in the LP solution as a guide in imposing
congtraints on the maximum and minimum amount of types of machinery. Danok constrained the solution
so that no more than 50 percent more machinery could be purchased than that utilized in the optimal LP
solution (i.e., ignoring the integer restrictions). The solution time reduction between the formulations were
dramatic. The model with the extra congtraints solved in less than 10 percent of the computer time. How-
ever, the solutions were identical and far away from the LP derived constraints. Thus, these constraints
greatly reduced the number of solutions which needed to be searched through, permitting great efficiencies
in the solution process. In fact, on the larger Danok problem, the amount of computer time involved was
considerable (over 1,000 seconds per run) and these constraints allowed completion of the research project.

The second example arose in Polito's Ph.D. thesis. Polito was solving a warehouse location type
problem and solved two versions of the problem (again with Benders decomposition). In the first version,
congtraints were not imposed between the total capacity of the plants constructed and the demand. In the
second problem, the capacity of the plants located were required to be greater than or equal to the existing
demand. In thefirst problem, the algorithm solved in more than 350 iterations; in the second problem only

eight iterations were required.

The third example arises in Williams (1978a or 1978b) wherein constraints like

Y, + Y, - Md <0
including the indicator variable d, are replaced with
Y, - Md <0
Y, - Md <0

which has more constraints. The resultant solution took only 10 percent of the solution time.

In all cases the imposition of seemingly obvious constraints, led to great efficiencies in solution
time. Thus, the integer programmer should use constraints to tightly define the feasible region. This
eliminates possible solutions from the enumeration process.

15.7 1P Solutionsand GAM S

The solution of integer programs with GAMS is achieved basically by introducing a new class of
variable declaration statements and by invoking an IP solver. The declaration statement identifies selected
variables to either be BINARY (zero one) or INTEGER. In turn, the model is solved by utilizing a solved
statement which says"USING MIP'. Table 1 shows an example formulation and Table 2 the GAMS input
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string. Thiswill cause GAMS to use the available integer solvers. Currently the code ZOOM is
distributed with the student version, but we do not recommend ZOOM for practical integer programming

problems. Those wishing to solve meaningful problems should use OSL, LAMPS, XA, CPLEX or one of
the other integer solvers.
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Table 15.1.

Maximize 7X, -3X, -10X4
X, -2X,
X, -20X

X;>0 X, > 0integer X;€0,1

IN

IN

Table 15.2. GAMS Input for Example Integer Program

5 POSITIVE VARIABLE X1

6 INTEGER VARIABLE X2

7 BINARY VARIABLE X3

8 VARIABLE 0BJ

9

10 EQUATIONS OBJF
11 X1X2
12 X1X3;
13

14 OBJF.. 7*X1-3*X2-10*X3 =E= OBJ;
15 X1X2.. X1-2*X2 =L=0;

16 X1X3.. X1-20*X3 =L=0;

17

18 MODEL IPTEST /ALL/;
19 SOLVE IPTEST USING MIP MAXIMIZING OBJ;
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Y-AXis

Figure 15.1 Graph of Feasible Integer Points for First LP Problem

X-AXis
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X2

Figure 15.2 Graph of Feasible Integer Points for Second Integer Problem
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X1

Figure 15.3 Mixed Integer Feasible Region
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CHAPTER XVI: INTEGER PROGRAMMING FORMULATIONS

IPisapowerful technique for the formulation of awide variety of problems. This section presents

anumber of common formulations.
16.1 Knapsack - Capital Budgeting Problem

The knapsack problem, also known as the capital budgeting or cargo loading problem, is afamous
IP formulation. The knapsack context refersto a hiker selecting the most valuable items to carry, subject
to aweight or capacity limit. Partial items are not alowed, thus choices are depicted by zero-one variables.
The capital budgeting context involves selection of the most valuable investments from a set of available,
but indivisible, investments subject to limited capital availability. The cargo loading context involves
maximization of cargo value subject to hold capacity and indivisibility restrictions.

The genera problem formulation assuming only one of each item isavailableis
Max VX
i
st. dexj < W
i

X = Oor 1 foradlj
The decision variables indicate whether the j" alternative item is chosen (X;=1) or not (X;=0). Eachitemis

worth v;. The objective function gives the total value of al items chosen. The capacity used by each X; is
d. The constraint requires total capacity use to be less than or equal to the capacity limit (W).
16.1.1 Example
Suppose an individud is preparing to move. Assume atruck is available that can hold at most 250
cubic feet of items. Suppose there are 10 items which can be taken and that their names, volumes and
values are as shown in Table 16.1. The resultant formulation is
Max 17x, + ©5x, + 22¢; + 12x, + 25X + X5 + 15X, + 2IX; + DOXxy + 20X,
st. 70x, + 10x, + 20x, + 20x, + 15x. + 5xg + 120x, + OSXg + 20x, + 20x,, < 250
X, = 0 or 1, for al j
The GAMS formulation is called KNAPSACK. The optimal objective function value equals 128.
The values of the variables and their respective reduced costs are shown in Table 16.2. This solution
indicates that all items except furniture, X, should be taken.
There are a couple of peculiarities in this solution which should be noted. First, the constraint has
65 unitsin dack (250-185) and no shadow price. However, for practical purposes the constraint does have
a shadow price as the X variable would come into the solution if there were 120 more units of capacity,
but dlack isonly 65. Further, note that each of the variables has a non-zero reduced cost. Thisis because

this particular problem was solved with the GAMS version of OSL, a branch and bound type algorithm
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and each of these variables was bounded at one. Thus, they have reduced costs reflecting bounds requiring
the variablesto equal either zero or one. These data are misleading as indicated in the discussion in the
previous chapter on IP shadow prices.

16.1.2 Comments

The knapsack problem has been the subject of considerable theoretical interest and severa
applications (see von Randow; Salkin, 1975a). Armstrong, Sinha, and Zoltners provide a recent
application. The capital budgeting problem context has been extensively studied (Weingartner 1963, 1966,
von Randow). Variants include the cutting stock problem, where one explores the best way to cut up items
such aslogs, sheets of veneer, and plywood, (Eisemann and Golden). Knapsack problems also commonly
appear as subproblems in algorithmic approaches to problems as shown by Williams (1978a) and
Geoffrion and McBride.

