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APPLIED MATHEMATICAL PROGRAMMING
USING ALGEBRAIC SYSTEMS

Preface

This is yet one more book on mathematical programming in use; thus it is useful to ask: Why

should anyone be interested?   

Mathematical programming is an area in which two separate disciplines have arisen.  First there is

the algorithm and mathematical properties discipline.  People working in this area are interested in the

theoretical and computational properties of mathematical programming solution techniques.  The majority

of mathematical programming related articles, professional journals, and textbooks could be classed into

this discipline.  The second discipline is applied mathematical programmers.  People working in this area

are users of the products developed by those in the first area.  Their fundamental concerns involve problem

formulation, computer specification, solution interpretation and communication with decision makers. 

Their algorithmic and computational concerns frequently reduce to whether the problem can be solved so

that an application can be carried out.  Few books address these topics. 

This book is aimed toward the second group.  Solution methods are discussed only to provide

insight into solution interpretation and to a limited extent insight into solution processes. 

In that setting we feel the book possesses several features which are notable.

1. An orientation toward applied modelers with solution principles covered only as:  a) an aid

to problem solution interpretation (Chapters 3 and 12); and b) an aid in formulating

problems (Chapter 15). 

2. An orientation toward use of the GAMS modeling system (Chapters 5, 12, 15 and 19). 

Material will be presented on GAMS usage from the users perspective which complements

the currently available reference manuals. 

3. An orientation toward algebraic modeling including material on algebraic modeling
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techniques and a discussion of advantages (Chapter 5 in particular and all subsequent

modeling chapters, Appendix 1). 

4. An underlying philosophy that mathematical programming modelers need to address all

aspects of the problem from data to answer.  Thus, procedures for data collection, data

computation, problem formulation, model interpretation, and report creation are discussed

throughout the book.

5. Presentation of sufficient theory to allow a complete course with the applied work related

to the theory.

6. A treatment that spans the Agricultural Economics and Operations Research fields while

being accessible to upper division undergraduates and graduate students. 

7. Discussion oriented around the assumptions of linear programming and their relaxation

(Chapter 1 and Part 2). 

8. A detailed discussion of linear programming duality, including a discussion of how duality

concepts are useful in modeling and interpretation (Chapters 4 and 5). 

9. A modeling discussion which concentrates on models which have been used in application

(with associated references) and/or have great application appeal.  This discussion is

supported by examples which are realistic in terms of problem types and sizes.  

10. Unified coverage of topics either not discussed in other books or which are not

comprehensively, simultaneously covered elsewhere.  Such topics include discussions of: 

typical linear programming models and their use as building blocks in applications

multi year dynamics in linear programming 

linear programming approaches to non linear programming problems 

multi-objective programming 

price endogenous (sector) models 
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risk 

integer programming modeling 

model debugging  

model validation

extensive and current bibliographic citations

11. Unification of the whole treatment with GAMS, including a disk of the book examples. 

CHAPTER I:  INTRODUCTION
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This book is intended to both serve as a reference guide and a text for a course on Applied

Mathematical Programming.  The material presented will concentrate upon conceptual issues, problem

formulation, computerized problem solution, and results interpretation.  Solution algorithms will be treated

only to the extent necessary to interpret solutions and overview events which may occur during the solution

process. 

1.1 Practical Problem Analysis

Problem analysis is by nature an interactive process in which an analyst perceives (or is told about)

a problem; conceptualizes an approach; tries out the approach; revises the approach to better fit the

problem (alternatively terminates the investigation or tries a new approach) implements the approach;

interprets the results; and terminates the inquiry, or transfers the approach to operational personnel.  This

book will explicitly or implicitly deal with these topics under the assumptions that the problem analysis

technique is mathematical programming.

Mathematical programming problem analysis generally have comparative advantage in knowledge

of the problem, not in algorithm development procedures.  Consequently, the problem analyst should be

thoroughly informed on the topics of problem formulation, results interpretation, and model use but in large

part can treat the solution processes as a "black box."  

1.2 Mathematical Programming Approach

Mathematical programming refers to a set of procedures dealing with the analysis of optimization

problems.  Optimization problems are generally those in which a decision maker wishes to optimize some

measure(s) of satisfaction by selecting values for a set of variables.  We will discuss that set of

mathematical programs where the variable values are constrained by conditions external to the problem at



copyright Bruce A. McCarl and Thomas H. Spreen 1-3

Optimize F(X)

Subject To (s.t.) G(X) 0 S1

X 0 S2

hand (for example, constraints on the maximum amount of resources available and/or the minimum amount

of certain items which need to be on hand) and sign restrictions on the variables.  The general mathematical

programming problem we will treat is:

Here X is a vector of decision variables.  The level of X is chosen so that an objective is optimized where

the objective is expressed algebraically as F(X) which is called the objective function.  This objective

function will be maximized or minimized.  However, in setting X, a set of constraints must be obeyed

requiring that functions of the X's behave in some manner.  These constraints are reflected algebraically by

the requirements that: a) G(X) must belong to S1 and b) the variables individually must fall into S2.

The mathematical programming problem encompasses many different types of problems some of

which will be discussed in this book.  In particular, if F(X) and G(X) are linear and the X's are individually

non-negative, then the problem becomes a linear programming problem.  If the X 0 S2 restriction requires

some X's to take on integer values, then this is an integer programming problem.  If G(X) is linear, F(X)

quadratic, and the S2 restrictions are simply non-negativity restrictions, then we have a quadratic

programming problem.  Finally, if F(X) and G(X) are general nonlinear functions with S2 being

nonnegativity conditions, the problem is a nonlinear programming problem.

1.3 Mathematical Programming in Use

Mathematical programming is most often thought of as a technique which decision makers can use

to develop optimal values of the decision variables.  However, there are a considerable number of other

potential usages of mathematical programming.  Furthermore, as we will argue below, numerical usage for
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identification of specific decisions is probably the least common usage in terms of relative frequency.  

Three sets of usages of mathematical programming that we regard as common are:  1) problem

insight construction; 2) numerical usages which involve finding model solutions; and 3) solution algorithm

development and investigation.  We will discuss each of these in turn.

1.3.1 Generating Problem Insight

Mathematical programming forces one to state a problem carefully.  One must define:  a) decision

variables; b) constraints; c) the objective function; d) linkages between variables and constraints that

reflects complementary, supplementary and competitive relationships among variables; and e) consistent

data.  The decision maker is forced to understand the problem interacting with the situation thoroughly,

discovering relevant decision variables and constraining factors.  Frequently, the resultant knowledge

outweighs the value of any solutions and is probably the number one benefit of most mathematical

programming exercises.  

A second insight generating usage of mathematical programming involves analytical investigation

of problems.  While it is not generally acknowledged that mathematical programming is used, it provides

the underlying basis for a large body of microeconomic theory.  Often one sets up, for example, a utility

function to be maximized subject to a budget constraint, then uses mathematical programming results for

the characterization of optimal values.  In turn, it is common to derive theoretical conclusions and state the

assumptions under which those conclusions are valid.  This is probably the second most common usage of

mathematical programming and again is a nonnumerical use.

1.3.2 Numerical Mathematical Programming

Numerical usages fall into four subclasses: 1) prescription of solutions; 2) prediction of

consequences; 3) demonstration of sensitivity; and 4) solution of systems of equations.  The most

commonly thought of application of mathematical programming involves the prescriptive or normative



copyright Bruce A. McCarl and Thomas H. Spreen 1-5

question:  Exactly what decision should be made given a particular specification of objectives, variables,

and constraints?  This is most often perceived as the usage of mathematical programming, but is probably

the least common usage over the universe of models.  In order to understand this assertion, one simply has

to address the question:  "Do you think that many decision makers yield decision making power to a

model?"  Very few circumstances allow this kind of trust.  Most often, models are used for decision

guidance or to predict the consequences of actions.  One should adopt the philosophical position that

models are an abstraction of reality and that an abstraction will yield a solution suggesting a practical

solution, not always one that should be implemented.

 The second numerical mathematical programming usage involves prediction.  Here the model is

assumed to be an adequate depiction of the entity being represented and is used to predict in a conditional

normative setting.  Typically, this occurs in a business setting where the model is used to predict the

consequences of environmental alterations (caused by investments, acquisition of resources, weather

changes, market price conditions, etc.).  Similarly, models are commonly used in government policy

settings to predict the consequences of policy changes.  Models have been used, for example, to analyze the

implications for social benefits of a change in ambient air quality.  Predictive use is probably the most

common numerical usage of mathematical programming. 

The third and next most common numerical usage of mathematical programming is sensitivity

demonstration.  Many Ph.D. theses are done where no one ever tries to implement the solutions, and no one

ever uses the solutions for predictions.  Rather, the model is used to demonstrate what might happen if

certain factors are changed.  Here the model is usually specified with a "realistic" data set, then is used to

demonstrate the implications of alternative input parameter and constraint specifications.

The final numerical use is as a technical device in empirical problems.  Mathematical programs

can be used to develop such things as solutions to large systems of equations, equation fits which minimize



copyright Bruce A. McCarl and Thomas H. Spreen 1-6

absolute deviations, or equation fits which result in all positive or all negative error terms.  In this case, the

ability of modern day solvers to treat problems with thousands of variables and constraints may be called to

use.  For example, a large USDA econometric model was solved for a time using a mathematical

programming solver.

1.3.3 Algorithmic Development

Much of the mathematical programming related effort involves solution algorithm development. 

Formally, this is not a usage, but an enormous amount of work is done here as is evidenced by the many

textbooks treating this topic.  In such a setting the mathematical programming model is used as a vehicle

for solution technique development.  Work is also done on new formulation techniques and their ability to

appropriately capture applied problems. 

1.4 Book Plan

Mathematical programming in application consists, to a large degree, of applied linear

programming.  This book will not neglect that.  Chapters II-X will cover linear solution procedures,

duality, modeling, and advanced modeling, computational issues.  Discussion will then move onto nonlinear

programming covering the general case, then price endogenous programming, risk programs, and integer

programming. 
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CHAPTER II:  LINEAR PROGRAMMING

The most fundamental optimization problem treated in this book is the linear programming (LP)

problem.  In the LP problem, decision variables are chosen so that a linear function of the decision

variables is optimized and a simultaneous set of linear constraints involving the decision variables is

satisfied.

2.1 The Basic LP Problem

An LP problem contains several essential elements.  First, there are decision variables(xj) the level

of which denotes the amount undertaken of the respective unknowns of which there are n ( j=1, 2 ..., n). 

Next is the linear objective function where the total objective value (Z) equals c1x1 + c2x2 + . . . . . + cnxn. 

Here cj is the contribution of each unit of xj to the objective function.  The problem is also subject to

constraints of which there are m.  An algebraic expression for the ith constraint is ai1x1 + ai2x2 +
 . . . .  + ainxn

# bi  (I=1, 2, ..., m) where bi denotes the upper limit or right hand side imposed by the constraint and aij is

the use of the items in the ith constraint by one unit of xj.  The cj, bi, and aij are the data (exogenous

parameters) of the LP model.

Given these definitions, the LP problem is to choose x1, x2, ..., xn so as to
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Max Z ' CX

s.t. AX # b

X $ 0

where C1xn ' c1,c2,...,cn

Xnx1 '

x1

x2

.

.

.
xn

bmx1 '

b1

b2

.

.

.
bm

Amxn '

a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . .

. . . . . .

. . . . . .
am1 am2 . . . amn

Maximize (Max) Z ' c1x1 % c2x2 % ... % cnxn

subject to (s.t.) a11x1 % a12x2 % ... % a1nxn # b1

a21x1 % a22x2 % ... % a2nxn # b2

. .

. .

am1x1 % am2x2 % ... % amnxn # bm

x1 $ 0, x2 $ 0, ..., xn $ 0

This formulation may also be expressed in matrix notation.  