The knapsack formulation contains a number of simplifying assumptions. First, the formulation
permits no more than one unit of any item. This assumption could be relaxed by changing from zero-one to
integer variables with constraints on item availability. Second, the value and resource usage of the items
are assumed independent of the mix of items chosen. However, there may be interactions where the value
of the one item isincreased or decreased when certain other items are aso chosen. Thus, one might need to
include formulation features involving multiplication of zero-one variables. Third, capacity availableis
assumed independent of the value of the resource. One could relax this assumption and put in a supply
curve representation.

16.2 War ehouse L ocation

Warehouse location problems are commonly formulated as integer programs. They involve
location of warehouses within a transportation system so as to minimize overall costs. The basic decision
involves tradeoffs between fixed warehouse construction costs and transportation costs. In agriculture, this
formulation has been used in the location of high volume grain handling facilities (Hilger, McCarl and
Uhrig) and agricultural processing facilities (Fuller, Randolph and Klingman; Faminow and Sarhan). The
plant, store and distribution center location problems are closely related (von Randow). A genera

warehouse |location problem formulation is as follows:
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+

Min kZFka * _%:Cikxik EXijij * _Z}jzijzij
i | ]
st. kD(ik + 2, =<S for all i
j
kZij + 2” > D, for all j
1
- _E(ik + _Zij < 0 for al k
[ j
~CAPV, . Y, < 0 for al k
j
kZAmka < b, for all m
V, = 0Oorl, X ij, Zij > 0 for al i, j, k

Thisis an extension of the basic transportation problem containing intermediate shipments (transshipments)
into warehouses from supply points (X;,) and from warehouses to demand points (Y,;). The formulation
also contains fixed cost and new warehouse capacity considerations. The variables in the formulation are:

V, - azero-one indicator variable indicating whether the k™ warehouse is constructed;

X - acontinuous variable indicating the quantity shipped from supply point i to warehouse k;

Y ; - acontinuous variable indicating the quantity shipped from warehouse k to demand point j;

Z;; - acontinuous variable indicating the quantity shipped from supply point i directly to demand

point j.
The problem is also characterized by a number of parameters. F, - the fixed cost associated with
congtruction of the k™ warehouse. This cost should be developed so that it represents the cost incurred
during the period of time represented by the supply and demand constraints; CAP, - the capacity of the k™
warehouse during the time frame leading to the supply and demand quantities; A, - the amount of the m™
configuration constraint used when constructing the k™ warehouse; C;, - the cost of shipping from supply
point i to warehouse k; D; - the cost of shipping from warehouse k to demand point j; E; - the cost of
shipping from supply point i to demand point j; D; - the amount of demand which must be filled at the j
demand point in the time period modeled; S - the amount of supply available at i™ supply point in the time
period modeled; b, - the upper limit on the m™ configuration constraint.

The objective function depicts total cost minimization where total cost includes warehouse
construction plus shipping costs for shipments a) to warehouses, b) from warehouses, and c) directly to
final demand points. The first constraint equation balances outgoing shipments with available supply for a
supply point. The second constraint gives the demand requirements by demand location and requires a
minimum level of incoming shipments from warehouses and supply locations. The third constraint requires
outgoing shipments at a warehouse location not to exceed incoming shipments to that warehouse. The next
congtraints both involve our zero-one warehouse variables imposing prospective warehouse capacity using

the modeling approach in the fixed cost discussion in chapter 15. Outgoing shipments are balanced with
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congtructed warehouse capacity. When the warehouse is not constructed then outgoing shipments must
equal zero. Thus, warehouses can only be used when constructed. The last constraint limits warehouse
congtruction through configuration constraints. Many different types of constraints could be included here,
dependent on the problem setting. An example is given below.

16.2.1 Example

Suppose a firm can construct a warehouse at one of three sites (A,B,C). Currently, the firm has
two supply points and ships to two demand points with annual demand requirements and supply capacity
givenin Table 16.3. Further suppose that the potential warehouses have annual capacity and fixed cost as
shown in Table 16.4. If warehouse B were constructed its annual capacity would be 60, it would cost $720
for the 12 year life or, assuming straight line depreciation, $60 per year. Suppose that the firm has
developed atransport cost matrix as shown in Table 16.5. Finally suppose only one warehouse can be
built.

This leads to the formulation shown in Table 16.6. The objective function minimizes the annua
fixed cost of warehouses plus the annual variable cost of shipping. The constraints impose maximum
supply constraints at two locations, minimum demand constraints at two locations, supply/demand
balances at three warehouses, balances between capacity and warehouse use at three warehouses, and a
congtraint that requires only one of the three warehouses be constructed (i.e., a configuration constraint).
Warehouse 1 capacity is set to 9999 which effectively makes its capacity unlimited if it is constructed. The
GAMS formulation is called WAREHOUS.

In the solution to this model, the objective function value equals 623, and the variable and equation
solutions are shown in Table 16.7. This solution corresponds to the company constructing warehouse C.
The shipment pattern involves shipping 70 units from supply point 2 to warehouse C, 20 units from
warehouse C to demand point 1, and 50 units from C to demand point 2. In addition, 5 units are shipped
directly from supply point 2 to demand point 1 while 50 units are shipped from supply point 1 to demand
point 1. The shadow prices reflect demand at point 1 costing 7 units on the margin and a cost of 5 units at
demand point 2. Additional supply isworth $3 a unit at the first supply point and $0 a unit at the second
supply point.

16.2.2 Comments

Thisformulation is smplified. One could have a number of complications such as cost-volume
relationships, or multiple warehouse alternatives at asite. Those interested in related work and extensions
should see the papers by Geoffrion (1975); Francis and Goldstein; Francis, McGinnis, and White;
McGinnis; Fuller, Randolph, and Klingman; Hilger, McCarl, and Uhrig; or Geoffrion and Graves.