Many variants have been posed of the above problem and applications span a wide variety of

settings.  For example, the basic problem could involve setting up:  a) a livestock diet determining how
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much of each feed stuff to buy so that total diet cost is minimized subject to constraints on minimum and

maximum levels of nutrients; b) a production plan where the firm chooses the profit maximizing level of

production subject to resource (labor and raw materials) constraints; or c) a minimum cost transportation

plan determining the amount of goods to transport across each available route subject to constraints on

supply availability and demand.

2.2 Basic LP Example

For further exposition of the LP problem it is convenient to use an example.  Consequently,

consider the decision problem of Joe's van conversion shop.  Suppose Joe makes custom vans and can

produce either fine or fancy vans.  The decision modeled is how many of each van type to convert this

week.  The number converted this week by van type constitutes the decision variables.  We denote these

variables as xfine and xfancy.  Now suppose Joe can sell fancy vans for $13,000, but to do this he has to buy a

$10,000 plain van and use $1,000 worth of materials leaving a $2,000 profit margin.  Similarly, the profit

margin on fine vans is $1,700.  Joe figures the shop can work on no more than 12 vans in a week.  Joe hires

7 people including himself and operates 8 hours per day, 5 days a week and thus has at most 280 hours of

labor available in a week.  Joe also estimates that a fancy van will take 25 hours of labor, while a fine van

will take 20 hours.  

In order to set up Joe's problem as an LP, we must mathematically express the objective and

constraint functions.  Since the estimated profit per fancy vans is $2,000 per van, then 2,000xfancy is the

total profit from all the fancy vans produced.  Similarly, 1,700xfine is the total profit from fine van

production.  The total profit from all van conversions is 2,000xfancy+ 1,700xfine.  This equation

mathematically describes the total profit consequences of Joe's choice of the decision variables.  Given that

Joe wishes to maximize total profit, his objective is to determine the levels of the decision variables which
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Max Z ' 2,000xfancy % 1,700xfine.

will

This is the objective function of the LP model.

Joe's factory has limited amounts of capacity and labor.  In this case, capacity and labor are

resources which limit the allowable (also called feasible) values of the decision variables.  Since the

decision variables are defined in terms of vans converted in a week, the total vans converted is xfancy + xfine. 

This sum must be less than or equal to the capacity available (12).  Similarly, total labor use is given by

25xfancy + 20xfine which must be less than or equal to the labor available (280).  These two limits are called

constraints.  Finally, it makes no sense to convert a negative number of vans of either type; thus, xfancy and

xfine are restricted to be greater than or equal to zero.  Putting it all together, the LP model of Joe's problem

is to choose the values of xfancy and xfine so as to:

Max Z ' 2,000xfancy % 1,700xfine

s.t. xfancy % xfine # 12

25xfancy % 20xfine # 280

xfancy , xfine $ 0

This is a formulation of Joe's LP problem depicting the decision to be made (i.e. the choice of xfancy

and xfine).  The formulation also identifies the rules, commonly called constraints, by which the decision is

made and the objective which is pursued in setting the decision variables.

2.3 Other Forms of the LP Problem

Not all LP problems will naturally correspond to the above form.  Other legitimate representations

of LP models are:  
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1) Objectives which involves minimize instead of maximize i.e., 

Minimize Z = c1x1 + c2x2 + ... + cnxn.

2) Constraints which are "greater than or equal to" instead of "less than or equal to"; i.e., 

ai1x1 + ai2x2 + ... + ainxn $ b1.

3) Constraints which are strict equalities; i.e., 

ai1x1 + ai2x2 + ... + ainxn = b1.

4) Variables without non-negativity restriction i.e., xj can be unrestricted in sign i.e.,   .xj
<
>

0

5) Variables required to be non-positive i.e., xj # 0.

2.4 Assumptions of LP

LP problems embody seven important assumptions relative to the problem being modeled.  The

first three deal with the appropriateness of the formulation; the last four deal with the mathematical

relationships within the model.

2.4.1 Objective Function Appropriateness

This assumption means that within the formulation the objective function is the sole criteria for

choosing among the feasible values of the decision variables.  Satisfaction of this assumption can often be

difficult as, for example, Joe might base his van conversion plan not only on profit but also on risk

exposure, availability of vacation time, etc.  The risk modeling and multi-objective chapters cover the

relaxation of this assumption.

2.4.2 Decision Variable Appropriateness

A key assumption is that the specification of the decision variables is appropriate.  This

assumption requires that 

a) The decision variables are all fully manipulatable within the feasible region and are under
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the control of the decision maker.

b) All appropriate decision variables have been included in the model.

The nature and relaxation of sub-assumption (a) is discussed in the Advanced modeling

considerations chapter in the "Common Mistakes" section, as is sub-assumption (b).  Sub-assumption © is

also highlighted in Chapters IX and XVI.

2.4.3 Constraint Appropriateness

The third appropriateness assumption involves the constraints.  Again, this is best expressed by

identifying sub-assumptions:

a) The constraints fully identify the bounds placed on the decision variables by resource

availability, technology, the external environment, etc.  Thus, any choice of the decision

variables which simultaneously satisfies all the constraints is admissible.

b) The resources used and/or supplied within any single constraint are homogeneous items

which can be used or supplied by any decision variable appearing in that constraint.

c) Constraints have not been imposed which improperly eliminate admissible values of the

decision variables.

d) The constraints are inviolate.  No considerations involving model variables other than

those included in the model can lead to the relaxation of the constraints.

Relaxations and/or the implications of violating these assumptions are discussed throughout the

text.  

2.4.4 Proportionality

Variables in LP models are assumed to exhibit proportionality.  Proportionality deals with the

contribution per unit of each decision variable to the objective function.  This contribution is assumed

constant and independent of the variable level.  Similarly, the use of each resource per unit of each decision
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variable is assumed constant and independent of variable level.  There are no economies of scale.

For example, in the general LP problem, the net return per unit of xj produced is cj.  If the solution

uses one unit of xj, then cj units of return are earned, and if 100 units are produced, then returns are 100cj. 

Under this assumption, the total contribution of xj to the objective function is always proportional to its

level.

This assumption also applies to resource usage within the constraints.  Joe's labor requirement for

fine vans was 25 hours/van.  If Joe converts one fine van he uses 25 hours of labor.  If he converts 10 fine

vans he uses 250 hours (25*10).  Total labor use from van conversion is always strictly proportional to the

level of vans produced.

Economists encounter several types of problems in which the proportionality assumption is grossly

violated.  In some contexts, product price depends upon the level of production.  Thus, the contribution per

unit of an activity varies with the level of the activity.  Methods to relax the proportionality assumption are

discussed in the nonlinear approximations, price endogenous, and risk chapters.  Another case occurs when

fixed costs are to be modeled.  Suppose there is a fixed cost associated with a variable having any non-zero

value (i.e., a construction cost).  In this case, total cost per unit of production is not constant.  The integer

programming chapter discusses relaxation of this assumption.

2.4.5 Additivity

Additivity deals with the relationships among the decision variables.  Simply put their contributions

to an equation must be additive.  The total value of the objective function equals the sum of the

contributions of each variable to the objective function.  Similarly, total resource use is the sum of the

resource use of each variable.  This requirement rules out the possibility that interaction or multiplicative

terms appear in the objective function or the constraints.

For example, in Joe's van problem, the value of the objective function is 2,000 times the fancy vans
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converted plus 1,700 times the fine vans converted.  Converting fancy vans does not alter the per van net

margin of fine vans and vice versa.  Similarly, total labor use is the sum of the hours of labor required to

convert fancy vans and the hours of labor used to convert fine vans.  Making a lot of one van does not alter

the labor requirement for making the other.

In the general LP formulation, when considering variables xj and xk, the value of the objective

function must always equal cj times xj plus ck times xk.  Using xj does not affect the per unit net return of xk

and vice versa.  Similarly, total resource use of resource I is the sum of aijxj and aikxk.  Using xj does not

alter the resource requirement of xk.  The nonlinear approximation, price endogenous and risk chapters

present methods of relaxing this assumption.

2.4.6 Divisibility

The problem formulation assumes that all decision variables can take on any non-negative value

including fractional ones; (i.e., the decision variables are continuous).  In the Joe's van shop example, 

this means that fractional vans can be converted; e.g., Joe could convert 11.2 fancy vans and 0.8 fine vans.

This assumption is violated when non-integer values of certain decision variables make little sense. 

A decision variable may correspond to the purchase of a tractor or the construction of a building where it is

clear that the variable must take on integer values.  In this case, it is appropriate to use integer

programming.  

2.4.7 Certainty

The certainty assumption requires that the parameters cj, bi, and aij be known constants.  The

optimum solution derived is predicated on perfect knowledge of all the parameter values.  Since all

exogenous factors are assumed to be known and fixed, LP models are sometimes called non-stochastic as

contrasted with models explicitly dealing with stochastic factors.  This assumption gives rise to the term

"deterministic" analysis.
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The exogenous parameters of a LP model are not usually known with certainty.  In fact, they are

usually estimated by statistical techniques.  Thus, after developing a LP model, it is often useful to conduct

sensitivity analysis by varying one of the exogenous parameters and observing the sensitivity of the optimal

solution to that variation.  For example, in the van shop problem the net return per fancy van is $2,000, but

this value depends upon the van cost, the cost of materials and the sale price all of which could be random

variables.  

Considerable research has been directed toward incorporating uncertainty into programming

models.  We devote a chapter to that topic.

CHAPTER III  SOLUTION OF LP PROBLEMS:  A MATRIX ALGEBRA

APPROACH

Linear programming solution has been the subject of many articles and books.  Complete coverage

of LP solution approaches is beyond the scope of this book and is present in many other books.  However,

an understanding of the basic LP solution approach and the resulting properties are of fundamental

importance.  Thus, we cover LP solution principles from a matrix algebra perspective demonstrating the

simplex algorithm and the properties of optimal solutions.  In addition, we cover several practical matters.



copyright Bruce A. McCarl and Thomas H. Spreen 3-2

Max CX

s.t. AX # b

X $ 0

Max CX % OS

s.t. AX % IS ' b

X, S $ 0.

3.1 Matrix Formulation of the Linear Programming Problem

The matrix version of the basic LP problem can be expressed as in the equations below.

Here the term CX is maximized where C is an 1xN vector of profit contributions and X is an Nx1

vector of decision variables.  This maximization is subject to inequality constraints involving M resources

so that A is an MxN matrix giving resource use coefficients by the X's, and b is an Mx1 vector of right

hand side or resource endowments.  We further constrain X to be non-negative in all elements.

It is common to convert the LP inequality system to equalities by adding slack variables.  These

variables account for the difference between the resource endowment (b) and the use of resources by the

variables (AX) at no cost to the objective function.  Thus, define 

S = b - AX 

as the vector of slack variables.   Each slack variable is restricted to be nonnegative thereby insuring that

resource use is always less than or equal to the resource endowment.  One slack variable is added for each

constraint equation.  Rewriting the constraints gives

AX + IS = b,

where I is an M x M identity matrix and S is a Mx1 vector.  Also the slack variables appear in the

objective function with zero coefficients.  Thus, we add an 1xM vector of zero's to the objective function

and conditions constraining the slack variables to be nonnegative.  The resultant augmented LP is
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Max CX

s.t. AX ' b

X $ 0

Max CBXB % CNB XNB

s.t. BXB % ANBXNB ' b

XB , XNB $ 0.

Throughout the rest of this section we redefine the X vector to contain both the original X's and the

slacks.  Similarly, the new C vector will contain the original C along with the zeros for the slacks, and the

new A matrix will contain the original A matrix along with the identity matrix for the slacks.  The resultant

problem is 

3.2 Solving LP's by Matrix Algebra

LP theory (Dantzig(1963); Bazarra, et al.) reveals that a solution to the LP problem will have a set

of potentially nonzero variables equal in number to the number of constraints.  Such a solution is called a

Basic Solution and the associated variables are commonly called Basic Variables.  The other variables are

set to zero and are called the nonbasic variables.  Once the basic variables have been chosen; the X vector

may be partitioned into XB, denoting the vector of the basic variables, and XNB, denoting the vector of the

nonbasic variables.  Subsequently, the problem is partitioned to become

The matrix B is called the Basis Matrix, containing the coefficients of the basic variables as they appear in

the constraints.  ANB contains the coefficients of the nonbasic variables.  Similarly CB and CNB are the

objective function coefficients of the basic and nonbasic variables.

Now suppose we address the solution of this problem via the simplex method.  The simplex

solution approach relies on choosing an initial B matrix, and then interactively making improvements. 
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BXB ' b & ANB XNB.

BXB ' b.

B &1 BXB ' IXB ' B &1 b or XB ' B &1 b.

XB ' B &1 b & '
j,NB

B &1 aj xj

Thus, we need to identify how the solution changes when we change the B matrix.  First, let us look at how

the basic solution variable values change.  If we rewrite the constraint equation as 

Setting the nonbasic variables (XNB) to zero gives

This equation may be solved by premultiplying both sides by the inverse of the basis matrix (assuming non-

singularity) to obtain the solution for the basic variables,

We may also examine what happens when the nonbasic variables are changed from zero.  Multiply both

sides of  the equation including the nonbasic variables by B-1 giving 

XB = B-1 b - B-1 ANB XNB.

This expression gives the values of the basic variables in terms of the basic solution and the nonbasic

 variables.  This is one of the two fundamental equations of LP.  Writing the second term of the equation in

summation form yields

where NB gives the set of nonbasic variables and aj the associated column vectors for the nonbasic

variables xj from the original A matrix.  This equation shows how the values of the basic variables are

altered as the value of nonbasic variables change.  Namely, if all but one ( ) of the nonbasic variables arex0
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XB ' B &1 b & B &1 a0x0

XB ' B &1 b & B &1 a0x0 $ 0.

xBi ( ' (B &1 b)i ( & (B &1 a0)i ( x0 ' 0

x0 ' (B &1 b)i ( / (B &1 a0)i ( , where (B &1 a0)i ( … 0.

x0 ' 6 (B &1b)i / (B &1a0)i > for all i where (B &1a0)i > 0

left equal to zero then this equation becomes

This gives a simultaneous system of equations showing how all of the basic variables are affected by

changes in the value of a nonbasic variable.  Furthermore, since the basic variables must remain non-

negative the solution must satisfy

This equation permits the derivation of a bound on the maximum amount the nonbasic variable  can bex0

changed while the basic variables remain non-negative.  Namely,  may increase until one of the basicx0

variables becomes zero.  Suppose that the first element of XB to become zero is xBi*.  Solving for xBi* gives

where ( )I denotes the ith element of the vector.  Solving for  yieldsx0

This shows the value of  which causes the I*th basic variable to become zero.  Now since  must bex0 x0

nonnegative then we need only consider cases in which a basic variable is decreased by increasing the

nonbasic variable.  This restricts attention to cases where (B-1 )I is positive.  Thus, to preserve non-a0

negativity of all variables, the maximum value of  is x0

The procedure is called the minimum ratio rule of linear programming.  Given the identification of

a nonbasic variable, this rule gives the maximum value the entering variable can take on.  We also know

that if I* is the row where the minimum is attained then the basic variable in that row will become zero. 

Consequently, that variable can leave the basis with  inserted in its place.  Note, if the minimum ratiox0

rule reveals a tie, (i.e., the same minimum ratio occurs in more than one row), then more than one basic



     1 A degenerate solution is defined to be one where at least one basic variable equals zero.
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variable reaches zero at the same time.  In turn, one of the rows where the tie exists is arbitrarily chosen as

I* and the new solution has at least one zero basic variable and is degenerate1.  Also, note that if all the

coefficients of  are zero or negative --  ( )I # 0 -- for all I -- then this would indicate an unboundedx0 B &1a0

solution, if increasing the value of the nonbasic variable increases the objective function, since the variable

does not decrease the value of any basic variables.

Another question is which nonbasic variable should be increased?  Resolution of this question

requires consideration of the objective function.  The objective function, partitioned between the basic and

nonbasic variables, is given by 

Z ' CBXB % CNB XNB

Substituting the XB equation (3.1) yields

Z ' CB (B &1 b & B &1ANB XNB) % CNBXNB

or

Z ' CBB &1 b & CBB &1 ANBXNB % CNB XNB

or

Z ' CB B &1 b & (CBB &1 ANB & CNB)XNB

This is the second fundamental equation of linear programming.  Expressing the second term in summation

notation yields

Z ' CBB &1 b& '
j,NB

(CB B &1 aj & cj)xj.

This expression gives both the current value of the objective function for the basic solution (CBB-1b since

all nonbasic xj equal zero) and how the objective function changes given a change in the value of nonbasic

variables.  Namely, when changing  x0

Z ' CB B &1b & (CB B &1 a0 & c0) x0 .

Since the first term of the equation is equal to the value of the current objective function, ( ), thenZ̄
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it can be rewritten as

Z ' Z & (CB B &1 a0 & c0)X0 ,.

For maximization problems, the objective value will increase for any entering nonbasic variable if

its term, CBB-1  - , is negative.   The criterion that is most commonly used to determine which variablea0 c0

to enter is:  select the nonbasic variable that increases the value of objective function the most per unit of

the variable entered.  Thus, we choose the variable to enter as that variable x0 such that the value of CBB-

1  -  is most negative.  This is the simplex criterion rule of linear programming and the term CBB-1  -a0 c0 a0

 is called the reduced cost.  If there are no variables with negative values of CBB-1  -  then thec0 a0 c0

solution cannot be improved on and is optimal.  However, if a variable is identified by this rule then it

should be entered into the basis.  Since the basis always has a number of variables equal to the number of

constraints, then to put in a new variable one of the old basic variables must be removed.  The variable to

remove is that basic variable which becomes zero first as determined by the minimum ratio rule.  This

criteria guarantees the non-negativity condition is maintained providing the initial basis is non-negative. 

These results give the fundamental equations behind the most popular method for solving LP problems

which is the simplex algorithm.  (Karmarkar presents an alternative method which is just coming into use.)

3.2.1 The Simplex Algorithm

Formally, the matrix algebra version of the simplex algorithm (assuming that an initial feasible

invertible basis has been established) for a maximization problem follows the steps:

1) Select an initial feasible basis B; commonly this is composed of all slack variables and is the

identity matrix.

2) Calculate the Basis inverse (B-1).

3) Calculate CBB-1aj - cj for the nonbasic variables and identify the entering variable as the

variable which yields the most negative value of that calculation; denote that variable as ; ifx0

there are none, go to step 6.
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Min
i

(B &1 b)i / (B &1 a0)i where (B &1 a0)i > 0

C ' 2000 1700 0 0 b '
12

280

A '
1 1 1 0

25 20 0 1
XB '

S1

S2

XNB '

Xfancy

Xfine

4) Calculate the minimum ratio rule.

Denote the row where the minimum ratio occurs as row I*; if there are no rows with

 then go to step 7.(B &1a0)i >0

5) Remove the variable that is basic in row I* by replacing the variable in the I*th column of the

basis matrix with column  and recalculate the basis inverse.  Go to step 3.a0

6) The solution is optimal.  The optimal variable values equal B-1b for the basic variables and

zero for the nonbasic variables.  The optimal reduced costs are CBB-1aj - cj (also commonly

called   Zj - cj).  The optimal value of the objective function is CBB-1b. Terminate.

7) The problem is unbounded.  Terminate.

3.2.2 Example

Suppose we solve Joe's van conversion problem from Chapter II.  After adding slacks that 

problem becomes

Max 2000Xfancy % 1700Xfine % 0s1 % 0s2

s.t. Xfancy % Xfine % s1 ' 12

25Xfancy % 20Xfine % s2 ' 280

Now suppose we choose s1 and s2 to be in the initial basis.  Thus, initially
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CB ' 0 0 CNB ' 2000 1700

B '
1 0

0 1
ANB '

1 1

25 20

B &1 '
1 0

0 1

Now using criterion for selecting the entering variables (CB B-1 aNB - CNB):

CBB &1ANB&CNB ' &2000 &1700

Taking the variable associated with the most negative value (-2000) from this calculation indicates the first

nonbasic variable Xfancy, should enter.  Computation of the minimum ratio rule requires the associated B-1a1

and B-1b

B &1a1 '
1 0
0 1

1
25

'
1
25

.XB ' B &1b '
12

280

Using the criterion for leaving variable

Min
i

(B &1b)i/(B
&1a1)i ' Min

12/1
280/25

'
12

11.2
' 11.2 Y i ( ' 2

In this case, the minimum ratio occurs in row 2.  Thus, we replace the second basic variable, s2, with Xfancy. 

At this point, the new basic and nonbasic items become

XB '
s1

Xfancy
XNB '

Xfine

s2
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B &1
1 '

1 &1/25
0 1/25

CBB &1ANB&CNB ' 0 2000
1 &1/25
0 1/25

1 0
20 1

& 1700 0 ' &100 80

B &1
1 a2 '

1 &1/25
0 1/25

1
20

'
1/5
4/5

, B &1
1 b '

0.8
11.2

B &1 '
5

&4
&1/5
1/5

CB ' 0 2000 CNB ' 1700 0

B '
1 1
0 25

ANB '
1 0

20 1

and the new basis inverse is

Recomputing the reduced costs for the nonbasic variables Xfine, and s2 gives

Observe that the procedure implies Xfine should enter this basis.  The coefficients for the minimum ratio rule

are

The minimum ratio rule computation yields

Min
0.8/ (1/5)

11.2/ (4/5)
'

4
14

' 4 Y i ( ' 1

In the current basis, s1 is the basic variable associated with row 1.  Thus, replace s1 with Xfine.  The 

new basis vector is  [Xfine Xfancy] and the basic matrix is now

B'
1 1

20 25

In turn the basis inverse becomes

The resultant reduced costs are
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CBB &1ANB & CNB ' 1700 2000
5 &1/5
&4 1/5

1 0
0 1

& 0 0 ' 500 60

XB '
Xfine

Xfancy
' B &1

2 b '
5 &1/5
&4 1/5

12
280

'
4
8

XB ' B &1b & '
j,NB

B &1ajxj

Z ' CBB &1b & '
j,NB

(CBB &1aj & cj)xj.

Since all of these are greater than zero, this solution is optimal.  In this optimal solution

Z = CBXB = 22800

CBB-1aj - cj =   j 0 NB0 0 500 60

This method may be expanded to handle difficulties with finding the initial nonnegative basis using

either the Phase I/Phase II or BIG M methods discussed below.

3.3 Solutions and Their Interpretation

LP solutions arise and are composed of a number of elements.  In this section we discuss general

solution interpretation, common solver solution format and contents, special solution cases and sensitivity

analysis.

3.3.1 General Solution Interpretation

The two fundamental equations developed in section 3.1 may be utilized to interpret the LP solution

information.  The first (3.1) shows how the basic variables change as nonbasic variables are changed, 

and the second (3.2) give the associated change in the objective function when a nonbasic variable is changed

Suppose we assume that an optimal basic solution has been found and that B and B-1 are the associated basis

and basis inverse.  Now suppose we consider changing the constraint right hand sides.  The implications of
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such a change for the solution information may be explored using calculus.   Differentiating the above

equations with respect to the right hand side b yields

MZ
Mb

' CBB &1

MXB

Mb
' B &1

These results indicate that CBB-1 is the expected rate of change in the objective function when the right hand

sides are changed.  The values CBB-1 are called the shadow prices and give estimates of the marginal values of

the resources (later they will also be called the Dual Variables or Dual Solution).  Similarly, B-1 gives the

expected rate of change in the basic variables when resources are changed.  Thus when the first right hand side

is changed, the basic variables change at the rate given by the first column within the basis inverse; i.e., the

first variable changes at rate (B-1)11, the second at (B-1)21 and so on.