16.3 Traveling Salesman Problem
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Another common IP formulation is the "Traveling Salesman Problem” (Burkard; Bellmore and
Nemhauser). This problem involves developing a minimum cost route for a salesman visiting N cities then
returning home. The basic problem involves selection of aroute visiting al cities which minimizes the tota

travel cost. The machine shop scheduling may aso be formulated as a travelling salesman problem

(Pickard and Queyranne).
The basic problem formulation is much like the assignment problem and is:
Min X XdX;
i
i#
st. XX =1 for &l i
i
i#
XX =1 for al |
|
i#
X. = 0or1l for dl i and j wherei = |

ij
The decision variable (X;;) equals one if the salesman goes from city i to city j, and zero otherwise. The

possihility of moving from any city to itself is precluded. There isaknown cost of moving from city i to
city j (d;). The objective function givesthe total cost of completing the route which will be minimized.
Thefirst constraint states that the salesman must |eave each city once. The second constraint states that
the salesman must enter each city once. All decision variables are restricted to equal either zero or one.
The above formulation is that of the classical assignment problem (Wagner); however, it is not yet
a complete traveling salesman formulation. There is adifficulty that often arises, known as a subtour.
Consider a 5-city problem in which the optimum solution consists of X;,=1, X4=1, X4,=1, X,s=1 and
Xs,=1. Thissolution isfeasible in the above formulation and could be minimum distance. However, it
reflects a digointed trip in which one salesman goes from city 1 to city 2 to city 3 and back to city 1
without visiting cities 4 and 5, while another salesman goes from city 4 to city 5 and back to city 4. This
solution exhibits so-called subtours, digoint loops of a size less than the number of cities. Such subtours
can be of any size involving two, three, four, or any number of cities up to the number in the problem
minus two, athough empirical evidence (cited in Garfinkel and Nemhauser; Bellmore and Nemhauser)
indicates that subtours of more than four or five cities do not appear in practice. The prohibition of
subtours requires additional constraints. The subtours could be eliminated by the imposition of the

following congtraints:
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X. + X. < 1 for dl i and | where i#]

IN
N

for dl i, j and k where i#j=k

X. + Xjk + Xy + X, <3 for dl i, |, k, and L where i#j=k=L
Thefirst set of constraints renders all two-city subtours infeasible enforcing mutual exclusivity between the
variables representing travel from city i to city j and travel from city j to city i. The next constraint set
precludes three city subtours prohibiting travel from i to j then on to k, finally from k back toi. Here only
two of the three activities are allowed in the solution. Similarly, the four-city subtour constraints prevent
one from traveling from city i to city j, thenj tok, and onfromk to L, and from L back to i.

In apractica problem this way of dealing with subtours would produce a very large constraint set.
For example, with 30 cities there would be 870 constraints for the prevention of the two city subtours
alone. In general, constraints would be required precluding subtours from size 2 up through the greatest
integer number not exceeding half the number of cities. Other formulations exist which preclude subtours
in amore compact fashion. Miller, Tucker, and Zemlin show that the following constraints eliminate

subtoursin an N city problem,
U - U + NX. < N - 1i=2 .., N; j=2, ..., N; i#]

i i ij
U 0 i=2, ..., N

A

[\

where new continuous variables (U) are introduced. Dantzig, Fulkerson, and Johnson (1954) give yet
another method.
16.3.1 Example

Consider a salesman that hasto visit six cities. Suppose these cities are separated by the distances
in Table 16.8 and the salesman wants to minimize total distance traveled. The example formulation
appearsin Table 16.9. The objective function minimizes the sum of the distance times zero-one variables
indicating whether the salesman travels between citiesi and j, X;;. Thefirst six constraints require that
each city be left and the next six constraints require that each city be visited. Subtours are prevented by the
last 20 constraints following Miller, Tucker, and Zemlin (containing the 6s in the matrix and 5s on the
right-hand sides). The GAMS formulation is called TRAVEL. The solution to this problem is shown in
Table 16.10.

This solution reflects the traveling salesman traveling 46 miles going from city 1 to city 2, to city
3, to city 6, to city 5, to city 4 and back to city 1, completing aloop. Subtours are not present.
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16.3.2 Comments

This problem has been extensively studied (see reviews by Bellmore and Nemhauser; Golden and
Assad; Laporte and Lawler et. al.). Unfortunately, solving this problem is very difficult because of the
number of possible feasible solutions (e.g., in the six-city problem there are five factorial possible
solutions). Several heuristics have been developed for this problem. It is not recommended that it be
directly solved with an IP agorithm, rather heuristics are usually used. A variant of this problem involves
scheduling problems (Eilon).

16.4 Decreasing Costs

Models may need to depict situations where volume increases lead to either marginal cost decreases
or margina revenue increases. For example such situations would occur when: @) the purchase of
transportation services involves volume discounts, or b) production exhibits positive economies of scale
when cost drops as more units are produced. LP cannot satisfactorily model these situations. A separable
L P formulation would use the cheapest cost activity first ignoring the volume requirements necessary to
incur such acost (i.e., using the activity with lowest transportation cost at less than the required volume
rather than using more expensive transport rate relevant at that lower volume). Thus, another modeling
approach isrequired. One could use the nonlinear form of separable programming, but this would yield
local optimal solutions. Alternatively, a mixed I[P formulation can be used. Thiswill be explained herein.

The basic problem in matrix formis

Max eY - f(2)

st. Y - 3G X, <0
m
Eﬁ\mxm - Z < 0
m
YH, X, < b fordl i
m

Y, X Z >0

m
where Z isthe quantity of input used, f(Z) isthe total cost of acquiring the input which exhibits diminishing
marginal cost (i.e., the per unit cost of Z falls as more is purchased); e is the sale price for a unit of output
(Y); G, isthe quantity of output produced per unit of production activity X, A, isthe amount of the
resource which is used per unit of X,,; and H,,, is the number of units of the i fixed resource which is used
per unit of X,

In this problem the objective function maximizestotal revenue from product sale (eY) lesstota
costs (f(2)). Thefirst constraint balances products sold (YY) with production (= G, X,). The second
constraint balances input usage (= A, X,,) with supply (Z). The third constraint balances resource usage
by production (= H,X,,) with exogenous supply (b). This problem may be reformulated as an |P problem
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by following an approximation point approach.