Other results may be derived regarding changes in nonbasic variables.  Partially differentiating the

objective function equation with respect to a nonbasic variable yields

MZ
Mxj

' &(CBB &1aj & cj) j,NB

This shows that the expected marginal cost of increasing a nonbasic variable equals the negative of CBB-1aj - cj

, a consequence the  CBB-1aj - cj term is usually called reduced cost.  The marginal effect of changes in the

nonbasic variables on the basic variables is obtained by differentiating.  This yields

MXB

Mxj

' &B &1aj j,NB

which shows that the marginal effect of the nonbasic variables on the basic variable is minus B-1aj.  The B-1

constitutes a translation from the original resource use space (i.e., aj) into the basic variables space and tells us

how many units of each basic variable are removed with a marginal change in the nonbasic variable.  We can

also use these results to further interpret the  equation.  The marginal revenue due to increasing a nonMZ/Mxj

basic variable is equal to its direct revenue (cj the objective function coefficient) less the value of the basic

variables (CB) times the amount of the basic variables diverted (B-1aj).  Thus, this equation takes into account
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MZ
Mb

' CBB & 1 ' [1700 2000] 5 &1/5
&4 1/5 ' [500 60]

MXB

Mb
' B & 1 '

5 &1/5
&4 1/5

MZ
MXNB

' & (CBB & 1ANB& CNB) ' & [1700 2000] 5 &1/5
&4 1/5

1 0
0 1 & [0 0] ' [&500 &61]

MXB

MXNB

' &B & 1aNB ' &
5 &1/5
&4 1/5

1 0
0 1 '

&5 1/5
4 &1/5

both the direct effect from increasing xj plus the substitution effect for the basic variables.

3.3.2 Examples of Solution Interpretation

This set of general interpretations may be applied to the Joe's Van example above.  The appropriate

mathematical expressions for each of the four items are as follows.

Note the first expression, which gives the partial of Z with respect to b, tells how the objective function

changes when the right hand sides change.  Thus, if the capacity limit was changed upward from 12, one

would expect the objective function to increase $500 per unit.  Similarly if the second right hand side or the

labor limit was increased upwards from 280 then one would expect a return of $60 per hour.  The second

expression indicates the anticipated change in the values of the basic variables when the right hand sides are

changed; the basic variables in the model are arranged with Xfine being first and Xfancy being second.  The first

column of the basis inverse corresponds to what happens if the van capacity right hand side is changed;

whereas, the second column corresponds to what happens if the labor right hand side is changed.  Thus, if

capacity was expanded to 13, one would expect to produce 5 more fine vans and 4 less fancy vans.  Similarly,

if labor was expanded, the number of fine vans would decrease by 1/5 per unit and the number of fancy vans

would increase by 1/5.  The particular signs of these tradeoffs are caused by the original data.  Fancy vans use

more labor then fine vans.  Thus, when capacity is expanded, more fine vans are made since they use labor

more intensively while, if labor is increased, one makes more fancy vans.  
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Now let us examine the effects of changes on the objective function when the nonbasic variables are

altered.  In this problem we have two nonbasic variables which are the slack variables for the two resources. 

The effect of increasing the nonbasics is a $500 decrease if we increase slack capacity, and a $60 decrease if

we increase slack labor.  This is exactly the opposite of the resource values discussed above, since the

consequence of increasing the slacks is the same as that of decreasing the resource endowments.

The interpretation of the basis inverse also allows us to get further information about the interpretation

of the change in the objective function when the right hand sides have changed.  Namely, if changing capacity

causes five more fine vans to be produced (each worth $1700, leading to a $8500 increase but, four less fancy

vans worth $8000) the net effect then is a $500 increase which equals the shadow price.  Similarly, the labor

change causes $400 more worth of fancy vans to be produced but $340 less fine vans for a net value of $60. 

Overall, this shows an important property of linear programming.  The optimal solution information contains

information about how items substitute.  This substitution information is driven by the relative uses of the

constraint resources by each of the alternative activities.  This is true in more complex linear programming

solutions.  

3.3.3 Finding Limits of Interpretation

The above interpretations only hold when the basis remains feasible and optimal.  Ranging analysis is

the most widely utilized tool for analyzing how much a linear program can be altered without changing the

interpretation of the solution.  Ranging analysis deals with the question:  what is the range of values for a

particular parameter for which the current solution remains optimal?   Ranging analysis of right-hand-side (bi)

and objective function coefficients (cj) is common; many computer programs available to solve LP problems

have options to conduct ranging analyses although GAMS does not easily support such features (See chapter

19 for details).   

3.3.3.1 Ranging Right-Hand-Sides
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XB ' B &1 bnew ' B &1 (bold % 2r) ' B &1 bold % 2B &1r

Z ' CBB &1 bnew ' CB B &1 (bold % 2r) ' CB B &1 bold % 2CB B &1r

XB ' B &1bnew ' B &1bold % 2B &1r $ 0

2 $ &
(B &1 bold)i

(B &1 r)i

, where (B &1 r)i > 0

Let us study what happens if we alter the right hand side (RHS).  To do this let us write the new RHS

in terms of the old RHS, the size of the change and a direction of change, 

bnew = bold + 2r

where bnew is the new RHS, bold is the old RHS, 2 is a scalar giving the magnitude of the change and r is the

direction of change.  Given an r vector, the resultant values for the basic variables and objective function are 

while   is unchanged.  The net effect is that the new solution levels are equal to the old solutionCBB &1aj&cj

levels plus 2B-1r and the new objective function is the old one plus 2CB B-1 r.  For the basis to still hold the

basic variables must remain nonnegative as must the reduced costs (CBB-1aj - cj).  However, since the reduced

costs are unaltered we must only worry about the basic variables.  Thus the condition for XB can be written

with non-negativity imposed

and merits further examination in terms of the admissible value of 2.

The above expression gives a simultaneous set of conditions for each basic variable for which one can

solve those conditions.  In that case, one gets two cases which arise across the set of conditions depending on

the sign of individual elements in B-1r.
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2 # &
(B &1 bold)i

(B &1 r)i

, where (B &1 r)i < 0

r '

0
.
.
.
0
1
0
.
.
.
0

7 i th element

bnew '
12

280
% 2

1

0
'

12 % 2

280

and

much as in the row minimum rule where positive values of B-1r limit how negative 2 can be and negative

numbers limit how positive 2 can become.  This result shows the range over which  2 can be altered with the

basis remaining optimal.

Example

Suppose in the Joe's van factory example we wished to change the first right hand side. 

Ordinarily, if one wishes to change the ith RHS, then r will be a vector with all zeros except for a one

in the ith position, as illustrated below

Thus

The resultant values of XB becomes
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XBnew
'

4

8
% 2

5 &1/5

&4 1/5

1

0

'
4

8
% 2

5

&4
$ 0

&.8 '
&4
5

# 2 # &8
&4

' 2

bnew '
12

280
% 2

1

40
'

12 % 2

280 % 40

Cnew ' Cold % (T

which implies

Therefore the first right hand side can be changed up by 2 or down by 0.8 without the basis changing.  Note

that during this alteration the solution (B-1 b) does change, but B-1 does not.  Furthermore, this gives a range of

values for b1 for which the marginal value of the resource (CBB-1) remains the same.  

This approach also encompasses a generalization of the RHS ranging problem.  Namely, suppose we

wish to alter several RHS's at the same time.  In this case, the change vector (r) does not have one entry but

rather several.  For example, suppose in Joe's van that Joe will add both capacity and an employee.  In that

case the change vector would look like the following: 

3.3.3.2 Ranging Objective Function Coefficients

The analysis of ranging objective function coefficients is conceptually similar to RHS ranging.  We

seek to answer the question:  what is the range of values for a particular objective function coefficient for

which the current basis is optimal? 

To examine this question, write the new objective function as the old objective function plus 

(, which is a change magnitude, times T which is a direction of change vector.
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Simultaneously, one has to write an expression for the objective function coefficients of the basic variables

CBnew ' CBold % (TB

where TB gives the way the CB's are altered.  Subsequently, one can reexpress the restriction that the reduced 

cost values must be nonnegative as

(CB B &1aj & cj)new ' CBnewB &1aj & cjnew $ 0

which reduces to

(CBB &1aj & cj)new ' (CBB &1aj & cj)old % ((TBB &1aj & Tj) $ 0

In turn, we discover for nonbasic variables

( # CB B &1aj & cj

while for basic variables

( #
&(CB B &1aj & cj)old

(TB B &1 aj & Tj)
, where (TBB &1 aj & Tj) < 0.

( $
& (CB B &1aj & cj)

(TBB &1 aj & Tj)
, where (TBB &1aj&Tj) > 0

Example

Suppose in our example problem we want to alter the objective function on Xfancy so it equals

 2,000 + (.  The setup then is

Cnew ' 2000 1700 0 0 % ( 1 0 0 0

and

TB ' 0 1

so - Cnew for the nonbasics equalsCBnew
B &1A
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500 60 % ( 0 1
5 &1/5

&4 1/5

1 0

0 1
& 0 0 ' 500 60 % (&4 1/5 $ 0

Max Z ' CX

s.t. ĀX ' b

X $ 0

which implies -300 # ( # 125 or that the basis is optimal for any objective function value for Xfancy between

2125 and 1700.  This shows a range of prices for Xfancy for which its optimal level is constant. 

3.3.3.3 Changes in the Technical Coefficient Matrix

The above analysis examined changes in the objective function coefficients and right hand sides.  It 

is possible that the technical coefficients of several decision variables may be simultaneously varied.  This can

be done simply if all the variables are nonbasic.  Here we examine incremental changes in the constraint

matrix.  For example, a farmer might purchase a new piece of equipment which alters the labor requirements

over several crop enterprises which use that equipment.  In this section, procedures which allow analysis of

simultaneous incremental changes in the constraint matrix are presented. 

Consider a linear programming problem

where the matrix of the technical coefficients is given by

Ā ' A % M

where , A, and M are assumed to be mxn matrices.  Suppose the matrix M indicates a set simultaneousĀ

changes to be made in A and that the problem solution is nondegenerate, possessing an unique optimal

solution.  Then the expected change in the optimal value of the objective function given M is

Znew - Zold = -U*MX*



copyright Bruce A. McCarl and Thomas H. Spreen 3-20

X ( ' B &1b '
4
8

U ( ' CBB &1 ' 500 60

M '
0 0

2 2
.

where X* and U* are the optimal decision variable values (B-1 b) and shadow prices ( CBB-1) for the unaltered

original problem. 

The equation is an approximation which is exact when the basis does not change.  See Freund(1985)

for its derivation and further discussion.  Intuitively the equation can be explained as follows:  since M gives

the per unit change in the resource use by the variables, then MX * gives the change in the resources used and

U*MX* then gives an approximation of the value of this change.  Further, if M is positive, then more resources

are used and the Z value should go down so a minus is used.  McCarl, et al., (1990)  have investigated the

predictive power of this equation and conclude it is a good approximation for the case they examined.

Illustrative Example

To illustrate the procedure outlined in the preceding section, consider the Joe's van shop model and 

suppose we wish to consider the effect of an equal change in the labor coefficients.  For a change equal 2, the

problem becomes

Max Z(2) ' 2000Xfancy % 1700Xfine

s.t. Xfancy % Xfine % S1 ' 12

(25 % 2)Xfancy % (20 % 2)Xfine % S2 ' 280

Xfancy , Xfine , S1 , S2 $ 0

For no change ( ), the optimal solution to this problem is2 ' 0

with the optimal value of the objective function equal to 22,800, our change matrix in this case is 
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Znew & Zold ' &U (MX (

' &500 60
0 0

2 2

4

8
' &7202

Max Z ' 3x1 % 2x2 % 0.5x3 (ZROW)

x1 % x2 % x3 # 10 (CONSTRAIN 1)

x1 & x2 # 3 (CONSTRAIN 2)

x1, x2 $ 0 .

Thus, the change in the value of the objective function is given by

Suppose the labor requirement is reduced by 1 hour for both vans so that 2 = -1, then the anticipated

increase in the objective function that would result from using the new machine is

)Z = -U*MX* = 720

a resolution of the revised problem shows the objective function changes by 720.

3.3.4 Finding the Solution

As shown above, the linear programming solution contains a lot of information relative to the ways

the objective function and basic variables change given changes in parameters.  However, not all this

information is included in an optimal solution as reported by modeling systems such as GAMS.  Consider the

following problem

The GAMS solution information for this problem appears in Table 3.1.  The optimal objective function value

equals 26.5.  Then GAMS gives information on the equations.  For this problem, there are 3 equations as

named in the parenthetical statements above.  For each equation information is given on the lower limit

(labeled LOWER), value of AX* (labeled LEVEL), upper limit (labeled UPPER), and shadow price CBB-1

(labeled MARGINAL).  The objective function row (ZROW) does not contain interesting information.  The

constraint equations show there is a) no lower bound on the first equation (there would be if it were $) b) the
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left hand side equals 10 (AX*) and c) the right hand side is 10 (UPPER) while the shadow price is 2.5

(MARGINAL).  Similar information is present for the second equation.

Turning to the variables, the solution table gives the variable name, lower bound (LOWER), optimal

level (LEVEL), upperbound (UPPER) and reduced cost (MARGINAL).  The solution shows x1 = 6.5 and x2 =

3.5 while the cost of forcing x3 into the solution is estimated to be $2.00 per unit.  We also see the objective

function variable (Z) equals 26.5.  The solution information also indicates if an unbounded or infeasible

solution arises.

GAMS output does not provide access to the B-1 or B-1aj matrices.  This is a mixed blessing.  A 1000

row model would have quite large B-1 and B-1aj matrices, but there are cases where it would be nice to have

some of the information.  None of the GAMS solvers provide access to this data.

3.3.5 Alternative Optimal and Degenerate Cases

Linear programming does not always yield a unique primal solution or resource valuation.  Non-

unique solutions occur when the model solution exhibits degeneracy and/or an alternative optimal.  

Degeneracy occurs when one or more of the basic variables are equal to zero.  Degeneracy is a

consequence of constraints which are redundant in terms of their coefficients for the basic variables. 

Mathematically, given a problem with M rows and N original variables, and M slacks, degeneracy occurs

when there are more than N original variables plus slacks that equal zero with less than M of the original

variables and slacks being non-zero.

Most of the discussion in LP texts regarding degeneracy involves whether or not degeneracy makes the

problem harder to solve and most texts conclude it does not.  Degeneracy also has important implications for

resource valuation.  Consider for example the following problem:
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Max 100X1 % 75X2

X1 # 50

X2 # 50

X1 % X2 # 100

The solution to this problem is degenerate because the third constraint is redundant to the first two.  Upon

application of the simplex algorithm, one finds in the second iteration that the variable X2 can be entered in 

place of the slack variable from either the second or third rows.  If X2 is brought into the basis in place of the

second slack, the shadow prices determined are (u1, u2, u3) = (100, 75, 0).  If X2 is brought into the basis in

place of the third slack, the value of the shadow prices are (u1, u2, u3) = (25, 0, 75).  These differ depending on

whether the second or third slack variable is in the basis at a value of zero.  Thus, the solution is degenerate,

since a variable in the basis (one of the slacks) is equal to zero (given three constraints there would be three

non-zero variables in a non-degenerate solution).  The alternative sets of resource values may cause difficulty

in the solution interpretation process.   For example, under the first case, one would interpret the value of the

resource in the second constraint as $75, whereas in the second case it would interpret nominally as $0.  Here

the shadow prices have a direction and magnitude as elaborated in McCarl (1977) (this has been shown

numerous times, see Drynan or Gal, Kruse, and Zornig.).  Note that decreasing the RHS of the first constraint

from 100 to 99 would result in a change in the objective function of 100 as predicted by the first shadow price

set, whereas increasing it from 100 to 101 would result in a $25 increase as predicted by the first shadow price

set.  Thus, both sets of shadow prices are valid.  The degenerate solutions imply multiple sets of resource

valuation information with any one set potentially misleading.  Both McCarl (1977) and Paris discuss

approaches which may be undertaken in 

such a case.  The underlying problem is that some of the right hand side ranges are zero, thus the basis will
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Max 25X1 % 50X2

X1 % 2X2 # 100

Max 3X1 & X2

s.t. X1 % X2 # 15

X1 # 10

X2 $ 1

change for any right hand side alterations in one direction. 

Another possibility in the simplex algorithm is the case of alternate optimal.  An alternative optimal

occurs when at least one of the nonbasic variables has a zero reduced cost; i.e., CBB-1aj - cj for some j 0 NB

equal to zero.  Thus, one could pivot, or bring that particular variable in the solution replacing one of the basic

variables without changing the optimal objective function value.  Alternative optimals also imply that the

reduced cost of more than M variables in a problem with M constraints are equal to zero.  Consider the

following problem:

In this problem the optimal solution may consist of either X1 = 100 or X2 = 50 with equal objective function

values one or the other of these variables will have zero reduced cost at optimality.  Alternative optimals may

cause difficulty to the applied modeler as there is more than one answer which is optimal for the problem. 

Paris (1981, 1991); McCarl et al. (1977); McCarl and Nelson, and Burton et al., discuss this issue further.

3.3.6 Finding Shadow Prices for Bounds on Variables

Linear programming codes impose upper and lower bounds on individual variables in a special way. 

Many modelers do not understand where upper or lower bound related shadow prices appear.  An example of

a problem with upper and lower bounds is given below.

The second constraint imposes an upper bound on X1, i.e., X1 # 10, while the third constraint, X2 $ 1, is a
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lower bound on X2.  Most LP algorithms allow one to specify these particular restrictions as either constraints

or bounds.  Solutions from LP codes under both are shown in Table 3.2.

In the first solution the model has three constraints, but in the second solution the model has only one

constraint with the individual constraints on X1 and X2 imposed as bounds.  Note that in the first solution there

are shadow prices associated with constraints two and three.  However, this information does not appear in the

equation section of the second solution table.  A closer examination indicates that while X1 and X2 are non-

zero in the optimal solution, they also have reduced costs.  Variables having both a non-zero value and a non-

zero reduced cost are seemingly not in accordance with the basic/nonbasic variable distinction.  However, the

bounds have been treated implicitly.  Variables are transformed so that inside the algorithm they are replaced

by differences from their bounds and thus a nonbasic zero value can indicate the variable equals its bound. 

Thus, in general, the shadow prices on the bounds are contained within the reduced cost section of the column

solution.  In the example above the reduced costs show the shadow price on the lower bound of X2 is 1 and the

shadow price on the upper bound of X1 is -3.  Notice these are equal to the negative of the shadow prices from

the solution when the bounds are treated as constraints.

One basic advantage of considering the upper and lower limits on variables as bounds rather than

constraints is the smaller number of rows which are required.

3.4 Further Details on the Simplex Method

The simplex method as presented above is rather idealistic avoiding a number of difficulties.  Here we

present additional details regarding the basis in use, finding an initial nonnegative basis and some comments on

the real LP solution method.
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B &1
new ' PB &1

old

a (

0 ' B &1a0.

Pi(i( ' %1/a (

i0

Pki( ' a (

k0/a
(

i0 , k…i (

3.4.1 Updating the Basis Inverse

In step 5 of the matrix simplex method the basis inverse needs to be changed to reflect the replacement

of one column in the basis with another.  This can be done interactively using the so-called product form of the

inverse (Hadley(1962)).  In using this procedure the revised basis inverse (B-1 ) is the old basis inverse (B-1)

times an elementary pivot matrix (P), i.e., 

This pivot matrix is formed by replacing the I*th (where one is pivoting in row I*) column of an identity matrix

with elements derived from the column associated with the entering variable.  Namely, suppose the entering

variable column updated by the current basis inverse has elements

then the elements of the elementary pivot matrix are

Suppose we update the inverse in the Joe's van example problem using product form of the inverse.  In the first

pivot, after Xfancy has been identified to enter the problem in row 2, then we replace the second column in an

identity matrix with a column with one over the pivot element (the element in the second row of B-1a0 

divided by the pivot element elsewhere.  Since B-1a0 equals , the pivot matrix P1 is 
1

25

P1 '
1 &1/25

0 1/25
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B &1
1 ' P1B

&1
0 '

1 &1/25

0 1/25

1 0

0 1
'

1 &1/25

0 1/25

P2 '
1/(1/5) 0

&(4/5)/(1/5) 1
'

5 0

&4 1

B &1
2 ' P2B

&1
1 '

5 0

&4 1

1 &1/25

0 1/25
'

5 &1/5

&4 1/5

and the new B-1 is 

Similarly in the second pivot we find the minimum in the first row and have B-1a0 = , so that in forming
1/5

4/5
P2, the first column of an identity matrix was replaced since x5 will enter as the first element of the basis

vector.  Multiplication of B-1 by P2 gives 

which equals the basis inverse computed above.

3.4.2 Advanced Bases

The process of solving a LP is a hunt for the optimal basis matrix.  Experience with LP reveals that

the simplex method usually requires two or three times as many iterations as the number of constraints to find

an optimal basis.  This implies that when solving a series of related problems (i.e., changing a price of an

input), it may be worthwhile to try to save the basis from one problem and begin the next problem from that

particular basis.  This is commonly supported in LP solution algorithms and is quite important in applied LP

involving sizable models.  In a recent study, it took more than thirty-five hours of computer time to obtain an

initial basis, but from an advanced basis, a series of related problems with a few changes in parameters could

be solved in two hours.  Dillon (1970) discusses ways of suggesting a basis for problems that have not

previously been solved.
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Max CX

s.t. RX # b

DX # &e

FX ' g

HX $ p

X $ 0

Modeling systems like GAMS do not readily take an advanced basis although one can be attempted by

a choice of initial levels for variables (GAMBAS (McCarl (1996)) permits this).  However, once an initial

model solution has been found, then any additional solutions are computed from an initial basis.  Furthermore,

an advanced basis can be employed by restarting from a stored file.

3.4.3 Finding an Initial Feasible Basis

When an LP problem includes only less-than constraints with non-negative right hand sides, it is

straightforward to obtain an initial feasible basis with all non-negative variable values.  In that case the slacks

form the initial basis and all decision variables are nonbasic, equaling zero, with each slack variable set equal

to the RHS (si = bi).  The initial basis matrix is an identity matrix.  In turn, the simplex algorithm is initiated.

However, if one or more: a) negative right hand sides, b) equality constraints, and/or c) greater than or

equal to constraints are included, it is typically more difficult to identify an initial feasible basis.  Two

procedures have evolved to deal with this situation: the Big M method and the Phase I/Phase II method. 

Conceptually, these two procedures are similar, both imply an inclusion of new, artificial variables, which

artificially enlarge the feasible region so an initial feasible basis is present.  The mechanics of artificial

variables, of the Big M method and the Phase I/ Phase II problem are presented in this section.