Max eY - Xz Ry
k

st. Y - 3G X, < 0

m

A X, - X Ry < 0

m k

MH, X, <b for all i

m

R, - (Z - Z )D, <0 for all k
- R+ < -Z7Z.,)D,, < 0 for al k but the last one
Y X « >0 for al m and k
D, =0or1l for al k

k

Thevariablesare Y and X,,, as above, but the Z variable has been replaced with two sets of variables: R,
and D,. The variables R, which are the number of units purchased at cost f '(Z,*); Z* are aset of
approximation points for Z where Z,* = 0; wheref '(Z,*) isthe first derivative of the f(Z) function
evaluated at the approximation point Z,”. While simultaneously the data for D, is a zero-one indicator
variable indicating whether the k™ step has been fully used.

The formulation insures that the proper total cost isincurred, and that the decreasing per unit costs
are only used when the proper quantities are purchased. The last two constraints enforce this restriction,
requiring R, to equa Z, - Z, , before R, can be non-zero (i.e., the k™ increment must be paid for before
the k+1% increment can be purchased). The first three equations are as defined above. Notice that the k™
step variable can be no larger than D, times the difference between Z, and Z,_,. Thus, R, is prevented from
being non-zero unless the indicator variable D, is aso non-zero. However, the last constraint imposes a
relationship between the k™ step variable and the indicator variable for step k+1. Consequently, R, must
equal its maximum value (Z,,, - Z,) if the k+1% indicator is non-zero. Similarly, R, through R,; must
equal their upper limitsin order that R, can be non-zero. Consequently, this only permits input purchases
at the lower cost exhibited under the higher volumes, only if inputs have been purchased at all volumes
previous to those.

16.4.1 Example
Consider a problem in which total cost of the input Z and the production relationships are given by

Max Y - (3-.1252) z
Y - 2X < 0
X - Z < 0
X < 5
Y, X, Z > 0

Suppose we approximate Z at 2, 4, 6, 8 and 10. The formulation becomes
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Max 4Y - 250R, - 200R, - 150R, - 100R, - O0.50R,

<
|
N
X
In

IN

IN

R - 2D

IN

1
R - 2D

IN

R - 2D

IN

R - 2D

IN

R. - 2D

IN

- R + 2D

IN

- R + 2D

IN

- R + 2D

IN

4

o O O O O O o o o o1 o o

- R, + 2D

IN

5

where the variables D, through Dy are zero-one indicator variables and the variables X, Y, and R are
continuous. Note that before R, can be nonzero, the variable D, must be nonzero because of the equation
relating R, and D,. However, if D, isnonzero, R, must be in the solution equaling 2, because of the
equation relating R, and D,. The other constraints also require that D, be one. Consequently, in order to
purchase inputs at the second cost step, the first cost step must be fully utilized. In general for R, to be
non-zero then r, through r,.;, must be in solution at their upper limits. Thus, one must use the higher cost
(lower revenue) activities before the lower cost (higher revenue) activities can be undertaken. The GAMS
formulation is called DECOST. The solution to this problem is given in Table 16.11 and shows that Y =
10, X =5, and Z = 5 based on the r values (R,;=R,=2 and R;=1). Note that the first three indicator
variables arein the basis at 1, and that the last two are in at zero. Thus, the values of the variables R, and
R, must equal their upper limit, and R; is between zero and its upper limit. Inthiscase, itisequal to 1
because of the constraint X < 5.
16.4.2 Comments

This problem depicts minimization of a non-convex phenomena. However, a globa optimum
solution will be found because of the enumerative nature of IP agorithms. The objective function
approximates total revenue minus total cost by accumulating the total cost approximation as the sums of
derivatives at the approximating points times the associated quantities.

16.5 Machinery Selection
IPis often used to formulate investment problems (Weingartner [1963, 1966]). The machinery

selection problem is a common investment problem. In this problem one maximizes profits, trading off the
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annual costs of machinery purchase with the extra profits obtained by having that machinery. A genera

formulation of this problemis

Max - XFY, + > Eijij
k j m
J
st. -Cap, Y, + XA XKim < 0 for &l i and k
j m
YYD Xim < b, for dl n
j m
XG,.Y, < g for dl r
k
Y, isa nonnegative integer, Xim 2 0 for dl j, k, and m

The decision variables are Y, the integer number of units of the k™ type machinery purchased; X;,, the
quantity of the j™ activity produced using the m™ machinery alternative. The parameters of the mode are:
F., the annualized fixed cost of the k™ machinery type; Cap,,, the annual capacity of the k™ machinery type
to supply the i™ resource; G,,, the usage of the r'" machinery restriction when purchasing the k™ machinery
type; C;.,, the per unit net profit of X;,; A, the per unit use by X;,, of the " capacity resource supplied by
purchasing machine k; D,,, the per unit usage of fixed resources of the n" type by X b,, the endowment
of the n™ resource in the year being modeled; and e, the endowment of the r'” machinery restriction.

The objective function maximizes profits from machinery operation less the fixed costs of
acquisition. The first constraint balances the capacity of the machinery purchased with the use of that
capacity. These constraints preclude machinery from being used unless it is purchased. The second
constraint imposes constraints on resources other than machinery. The third constraint imposes
configuration constraints on machinery purchases.

16.5.1 Example

Assume that afarm is considering the purchase of equipment involving a choice of two tractors,
two plows, two discs, two planters and two harvesting units. The working rates and costs are given in
Table 16.12. Time available by period isgiven in Table 16.13. The farm has 600 acres. Machinery
resource calculations are shown in Table 16.14. Yields, prices, and costs are given in Table 16.15.