Models which contain negative right hand sides, equality and or greater than constraints do not yield

an initial feasible solution when all X's are set to zero.  Suppose we have the following

general problem where b, e, and p are positive.
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Max CX % O1S1 % O2S2 % O4W

s.t. RX % I1S1 ' b

DX % I2S2 ' &e

FX ' g

HX & I4W ' p

X, S1, S2, W $ 0

Conversion of this problem to the equality form requires the addition of slack, surplus and artificial

variables. The slack variables (S1 and S2) are added to the first and second rows (note that while we cover this

topic here, most solvers do this automatically).  Surplus variables are needed in the last constraint type and

give the amount that left hand side (HX) exceeds the right hand side limit (p).  Thus, the surplus variables (W)

equal p - HX and the constraint becomes HX - W = p.

The resultant equality form becomes

Where the I's are appropriately sized identity matrices and the O's are appropriately sized vectors of zeros.

Note that when X = 0, the slacks and surplus variables do not constitute an initial feasible basis. 

Namely, if S2 and W are put in the basis; then assuming e and p are positive, the initial solution for these

variables are negative violating the non-negativity constraint (i.e., S2 = -e and W = -p).  Furthermore, there is

no apparent initial basis to specify for the third set of constraints (FX = g).  This situation requires the use of

artificial variables.  These are variables entered into the problem which permit an initial feasible basis, but

need to be removed from the solution before the solution is finalized.

Artificial variables are entered into each constraint which is not satisfied when X=0 and does not have

an easily identified basic variable.  In this example, three sets of artificial variables are required.
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Max CX % O1S1 % O2S2 % O4W

RX % I1S1 ' b

DX % I2S2 & I2A2 ' &e

FX % I3A3 ' g

HX & I4W % I4A4 ' p

X, S1, S2, W, A2, A3, A4 $ 0

Here A2, A3, and A4 are the artificial variables which permit an initial feasible nonnegative basis but which

must be removed before a "true feasible solution" is present.  Note that S1, A2, A3, and A4 can be put into the

initial basis.  However, if elements of A3 are nonzero in the final solution, then the original FX = g constraints

are not satisfied.  Similar observations are appropriate for A2 and A4.  Consequently, the formulation is not yet

complete.  The objective function must be manipulated to cause the artificial variables to be removed from the

solution.  The two alternative approaches reported in the literature are the BIG M method and the Phase

I/Phase II method.  

3.4.3.1 BIG M Method

The BIG M method involves adding large penalty costs to the objective function for each 

artificial variable.  Namely, the objective function of the above problem is written as

Max CX % O1S1 % O2S2 % O4W & M2A2 & M3A3 & M4A4

where M2, M3, and M4 are conformable sized vectors of large numbers that will cause the model to drive A2,

A3, and A4 out of the optimal solution.
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Max 3x1 % 2x2

x1 % 2x2 # 10

%x1 & x2 # &2

&x1 % x2 ' 3

x1 % x2 $ 1

x1, x2 $ 0

An example of this procedure involves the problem

and the model as prepared for the Big M method is in Table 3.3.  The optimal solution to this problem is in

Table 3.4.

This solution is feasible since A2, A3, and A4 have been removed from the solution.  On the other hand,

if the right hand side on the second constraint is changed to -4, then A2 cannot be forced from the solution and

the problem is infeasible.  This, with the BIG M method one should note that the artificial variables must be

driven from the solution for the problem to be feasible so M must be set large enough to insure this happens (if

possible).

3.4.3.2 Phase I/Phase II Method

The Phase I/Phase II method is implemented in almost all computer codes.  The procedure involves the

solution of two problems.  First, (Phase I) the problem is solved with the objective function replaced with an

alternative objective function which minimizes the sum of the artificial variables, i.e.,

Min L2A2 % L3A3 % L4A4

where Li are conformably sized row vectors of ones.

If the Phase I problem has a nonzero objective function (i.e., not all of the artificials are zero when 

their sum has been minimized), then the problem does not have a feasible solution.  Note this means the

reduced cost information in an infeasible problem can correspond to this modified objective function. 
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Otherwise, drop the artificial variables from the problem and return to solve the real problem (Phase II) using

the Phase I optimal basis as a starting basis and solve using the normal simplex procedure.

The addition of the slack, surplus and artificial variables is performed automatically in almost all

solvers including all that are associated with GAMS.

3.4.4 The Real LP Solution Method

The above material does not fully describe how a LP solution algorithm works.  However, the

algorithm implemented in modern computer codes, while conceptually similar to that above is operationally

quite different.  Today some codes are using interior point algorithms combined with the simplex method (for

instance, OSL, Singhal et al.).  Codes also deal with many other things such as compact data storage, basis

reinversion, efficient pricing, and round-off error control (e.g., see Orchard-Hays or Murtagh).

In terms of data storage, algorithms do not store the LP matrix as a complete MXN matrix.  Rather,

they exploit the fact that LP problems often be sparse, having a small number of non-zero coefficients relative

to the total possible number, by only storing non-zero coefficients along with their column and row addresses. 

Further, some codes exploit packing of multiple addresses into a single word and economize on the storage of

repeated numerical values (for in-depth discussion of data storage topics see Orchard-Hays or Murtagh).

Perhaps the most complex part of most modern day LP solvers involves inversion.  As indicated

above, the B-1 associated with the optimal solution is needed, but in forming B-1 the code usually performs

more iterations than the number of constraints.  Thus, the codes periodically construct the basis inverse from

the original data.  This is done using product form of the inverse; but this also involves such diverse topics as

LU decomposition, reduction of a matrix into lower triangular form and matrix factorization.  For discussion

in these topics see Murtagh.

LP codes often call the formation of reduced costs the pricing pass and a number of different

approaches have been developed for more efficient computation of pricing (see Murtagh for discussion).
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Finally, LP codes try to avoid numerical error.  In computational LP, one worries about whether

numbers are really non-zero or whether rounding error has caused fractions to compound giving false non-

zeros.  Solver implementations usually make extensive use of tolerances and basis reinversion schemes to

control such errors.  Murtagh and Orchard-Hays discuss these.

The purpose of the above discussion is not to communicate the intricacies of modern LP solvers, but

rather to indicate that they are far more complicated than the standard implementation of the simplex algorithm

as presented in the first part of the chapter.
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Table 3.1. GAMS Solution of Example Model

SOLVE SUMMARY

MODEL PROBLEM OBJECTIVE Z         
TYPE LP DIRECTION MAXIMIZE
SOLVER  MINOS5 FROM LINE  37

**** SOLVER STATUS 1 NORMAL COMPLETION         
**** MODEL STATUS 1 OPTIMAL                   
**** OBJECTIVE VALUE 26.5000

 EXIT -- OPTIMAL SOLUTION FOUND

       LOWER LEVEL UPPER MARGINAL
---- EQU ZROW . . . 1.000      
---- EQU CONSTRAIN1 -INF 10.000 10.000 2.500      
---- EQU CONSTRAIN2 -INF   3.000  3.000 0.500      

ZROW OBJECTIVE FUNCTION
CONSTRAIN1 FIRST CONSTRAINT
CONSTRAIN2 SECOND CONSTRAINT

LOWER LEVEL UPPER MARGINAL  

---- VAR X1 .   6.500 +INF .
---- VAR X2 .   3.500 +INF .
---- VAR X3 .   . +INF -2.000      
---- VAR Z -INF 26.500 +INF .

X1 FIRST VARIABLE
X2 SECOND VARIABLE
X3 THIRD VARIABLE
Z OBJECTIVE FUNCTION
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Table 3.2. Solution to Bounded Example with Bounds Imposed as Constraints and as Bounds

Solved with Constraints

Variable Value Reduced Cost Status Equation Level Shadow Price Status

X1 10 0 Basic 1 4 0 Basic

X2 1 0 Basic 2 0 3

3 0 -1

Solved with Bounds

Variable Value Reduced Cost Status Equation Level Shadow Price Status

X1 10 -3 (U) 1 4 0 Basic

X2 1 1 (L)
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Table 3.3. The Model as Ready for the Big M Method

Max 3x1 + 2x2 + 0S1 + 0S2 + 0W - 99A2 - 99A3 - 99a4

x1 + x2 + S1 = 10

x1 - x2 + S2 - A2 = -2

-x1 + x2 + A3 = 3

x1 + x2 - W + A4 = 1

x1 , x2 , S1 , S2 , W , A2 , A3 , A4 $ 0
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Table 3.4. Solution to the Big M Problem

Variable Value Reduced Cost Equation Shadow Price

x1 1.333 0 1 1.667

x2 4.333 0 2 0

S1 0 1.667 3 -1.333

S2 1 0 4 0

W 4.667

A2 0 -99

A3 0 -97.667

A4 0 -99
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Max '
j

cjxj

s.t. '
j

aijxj # bi, for all i

xj $ 0, for all j

Min '
i

uibi

s.t. '
i

uiaij $ cj for all j

ui $ 0 for all i

CHAPTER IV:  DUALITY IN LINEAR PROGRAMMING

Economic theory indicates that scarce (limited) resources have value.  For example, prime agricultural

land is limited and has value (a rental price).  On the other hand, air is effectively unlimited and therefore does

not have a market value.  In LP models, limited resources are allocated, so they should be, valued.  Whenever

we solve an LP problem, we solve two problems:  the primal resource allocation problem, and the dual re-

source valuation problem.  This chapter covers the resource valuation, or as it is commonly called, the Dual

LP problem and its relationship to the original, primal, problem. 

The study of duality is very important in LP.  Knowledge of duality allows one to develop increased

insight into LP solution interpretation.  Also, when solving the dual of any problem, one simultaneously solves

the primal.  Thus, duality is an alternative way of solving LP problems.  However, given today's computer

capabilities, this is an infrequently used aspect of duality.  Therefore, we concentrate on the study of duality as

a means of gaining insight into the LP solution.  We will also discuss the ways that primal decision variables

place constraints upon the resource valuation information.

4.1 Basic Duality

The Primal problem can be written as:

Associated with this primal problem is a dual resource valuation problem.  The dual of the above problem is

where ui are the dual variables.
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Max 40x1 % 30x2 (profits)

s.t. x1 % x2 # 120 (land)

4x1 % 2x2 # 320 (labor)

x1 , x2 $ 0

(land) (labor)

Min 120u1 % 320u2

s.t. u1 % 4u2 $ 40 (x1)

u1 % 2u2 $ 30 (x2)

u1 , u2 $ 0

If the primal problem has n variables and m resource constraints, the dual problem will have m

variables and n constraints.  There is a one-to-one correspondence between the primal constraints and the dual

variables; i.e., u1 is associated with the first primal constraint, u2 with the second primal constraint, etc.  As we

demonstrate later, dual variables (ui) can be interpreted as the marginal value of each constraint's resources. 

These dual variables are usually called shadow prices and indicate the imputed value of each resource.  A one-

to-one correspondence also exists between the primal variables and the dual constraints; x1 is associated with

the first dual constraint ( ), x2 is associated with the second dual constraint ( ), etc. '
i

uiai1 $ c1 '
i

uiai2 $ c2

An example aids in explaining the dual.  Consider the primal model:

The associated dual problem is

The dual problem economic interpretation is important.  The variable u1 gives the marginal value of

the first resource, or land.  Variable u2 gives the marginal value of the second resource, or labor in this case. 

The first dual constraint restricts the value of the resources used in producing a unit of x1 to be greater than or

equal to the marginal revenue contribution of x1.  In the primal problem x1 uses one unit of land and four units

of labor, returning $40, while the dual problem requires land use times its marginal value (1u1) plus labor use
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times its marginal value (4u2) to be greater than or equal to the profit earned when one unit of x1 is produced

(40).  Similarly, constraint 2 requires the marginal value of land plus twice the marginal value of labor to be

greater than or equal to 30, which is the amount of profit earned by producing x2.  Thus, the dual variable

values are constrained such that the marginal value of the resources used by each primal variable is no less

than the marginal profit contribution of that variable. 