Three operations are done on the farm: plowing, simultaneous discing and planting, and harvesting;
plowing is done in time periods 1-2; disc-planting in period 2 and harvesting in period 3. 1n addition, when
buying the equipment, one must match the disc and the planter; disc number one an be purchased only with
planter number one and disc number two only with planter number two. The formulationis givenin Table
16.16 and in file MACHSEL. The solution to this IP problem yields an | P objective function of 116,100

when it is solved as an LP its objective function equals 124,301. The values of the solution variables are
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givenin Table 16.17.
16.5.2 Comments

This formulation has been used in agricultural economics. For example see the machinery
selection work by Danok, McCarl, and White (1978, 1980); Clayton and McCarl; or Baker, Dixit, and
McCarl.

16.6 Other Formulations

While several classes of formulations were addressed above, there are numerous other formulations
which could have been included. Here we mention networks, dynamic programming, scheduling, and
combinational problems.

The vast mgjority of network problems are integer by nature. Many of them yield integer solutions
because of the structure of the basis (Wagner, 1969). These types of problems are the assignment,
transportation, transshipment, shortest path, maximal flow, and minimum spanning tree. A general
presentation can be seen in Kennington and Helgeson; Bazaraa, Jarvis and Sherali; or Jensen and Barnes.

A second related class of problems are dynamic programming problems. Many dynamic
programming algorithms involve integer valued variables. Many common IP problems have been cast as
dynamic programming problems; e.g., Nemhauser mentions network, traveling salesmen and scheduling
problems as places where dynamic programming has been applied.

Thereisalso alarge class of integer scheduling problems. One such problem isthe vehicle
scheduling problem where buses, aircraft, or ships are routed to places where items need to be delivered.
Wagner (1969), and Markowitz and Manne give early developments and references to solve this class of
problems. While Assad and Golden give more recent references there have been avast number of machine
scheduling applications involving assembly line balancing, flow shop scheduling, batch sizing, etc. Eilon
reviews this topic, and von Randow gives 13 pages of references. Project scheduling problems have also
been formulated (Davis, Patterson).

Another class of integer problems are the combinational problems, most of which can be
formulated as IP problems. These include network type problems such as maximum flow problems, set
covering, matching problems, weighted matching problems, spanning trees, and traveling salesmen
problems. Many of these problems are classed as very difficult to solve. The book by Papadimitriou and
Steiglitz gives background and formulations.

Finally, we should mention that new applications of IP are developed virtually every day. For
example, von Randow, in a bibliography of studies between 1978 and 1981, gives 130 pages of citations to
IP relating mainly to that time period. Thus, there are many classes of problems that we have not covered

above.
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Table 16.1. Itemsfor the Knapsack Example Problem

Item VVolume Item Vdue
Variable Item Name (Cubic feet) (%
X, Bed and mattress 70 17
X, TV set 10 5
X3 Turntable and records 20 22
X, Armchairs 20 12
Xs Air conditioner 15 25
Xe Garden tools and fencing 5 1
X5 Furniture 120 15
Xg Books 5 21
X Cooking utensils 20 5
X0 Appliances 20 20
Table 16.2. Solution to the Knapsack Example Problem
Obj = 128
Variable Value Reduced Cost
X4 1 17
X, 1 5
X; 1 22
X4 1 12
Xs 1 25
X 1 1
X5 0 15
Xsg 1 21
Xo 1 5
X10 1 20
Constraint Activity Shadow Price
Space 185 0
Table 16.3. Supply/Demand Information for Warehouse L ocation Example
Tota Supply Total Demand
Point Units Point Units
1 50 1 75
2 75 2 50
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Table 16.4. Warehouse Capacities and Costsfor the Warehouse L ocation Example

Warehouse Annual Capacity Fixed Cost/Life ($) 1-Year Cost
A Unlimited 500/10 years $50
B 60 720/12 years $60
C 70 680/10 years $68

Table 16.5. Transport Costs (in $unit) for Warehouse L ocation Example

Shipping Point
Supply Warehouse

1 2 A B C

Warehouse A 1 6 - - -
B 2 3 - - -

C 8 1 - - -

Demand 1 4 7 4 3 5
2 8 6 6 4 3
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Table 16.6. Formulation of the Warehouse L ocation Example Problem
Va Ve Ve| Xin Xig Xic X X X Yar Yao Ym Y2 Ya Ye| Zu Zin Zn Zp| RHS
B

50 60 68 1 2 8 6 3 1 4 6 3 4 5 3 4 8 7 6 Min
1 1 1 1 1 < 75
1 1 1 1 1] < 50
1 1 1 1 1 > 50
1 1 1 1 1] > 75

-1 -1 1 1 < 0

-1 -1 1 1 < 0

-1 -1 1 1 < 0

-9999 1 1 < 0
-60 1 1 < 0

-70 1 1 < 0

1 1 1 < 1
Va, Vi, Ve e (03 Xik, Yy, Z, > 0
for al i,

ik
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Table 16.7. Solution Resultsfor the War ehouse L ocation Example

Obj =623

Variable Vaue Reduced Cost Equation Slack Shadow Price
Va 0 0 1 0 -3.00
Vg 0 2 2 0 0
Ve 1 0 3 0 7.00
X1 0 0 4 0 5.00
Xig 0 2.00 5 0 -4
Xic 0 10.00 6 0 -3.00
Xon 0 2 7 0 -1.00
X 0 0 8 0 -0.05
Xoc 70 0 9 0 -1.00
Y a1 0 1.052 10 0 -1.00
Y a2 0 5.052 11 0 -2
Y 0 0
Yes 0 3.00
Yo 20 0
Ye 50 0
Z, 50 0
Z, 0 6.00
Z, 5 0
Z, 0 1.00
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Table 16.8. Distances Between Citiesfor the Travelling Salesman Problem

copyright Bruce A. McCarl and Thomas H. Spreen

1 2 3 4 5 6
1 -- 11 7 6 8 14
2 11 -- 7 9 12 13
3 7 7 -- 3 7 8
4 6 9 3 -- 4 8
5 8 12 7 4 -- 10
6 14 13 8 8 10 --
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Formulation of the Traveling Salesman Problem

Table 16.9.

X X X X X X X X X X X X X X X X X X X X X X X X X X X X XX

12 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5 6 6 6 6 6 UUUUU

1 2 3 45 2 3 4 5 6

1 3 456 1 2 456 1 2 356 1 2 3 4 6

2 3 4 5 6

Mn11l1 7 6 81411 7 912183 7 7 3 7 8 6 9 3 4 8 812 7 41014 13 8 8 10

AA A A A A A A A A A ODOOOOOODOOOOWOLOLOLOLWOLWLWLWLW0

VIOVEVE VIV VEVE VE VMV VE VE v VE Vv Ve Vv

- —l —l

L B

L B B B |

—

X

16-19

copyright Bruce A. McCarl and Thomas H. Spreen



Table 16.10. Solution to the Travelling Salesman Example

Obj = 46
Variable Vaue Reduced Cost Equation Slack Shadow Price

Xy 1.00 11 Leavel 0 0
Xy 0 7 Leave 2 0 0
X1 0 6 Leave3 0 0
X5 0 8 Leave 4 0 0
X6 0 14 Leave5 0 0
Xy 0 11 Leave 6 0 0
X 1.00 7 Enter 1 0 0
X 0 9 Enter 2 0 0
X 0 12 Enter 3 0 0
Xog 0 13 Enter 4 0 0
Xy 0 7 Enter 5 0 0
Xa 0 7 Enter 6 0 0
Xy 0 3 Subtour 23 4 0
X 0 7 Subtour 24 8 0
X 1.00 8 Subtour 25 7 0
Xu 1.00 6 Subtour 26 0 0
X 0 9 Subtour 32 0 0
X3 0 3 Subtour 34 9 0
X 0 4 Subtour 35 8 0
X 0 8 Subtour 36 7 0
Xe 0 8 Subtour 42 2 0
Xe, 0 12 Subtour 43 1 0
X3 0 7 Subtour 45 4 0
Xy 1.00 4 Subtour 46 3 0
Xse 0 10 Subtour 52 3 0
Xes 0 14 Subtour 53 2 0
Xe 0 13 Subtour 54 0 0
Xes 0 8 Subtour 56 4 0
Xea 0 8 Subtour 62 4 0
Xes 1.00 10 Subtour 63 3 0
U, 0 0 Subtour 64 7 0
U, 1 0 Subtour 65 0 0
U, 4 0

Us 3 0

U 2 0
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Table 16.11. Solution to the Decreasing Costs Example

Objective function = 29.50

Variable Value Reduced Cost Equation ack Shadow Price
Y 10 0 Y balance 0 4.0
X 5 6.5 Z balance 0 15
R, 2 0 R,D, 0 0
R, 2 0 R,D, 0 0
R, 1 0 R;D; 1 0
R, 0 0 R,D, 0 0.5
Rs 0 0 RsDs 0 1.0
D, 1 0 R,D, 0 1.0
D, 1 -2 R,D; 0 05
D, 1 -1 R.D, 1 0
D, 0 1 R,Ds 0 0
D, 0 2
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Table 16.12. Datafor the Machinery Selection Problem

Hrs. of Labor
Annualized Cost/Hour Used/Hr. of Acres
Equipment Fixed Cost of Operation Operation Treated/Hour
Tractor 1 5,000 10.00 1.00 -
Tractor 2 9,000 10.00 1.00 -
Plow 1 1,000 2.00 0.20 5
Plow 2 1,200 2.00 0.20 10°
Disc 1 1,000 1.20 0.10 10°
Disc 2 1,200 1.20 0.10 12"
Planter 1 2,000 3.40 0.10
Planter 2 2,100 3.40 0.22
Harvester 1 1,000 23.0 1.00 3
Harvester 2 12,000 28.0 1.00 4

Requires atractor. Working rates are given for tractor 1; tractor 2 is twice as fast.
Has the same WOI’kIaI’é% rate as that of the disc that the planter is used with.
Uses one hour of tractor time/hour of harvesting.

Table 16.13. Hours Available for the Machinery Selection Problem

Time Period Hours of Labor Hours for Machinery
1 200 160
2 210 180
3 250 200
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Table 16.14. Machinery Usage Computations

Cost/A Hrs. of Hrs. Plow Hrs. Hrs. Disc Harvester Halr_\|/reister
Tractor cre($) Tractor/Ac  Plow  Use/Acre  Plante Planter Disc Used/Acre Used Used/Acre
Operation Used re Used rUsed Use/Acre Used
Plow 1 2.40 0.2 1 0.2 -- -- -- -- -- --
Plow 1 1.20 0.1 2 0.1 -- -- -- -- -- --
Plow 2 1.20 0.1 1 0.1 -- -- -- -- -- --
Plow 2 0.60 0.05 2 0.05 -- -- -- -- -- --
Plant-disc 1 1.46 0.1 -- -- 1 0.1 1 0.1 -- --
Plant-disc 1 122 0.0833 -- -- 2 0.0833 2 0.0833 -- --
Plant-disc 2 0.73 0.05 -- -- 1 0.05 1 0.05 -- --
Plant-disc 2 0.61 0.04167 -- -- 2 0.04107 1 0.0417 -- --
Harvest 1 11 0.333 -- -- -- -- -- -- 1 0.333
Harvest 2 11 0.333 -- -- -- -- -- -- 1 0.333
Harvest 1 9.5 0.25 -- -- -- -- -- -- 2 0.25
Harvest 2 9.5 0.25 -- -- -- -- -- -- 2 0.25
Table 16.15. Yidlds, Prices, and Costs
Non-machinery cost per acre 110
Price per unit of yield 25
Yield per acre 140
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Table 16.16. Formulation of the Machinery Selection Problem