Now suppose we examine the objective function.  This function minimizes the total marginal value of

the resources on hand.  In the example, this amounts to the land endowment times the marginal value of land

(120u1) plus the labor endowment times the marginal value of labor (320u2).  Thus, the dual variables arise

from a problem minimizing the marginal value of the resource endowment subject to constraints requiring that

the marginal value of the resources used in producing each product must be at least as great as the marginal

value of the product.  This can be viewed as the problem of a resource purchaser in a perfectly competitive

market.  Under such circumstances, the purchaser would have to pay at least as much for the resources as the

value of the goods produced using those resources.  However, the purchaser would try to minimize the total

cost of the resources acquired. 

The resultant dual variable values are measures of the marginal value of the resources.  The objective

function is the minimum value of the resource endowment.  Any slack in the constraints is the amount that cost

exceeds revenue. 

4.2 Primal-Dual Solution Inter-Relationships

Several relationships exist between primal and dual solutions which are fundamental to understanding

duality and interpreting LP solutions.



copyright Bruce A. McCarl and Thomas H. Spreen 4-4

Primal Dual

Max CX Min U )b

AX # b U )A $ C

X $ 0 U $ 0

AX ( # b and U (
)

A $ C

X ( $ 0 U ( $ 0

U ( )

AX ( $ CX (

U ( )

AX ( # U ( )

b

CX ( # U ( )

AX ( # U ( )

b

CX ( # U ( )

b

First, let us introduce some notation.  The primal dual pair of LP problems in matrix form is

Now let us examine how the problems are related.  

4.2.1 Objective Function Interrelationships

Suppose we have any two feasible primal and dual solutions X*, U* and we want to determine the

relationship between the objective functions CX*and b.  We know the feasible solutions must satisfy U ( )

To determine the relationship, we take the above constraint inequalities (not the non-negativity conditions) and

premultiply the left one by  while postmultiplying the right one by X*.U ( )

Noting that the term AX* is common to both inequalities we getU ( )

This shows that the dual objective function value is always greater than or equal to the primal objective

function value for any pair of feasible solutions.  

4.2.2 Constructing Dual Solutions
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Now suppose we explore the construction of an optimal solution to the dual problem, given a primal

optimal solution.  Suppose an optimal primal solution is given by XB
* = B-1b and XNB

* = 0.  This solution must

be feasible; i.e., XB
* = B-1b $ 0.  It also must have XNB $ 0 and must satisfy nonnegative reduced cost for the

nonbasic variables CBB-1ANB - CNB $ 0.  Given this, suppose we try = CBB-1 as a potential dual solution.U ( )

First, let us investigate whether this is feasible.  To be feasible, we must have A $ C and U* $ 0. U ( )

If we set  = CBB-1, then we know ANB - CNB $ 0 because at optimality this is exactly equivalent to theU ( )

U ( )

reduced cost criteria, i.e., CBB-1ANB - CNB $ 0.  Further, we know for the basic variables the reduced cost is

CBB-1AB - CB = CBB-1B - CB = CB - CB = 0, so B = CB.  By unifying these two statements, we know whenU ( )

U* = CBB-1 then A $ C for all primal variables.  U ( )

Now we need to know if U $ 0.  The problem includes slacks.  Thus, A includes an identity matrix for

the slacks and C includes 0's for the slack variables. Thus, a part of the UA $ C covers the slacks and since

we know that  where  are the portions of A and C relevant to the slacks. U ( )

AS $ CS AS and CS

Substituting in the known structure of AS and CS, i.e., AS = I and CS = 0 yields  $ 0 or U $ 0.  So the U'sU ( )

are non-negative.  Thus,  is a feasible dual solution.  U ( )

' CBB &1

Now the question becomes, is this choice optimal?  In this case the primal objective function Z equals

CX* = CBXB
* + CNBXNB

* and since XNB
* equals zero, then Z = CBB-1b + CNB0 = CBB-1b.  Simultaneously, the

dual objective equals b = CBB-1b which equals the primal objective.  Therefore, the primal and dualU ( )

objectives are equal at optimality.  Furthermore, since the primal objective must be less than or equal to the

dual objective for any feasible pair of solutions and since they are equal, then clearly CX* cannot get any
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MZ
Mb

' CB B &1 ' U (
)

.

U ( )

(b & AX () ' 0

(U ( )

A & C)X ( ' 0.

larger nor can b get any smaller, so they must both be optimal.  Therefore, CBB-1 is an optimal dualU ( )

solution.  This demonstration shows that given the solution from the primal the dual solution can simply be

computed without need to solve the dual problem.

In addition given the derivation in the last chapter we can establish the interpretation of the dual

variables.  In particular, since the optimal dual variables equal CB B-1 (which are called the primal shadow

prices) then the dual variables are interpretable as the marginal value product of the resources since we

showed  

4.2.3 Complementary Slackness

Yet another, interrelationship between the primal and dual solutions is the so called complementary

slackness relation.  This states that given optimal values U* and X* then 

This result coupled with the primal and dual feasibility restrictions (U $ 0; UA $ C; AX # b; X $ 0) implies

that (in the absence of degeneracy) for each constraint, either the resource is fully used (bi - (AX)i = 0) with

the associated dual variable (Ui
*) nonzero, or the dual variable is zero with associated unused resources (bi -

(AXj)) being nonzero.  Alternatively, for each variable (again ignoring degeneracy) at optimality, either the

variable level (Xj) is non-zero with zero reduced cost ( A)j - cj = 0) or the variable is set to zero with aU ( )

non-zero reduced cost.

This result may be proven using matrix algebra.  Given optimal primal (X*) and dual (U*) solutions
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Let " ' U ( )

(b & AX ()

$ ' (U ( )

A & C)X ( .

Now suppose we examine " + $.  Taking " + $, we get (b - AX*) + ( A - C)X* which equals b -U (
)

U ( )

U ( )

AX* + AX* - CX* = b - CX*.  We know this equals zero at optimality.  Further, we know thatU ( )

U ( )

U ( )

both " and $ will be nonnegative, since AX* # b, U* $ 0, A - C $ 0 and X* $ 0, thus " + $ can be equal toU ( )

zero if and only if " and $ are both equal to zero.  Thus, complementary slackness must hold at optimality.

The complementary slackness conditions are interpretable economically.  The (AX* - b) = 0U ( )

condition implies that the resource will: a) be valued at zero if it is not fully utilized (i.e., AX* < b Y U* = 0) or

b) have a nonzero value only if it is fully utilized (i.e., AX = b Y U > 0 [note a zero value could occur]). 

Thus, resources only take on value only when they have been exhausted.  The condition  (U  )A & C)X ' 0

implies that a good will only be produced if its reduced cost is zero (i.e., X > 0 Y A - C = 0) and that only zero

X's can have a reduced cost (i.e., A - C > 0 Y X = 0).  This last result also shows the returns (C) to everyU '

nonzero variable are fully allocated to the shadow prices (U) times the amount of resources (A) used in

producing that activity (i.e., A=C).U '

4.2.4 Zero Profits

We have noted that Ui is the imputed marginal value of resource i and bi is its endowment.  Thus,

bi is sometimes called the "payment" to resource i. When we sum over all m resources, the dual objectiveU )

i

function can be interpreted as the total imputed value of the resource endowment.  If the total imputed value of
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'
i

uibi ' '
j

cjxj.

the resources is viewed as a "cost", then it makes sense that firm should seek to find  u1, u2,...,um, which

minimizes 3 ui bi.  However, at optimality the dual objective equals that of the primal

Thus, total payments to the resources will equal the profit generated in the primal problem.  All profits are

allocated to resource values, and the solution insures that the imputed rate of the resources allocated by the

primal problem are such that their total value equals total profits.   Thus, if the firm had to pay U for the

resources, zero profits would result.

4.2.5 Finding the Dual Solution Information

When you have solved the dual, you have solved the primal.  Thus given the optimal B-1, the optimal

dual variables are the primal shadow prices CBB-1 without any need for solution.  In general, one can show that

the following correspondence holds (see Hadley (1962) or Bazaraa et al.).

Primal Solution Information Corresponding Dual Solution Information
Objective function Objective function

Shadow prices Variable values

Slacks Reduced costs

Variable values Shadow prices

Reduced costs Slacks

For example, if one wants to know the optimal values of the dual slacks, those values are the primal reduced

costs. 

4.3 Duality Under Other Model Forms

In the preceding discussion, the primal problem has always taken on standard form. We have 

seen that given a LP problem
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Max '
j

cjxj

s.t. '
j

aijxj # bi, for all i

xj $ 0, for all j ,

Min '
i

uibi

s.t. '
i

uiaij $ cj, for all i

ui $ 0, for all j .

that its dual will always be

Note that if the primal problem contains n variables and m constraints, the dual problem has m

variables and n constraints.  The dual for problems which are not in standard form can be written in two ways. 

One may convert a problem in non-standard form to reformulate it into standard form then write the dual, or

one can learn primal-dual relationships for alternative primal problem forms.  We discuss the second approach

first.  

The form of the primal constraints determines the restrictions on the sign of the associated dual

variable.  If the primal objective is to maximize, each # constraint has a corresponding non-negative ($0) dual

variable.  Each $ constraint has a corresponding non-positive (#0) dual variable.  Why?  If a ($) constraint is

binding in a maximize primal, it follows that reducing the RHS of the constraint would make the constraint

less binding and could only improve or leave unaffected the optimal objective function value.  Thus, the

objective function value is unchanged or decreases if the RHS of the constraint is increased and the associated

dual variable is non-positive.  An equality constraint in a primal problem gives a dual variable which is

unrestricted in sign.  The optimal solution to the primal problem must lie on the equality constraint.  An
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Max 3x1 & 2x2 % x3

s.t. x1 % x2 % 2x3 ' 20

&2x1 % x2 % x3 $ 10

x1 # 0, x2 $ 0, x3 & unrestricted

x1 % x2 % 2x3 # 20

&(x1 % x2 % 2x3) # &20

outward shift in the constraint could either increase or decrease the objective function, thus the corresponding

dual variable is unrestricted in sign.  These relationships are summarized in the first part of Table 4.1. 

In regards to the primal variables, if the primal objective is to maximize, then each non-negative

primal variable gives rise to a $ constraint in the dual.  If a primal variable is restricted to be non-positive, the

corresponding dual constraint is a # inequality.  Similarly, unrestricted primal variables lead to dual equalities. 

These results are summarized in the lower part of Table 4.1.

Table 4.1 may also be used to develop relationships for a minimization problem by reading the

information from left to right.  Suppose the objective is to minimize and a # constraint is present.  The

corresponding dual variable in a maximization dual would be non-positive.  

A second approach can also be followed; i.e., always transform the problem to standard form then

write its dual.  To illustrate, consider the LP problem

Let us write the dual to this problem using the two approaches outlined above.  First, let's convert the

problem to standard form.  To do this, the equality constraint must be replaced by two constraints:

In addition the second primal constraint should be multiplied through by -1, the first variable is replaced by its

negative (x1 = -x1
-) and the third variable x3 is replaced by x3

+ - x3
-.  Making these substitutions and

modifications gives
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Max &3x &

1 & 2x2 % x %

3 & x &

3

s.t. &x &

1 % x2 % 2x %

3 & 2x &

3 # 20

x &

1 & x2 & 2x %

3 % 2x &

3 # &20

&2x &

1 & x2 & x %

3 % x &

3 # &10

x &

1 , x2 , x %

3 , x &

3 $ 0

Min 20w1 & 20w2 & 10w3

s.t. &w1 % w2 & 2w3 $ &3

w1 & w2 & w3 $ &2

2w1 & 2w2 & w3 $ 1

&2w1 % 2w2 % w3 $ &1

w1 , w2 , w3 $ 0

Min 20w % 10w &

3

s.t. w & 2w &

3 # 3

w % w &

3 $ &2

2w % w &

3 ' 1

w unrestricted , w &

3 # 0

The dual to this problem is

Note that:  a) the last two constraints can be rewritten as an equality, b) variables w1 and w2 can be

combined into variable w0 = w1 - w2 which is unrestricted in sign, and c) we may substitute w3
- = -w3 and we

may revise the inequality of the first constraint yielding 

which is the final dual.