Machinery Use Continuous Variables

Plow with Tractor 1 Plow with Tractor 2 Plant Disc 8 Harvest with
Machinery Acquisition Integer Variables and Plow 1 and Plow 2 and Plow 1 ansPlow 2 Tractor 1 Tractor 2 Tractor 1 Tractor 2
Tractor Plow Planter Disc Harvester in Period in Period in Period in Period Planter Planter Harvester Harvester Joput
Crop Pur-
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
Sales chases
Objectives (max) -5000 -9000 -1000 -1200 -2000 -2100 -1000 -1200 -10000 -12000 - 24 12 12 12 12 0.6 0.6 -1.46 122 -0.73 -0.61 -9.33 -8.35 -9.33 -8.25 25 -110
2.4
Tractor 1 1 -160 2 1 0
2 -180 2 1 1 0833 0
Capacity
3 -200 33 25 0
in Period
Tractor 2 1 -160 1 05 0
2 -180 1 05 05 04167 0
Capacity
3 -200 33 25 0
in Period
Plow 1 1 -160 2 1 0
Capacity
2 -180 2 1 0
in Period
Plow 2 1 -160 1 05 0
Capacity
2 -180 1 05 0
in Period
Capacity 1 -180 1 0.05 0
of
2 -180 0.083 0417 0
Planter
3
Capacity 1 -180 1 0.05 0
of
2 -180 0.083 0417 0
Disc
3
Capacity 1 -200 33 33 0
of Har-
2 -200 25 25 0
vester
Labor 1 24 12 12 06 200
Availale 2 24 12 12 06 12 11 06 055 210
3 5 375 5 375 250
in Period
Plow-Plant Sequencing 1 1 1 1 1 1 1 1 1 1 1 1 0
Plant-Harvest
Sequencing 1 1 1 1 1 1 1 1 0
Land Available 1 1 1 1 1 1 1 1 600
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Mutual Planters
Exclu-

sivity Discs

Link 1-1

Disc-

Planter 2-2

Yield Balance

-140

-140

-140

Input Balance
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Table 16.17.

Sol utiono[)(])r the M achinery Selection Problem

=116,100
Variable Value Reduced Cost Equation Slack Shadow Price
Buy Tractor 1 1 -5,000 Tractor 1 capacity in Period 1 100 0
Buy Tractor 2 0 0 Tractor 1 capacity in Period 2 130 0
Buy Plow 1 0 0 Tractor 1 capacity in Period 3 50 0
Buy Plow 2 1 -1,200 Tractor 2 capacity in Period 1 0 12
Buy Planter 1 0 0 Tractor 2 capactiy in Period 2 0 14.6
Buy Planter 2 1 -3300 Tractor 2 capacity in Period 3 0 22.26
Buy Disc 1 0 0 Plow 1 capacity in Period 1 0 6.25
Buy Disc 2 1 0 Plow 1 capacity in Period 2 0 0
Buy Harvester 1 0 0 Plow 2 capacity in Period 1 100 0
Buy Harvestor 2 1 0 Plow 2 capacity in Period 2 180 0
Plow with Tractor 1 and Plow 1 in Period 1 0 -2.45 Planter 1 capacity 0 0
Plow with Tractor 1 and Plow 1 in Period 2 0 -1.20 Planter 2 capacity 130 0
Plow with Tractor 1 and Plow 2 in Period 1 600 0 Disc 1 0 0
Plow with Tractor 1 and Plow 2 in Period 2 0 0 Disc 2 130 0
Plow with Tractor 2 and Plow 1 in Period 1 0 -1.825 Harvester 1 0 50
Plow with Tractor 2 and Plow 1 in Period 2 0 -1.46 Harvester 2 50 0
Plow with Tractor 2 and Plow 2 in Period 1 0 0 Labor available in Period 1 128 0
Plow with Tractor 2 and Plow 2 in Period 2 0 0.13 Labor available in Period 2 144 0
Plant with Tractor 1 and Planter 1 0 -191 Labor available in Period 3 25 0
Plant with Tractor 1 and Planter 2 600 0 Plow Plant 0 230.533
Plant with Tractor 2 and Planter 1 0 -1.077 Plant Harvester 0 341.75
Plant with Tractor 2 and Planter 2 0 0 Land 0 229.333
Harvest with Tractor 1 and Harvester 1 0 -17.75 One Planter 0 0
Harvest with Tractor 1 and Harvester 2 600 0 One Disc 0 0
Harvest with Tractor 2 and Harvester 1 0 -25.17 Planter 1 to Disc 1 0 0
Harvest with Tractor 2 and Harvester 2 0 -5.565 Planter 2 to Disc 2 0 0
Sell Crop 84,000 0 Yield Balance 0 25
Purchase Inputs 600 0 Input Balance 0 110
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CHAPTER XVII: FIXING IMPROPERLY WORKING MODELS

Empirica models do not always yield acceptable solutions. This chapter contains discussion of

unacceptable solution conditions and techniques for diagnosing the causes of such conditions.
17.1 Unacceptable Solution Conditions

Four cases of improper solutions can arise. First, a solver could fail exhibiting: a) atime, iteration,
or resource limit; b) alack of meaningful progress; or c) areport of numerica difficulties. Second, a
solver may halt identifying that the problem isinfeasible. Third, a solver may halt identifying that the
problem is unbounded. Fourth, the solver may yield an "optimal," but unacceptable solution.

17.1.1 Solver Failure -- Causes and Prevention

When solvers fail because of numerical difficulties or use an unredlistically large amount of
resources to make little progress, the modeler is often in an awkward position. However, several actions
may alleviate the situation.

One should first examine whether the model specification is proper. The section on structural
checking below gives some techniques for examining model structure. In addition traditional input
(commonly called MPS input) based solvers frequently fail because of improper coefficient location
(although GAMS prevents some of these errors). In particular, errors can arise in MPS coefficient
placement or item naming resulting in more than one (duplicate) coefficient being defined for asingle
matrix location. Given our concentration on the GAM S modeling system, procedures for finding duplicate
coefficients will not be discussed. Nevertheless, thisis probably the most common reason why MPS input
based solvers run out of time.

The second reason for solver failure involves degeneracy induced cycling. Apparently, even the
best solvers can become stuck or iterate excessively in the presence of massive degeneracy. Our
experience with such cases indicates one should use an a priori degeneracy resolution scheme as discussed
below. We have always observed reduced solution times with this modification.

Thirdly, a solver may fail citing numerical difficulties, an ill-conditioned basis or alack of
progress. Such events can be caused by model specification errors or more commonly poor scaling. Often
one needs to rescale the model to narrow the disparity between the magnitude of the coefficients. Scaling
techniques are discussed below.

All of the preventative techniques for avoiding solver failures can be used before solving a model.
Modelers should check structure and consider scaling before attempting model solutions. However,
degeneracy resolution should not usually be employed until a problem isidentified.

17.1.2 Unbounded or Infeasible Solutions
Often the applied modeler finds the solver has stopped, indicating that the model isinfeasible or
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unbounded. This situation, often marks the beginning of a difficult exercise directed toward finding the
cause of the infeasibility or unboundedness, particularly when dealing with large models. There are severa
techniques one can use when this occurs. The first involves structura checking to find obvious model
formulation defects. The second and third techniques involve the use of artificial variables and large upper
bounds to find difficulties. Finally one could use the techniques called budgeting and row summing.

17.1.3 Unsatisfactory Optimal Solutions

Unfortunately, optimal solutions can be unrealistic. Discovering an optimal solution means the
problem has a mathematically consistent optimum. However, mathematical consistency does not
necessarily imply real world consistency (Heady and Candler). Usually, unrealistic solutions may be
caused by improper problem specification or assumption violations. Cases arise where the model solution
isimproper because of: @) omitted constraints or variables; b) errors in coefficient estimation; c) algebraic
errors, or d) coefficient placement errors.

Basically, amodel may be judged improper because of incorrect valuation or alocation results.
Valuation difficulties arise from the reduced cost or shadow price information, such items take on values
when primal reduced costs are formed. Allocation difficulties arise when the dlack or decision variable
values are unredlistic. The values of these items are formed through the constraint interactions. Thus, to
diagnose the cause of the unredlistic solution, one investigates either the reduced costs associated with the
nonbasic primal variables or the calculations inherent in the primal constraints. Two techniques are
presented below, one for the investigation of reduced costs, which we call "budgeting”; and ancther for the
reconstruction of the constraint calculations, which we call "row summing."

17.2 Techniquesfor Diagnosing Improper Models

Now suppose we turn our attention to the techniques one might use to alleviate model solution
difficulties. Table 17.1 presents an array of the possible problems and an indication of the techniques one
might use to diagnose such problems.

17.2.1 Smple Structural Checking

There are some simple yet powerful techniques for checking LP formulations, regardless of their
presentation method. These fall into two categories: one numerical and one analytical.
17.2.1.1 Analytical Checking

In the case of analytical tegpigues, cgq?qgjr the problem:

J

st. Ya X, < b foradli

e X. = d fordln

n ] n

Xf X > g, foralm

X, =0 for al |
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Certain values of these parameters can cause the model to: 1) be infeasible, 2) contain a set of
variables that must be zero, 3) contain redundant constraints, and 4) yield an unbounded solution, or 5)
contain variables that are always unattractive. Table 17.2 presents a set of cases where model structures
will guarantee these properties. Suppose we elaborate on one case which leads to each of the five
properties.

A model formulation can cause infeasibility. Suppose in the first constraint, b, isless than zero
and all the a'sin that particular constraint are nonnegative. Obvioudly this constraint causes the model to
beinfeasible, since it isimpossible for the sum of nonnegative numbers to be less than or equal to a
negative number.

Second, it is possible that the constraints require that certain variables be zero. Consider what
happens if in the second constraint the right hand side (d,) equals to zero and dl e;'s are greater than or
equal to zero, then every variable with a nonzero coefficient in that constraint must be zero.

There are a so cases where the model possesses redundant constraints. Suppose b, is positive, but
al a;'s are negative or zero; then, clearly, this constraint will be redundant as the sum of negative numbers
will aways be less than or equa to a positive number.

Checks can also be made for whether the problem is unbounded or contains variables which will
never come into the solution. Consider an activity with a positive objective function coefficient which has
al nonzero g;'s negative, dl zero g;'s and all nonzero f;'s positive. Clearly, then, this variable contributes
revenue but relaxes all constraints. Thiswill be unbounded regardless of the numerical values. Further,
variables may be specified which will never come into the solution. For example, thisis true when ¢ isless
than 0, al nonzero a;'s are greater than 0, &,'s zero, and nonzero f,'s negative.

These particular structural checks allow one to examine the algebraic formulation or its numerical
counterpart. Unfortunately, it is not possible to make simple statements when the constraint coefficients
are of mixed sign. In such cases, one will have to resort to numerical checking. All of the procedures
above have been automated in GAMSCHCK although they can be programmed in GAMS (See McCarl,
1977).
17.2.1.2 Numerical Model Analysis

Another model analysis methodology involves numerical investigation of the equations and
variables. Here, one prints out the equations of amodel (in GAMS by using the OPTION LIMROW and

LIMCOL command) and mentally fixes variables at certain levels, and then examines the relationship of
these variables with other variables by examining the equations. Examples of this are given in the joint
products problem above. Numerical model analysis can aso be carried out by making sure that units are

proper, using the homogeneity of units tests.
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Another numerica technique involves use of a"PICTURE" with which coefficient placement and
signs can be checked. GAMS does not contain PICTURE facilities, so we do not discuss the topic here,
although one is contained in GAMSCHK (see McCarl, 1977).

17.2.2 A Priori Degeneracy Resolution

Degeneracy can cause solversto cycle endlessly making little or no progress. Solvers like MINOS
( Murtaugh and Saunders, 1983) on occasion give messages like "terminating since no progress made in
last 1000 iterations' or "Sorry fellows we seem to be stuck.” Our experience with such cases indicates one
should use an a priori degeneracy resolution scheme adding small numbers to the right hand sides,
especially to those constraints which start out with zero or identical right hand sides. The magnitude of the
small numbers should be specified so that they are not the same for all rows and so that they do not
materially affect the solution. Thus, they might be random or systematically chosen numbers of the order
102 or 10* (although they can be larger or smaller depending on the scaling and purpose of the constraints
asin McCarl, 1977). We have always observed reduced solution times with this modification. OSL
automatically invokes such a procedure.

17.2.3 Altering Units of Constraintsand Variables: Scaling

Scaling is done automatically in a number of algorithms