This result can also be obtained from the use of the primal-dual relationships in Table 4.1.  The primal

objective is to maximize, so the dual objective is to minimize.  The primal problem has 3 variables and 2
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Min 20u1 % 10u2

s.t. u1 & 2u2 # 3

u1 % u2 $ &2

2u1 % u2 ' 1

u1 unrestricted , u2 # 0

constraints, so the dual has 2 variables and 3 constraints.  The first primal constraint is an equality, so the first

dual variable is unrestricted in sign.  The second primal constraint is a ($) inequality so the second dual

variable should be non-positive.  The first primal variable is restricted to be non-positive, so the first dual

constraint is a (#) inequality x2 is restricted to be non-negative, thus the second dual constraint is $; x3 is

unrestricted in sign.  Thus, the third dual constraint is an equality.  Then, the dual can be written as 

which if one substitutes ui= w0 and u2 = w3
- is identical to that above.

4.4 The Character of Dual Solutions

If the primal problem possesses a unique nondegenerate, optimal solution, then the optimal solution to

the dual is unique.  However, dual solutions arise under a number of other conditions.  Several of the cases

which can arise are:

1) When the primal problem has a degenerate optimal solution,  then the dual has multiple

optimal solutions.

2) When the primal problem has multiple optimal solutions, then the optimal dual solution is

degenerate.

3) When the primal problem is unbounded, then the dual is infeasible.

4) When the primal problem is infeasible, then the dual is unbounded or infeasible.
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Max 3X1 % 2X2

X1 % X2 # 100

X1 # 50

X2 # 50

X1 , X2 $ 0

4.5 Degeneracy and Shadow Prices

 The above interpretations for the dual variables depend upon whether the basis still exists after the

change occurs.  As shown in the previous chapter, there is a right hand side range over which the basis remains

optimal.  When a basic primal variable equals zero, the dual has alternative optimal solutions.  The cause of

this situation is generally that the primal constraints are redundant at the solution point and the range of right

hand sides is zero.  This redundancy means one does not need a full basic solution, so one of the basic

variables is set to zero with the other basic variables likely to be nonzero.  The best way to explain the

implications of this situation is through an example.  Consider the following problem

Notice that at the optimal solution, X1 = 50, X2 = 50,  the constraints are redundant.  Namely, either the

combination of the last two constraints or the first two constraints would yield the same optimal solution which

is X1 = X2 = 50.  The simplex solution of this problem shows a tie for the entering variable in the second pivot

where one has the choice of placing X2 into the solution replacing either the slack variable from the first or the

third constraint.  If the first slack variable (S1) is chosen as basic then one gets X1 = 50, X2 = 50, S1 = 0 while

S1 is basic.  The associated shadow prices are 0, 3, and 2.  On the other hand, if S3 were made basic one gets

X1 = 50, X2 = 50 S3 = 0 with the shadow prices 2, 1, 0.  Thus, there are two alternative sets of shadow prices,

both of which are optimal.  (Note, the dual objective function value is the same as the optimal primal in each

case.)

The main difficulty with degeneracy is in interpreting the shadow price information.  The shadow
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prices are taking on a direction (i.e., see the arguments in McCarl (1977)).  Note that if one were to increase

the first right hand side from 100 to 101 this would lead to a zero change in the objective function and X1 and

X2 would remain at 50.  On the other hand if one were to decrease that right hand side from 100 to 99 then one

would obtain an objective function which is two units smaller because X2 would need to be reduced from 50 to

49.  This shows that the two alternative shadow prices for the first constraint (i.e., 0 and 2) each hold in a

direction.  Similarly if the constraint on X1 was increased to 51, the objective function increases by one dollar

as one unit of X2 would be removed from the solution in favor of X1; whereas, if the constraint was moved

downward to 49, it would cost three dollars because of the reduction in X1.  Meanwhile, reducing the

constraint on X2 would cost two dollars, while increasing it would return to zero dollars.  Thus in all three

cases shadow prices take on a direction and the value of that change is revealed in one of the two dual

solutions.  This is quite common in degeneracy and may require one to do a study of the shadow prices or try

to avoid degeneracy using a priori degeneracy resolution scheme as discussed in McCarl (1977); Paris (1991);

Gal, and Gal et al., or as implemented automatically in OSL.  

4.6 Primal Columns are Dual Constraints

One final comment relative to modeling is that the columns in the primal, form constraints on the dual

shadow price information.  Thus, for example, when a column is entered into a model indicating as much of a

resource can be purchased at a fixed price as one wants, then this column forms an upper bound on the

shadow price of that resource.  Note that it would not be sensible to have a shadow price of that resource

above the purchase price since one could purchase more of that resource.  Similarly, allowing goods to be sold

at a particular price without restriction provides a lower bound on the shadow price.  

In general, the structure of the columns in a primal linear programming model should be examined to

see what constraints they place upon the dual information.  The linear programming modeling chapter extends
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this discussion.  
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Table 4.1. Primal-Dual Correspondence for
problems not in standard form

Maximization Minimization

Primal Problem Dual Problem

Form of Primal
Constraints

Implication for Dual
Variables

'
j

aijxj #bi ui $ 0

'
j

aijxj ' bi ui - unrestricted in sign

'
j

aijxj $bi ui # 0 

Form of Primal Variables Implication for Dual
constraints

xj $ 0 '
i

aijuj $cj

xj - unrestricted in sign '
i

aijui ' cj

xj # 0 '
i

aijui #cj
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CHAPTER V:  LINEAR PROGRAMMING MODELING

In this chapter we concentrate heavily on the algebraic approach to LP modeling, GAMS usage,

duality implications and some model specification issues.  The chapter begins with a presentation of the

general algebraic modeling approach with GAMS.  Subsequently, we organize the presentation around

commonly modeled situations.  The first problem presented is the classical resource allocation problem.  This

is followed by the transportation and diet/feed mix/blending problems.  Following these is a formulation that

explicitly incorporates joint products.  In presenting this material, we identify different types of variables and

constraints used in building models, as well as examples of modeling assumptions used when formulating

problems.  

Applied duality is also treated.  However, the duality material is not intended to imply that the dual of

every problem must be formed when modeling.  Instead, we discuss implications for the shadow prices that

arise due to primal variable structures.  The empirical relationship between primal and dual solutions will also

be exhibited, which hopefully leaves no doubt that when solving the primal problem, the dual is simultaneously

solved.  

A third theme herein is communication of the empirical issues involved in LP application.  This is

attempted through the development of examples involving coefficient calculation and deductive steps in

modeling.  We will also demonstrate the link between algebraic representations of problems and empirical

models.  This discussion is designed to show readers the usefulness of algebraic models as a way of

conceptualizing problems. 

This particular chapter is not designed to stand alone.  Additional  formulations and algebraic/GAMS

modeling techniques are presented throughout the rest of the book.  Furthermore,  reference to the GAMS

manual (Brooke et al.) is essential to a thorough understanding of the material.
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5.1 Introduction to Algebraic Modeling

Now we turn our attention to the construction of algebraic mathematical programming models using

summation notation and GAMS.  This section presents a brief introduction to a subset of GAMS.  The GAMS

manual (Brooke et al.) provides a complete treatment.  This section is also supported by the material in

Appendix A.

5.1.1 Defining Indices and GAMS Sets

A crucial algebraic modeling element is the identification of indices (also referred to  mathematically

as a subscript, or in GAMS as a SET).  The compactness with which one can specify a model depends on the

characterization of items with indices.  However, the readability of the model depends on indices being

disaggregate enough to reveal essential features.  Examples of the appropriate specification of indices appear

throughout the rest of the text.

Definition of indices in GAMS involves the definition of sets and set members.  Namely, an index in

summation notation is a SET in GAMS, and one specifies the range of the index by specifying SET

membership.   Examples of such set definitions are included in the following four GAMS statements.

SETS I THE INDEX I /1,2,3,4,5/

CITIES CITY NAMES /BOSTON, PORTLAND /

YEAR MODELS YEARS /1970*1974/

WEST (CITIES) WESTERN CITIES /PORTLAND/;

The first item entered is the label SETS which suggests that the following material contains SET

definitions.  Here four sets are being defined and are called I, CITIES, YEAR and WEST.  The set WEST is

defined as a subset of set CITIES.  Within each set definition are three components; 1) the name of the set;  2)

a verbal description of what the set stands for (which keeps a record for future users and helps describe the set

in the output); and 3) a list of the set members enclosed between a pair of slashes with multiple set elements

separated by commas (this can also contain a definition of the set element).  When a set contains consecutively



copyright Bruce A. McCarl and Thomas H. Spreen 5-3

numbered elements, an asterisk (as in the YEAR set definition) can be used to denote all elements in a numeric

range (i.e., 1970*1974 means include 1970, 1971, 1972, 1973, and 1974).  Finally, note that a semicolon is

used to end the SET statement after all sets have been defined.  Set elements can be defined using numbers,

characters, or a mixture of both.

In GAMS, one can define subsets.  A subset such as WEST (CITIES) identifies selected elements

identifying such things as the western cities.  Brooke, et. al. present information on more complex

specifications.

5.1.2 Writing Equations

The obvious purpose of algebraic modeling is to write general algebraically based equations which

encompass a wide variety of situations.  Two fundamental classes of algebraic equations exist.  The first class

encompasses all single equations which are not defined with respect to any kind of index.  A scaler calculation

falls into this class.  The second class involves equations which are defined according to indices.  This class

involves families of simultaneous equations.  For example, similar equations may be defined for each location,

land class, and time period.

5.1.2.1 Unindexed Equations

A summation notation version of an unindexed equation is

Z ' '
j

3 aj xj

This equation depicts the sum across all the members of the index set j where three times aj is

multiplied times xj and the resultant sum is placed into the value of Z.  A related example is

NoQ ' '
i
'
j

rij/yij

tice in both equations that all indices are included in the sum, and the result is a scaler number.  This will

always be true with unindexed or scaler equations.  There cannot be indices or sets within the equation which

are not summed over.  The GAMS statements equivalent to the above two equations are 



     2 Note that these GAMS statements show equations for numerical calculations, not equations for
inclusion as a constraint or objective function in a linear programming model.  In such cases a
slightly different syntax is utilized, as defined in the next section.
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bi ' '
j

aijXj for all i

rmj ' '
k

(fkmQkj % Zjm) for all m and j

Z = SUM (J, 3*A(J)*X(J)); 
Q = SUM ((I,J), R(I,J)/Y(I,J));2

The elements, of these GAMS equations, merit discussion.  First, both equations equate a scaler to a

sum.  In doing this, the set or sets to be summed over are specified as the parameters to be used in forming the

equation.  Note, after the summation operator (SUM), the index or indices are named, followed by a comma,

with the parameters separated by mathematical operators.  Parentheses must be balanced.  Finally, each

expression is ended by a semicolon.  

 Although these examples are consistent with the algebraic models, they are poor examples of GAMS

modeling.  Namely GAMS formulations can be made much more self explanatory by utilizing set and set

member names which are up to ten characters long.  For example, the following two GAMS commands

elaborate on those above, but are much easier to read;

INCOME = SUM(PRODUCT, 3* PRICE (PRODUCT) * QUANTITY (PRODUCT)); 
TOTALQUAN = SUM ((SOURCE, DESTINATION), TOTALCOST (SOURCE, 
DESTINATION)/COSTPRUNIT(SOURCE, DESTINATION));

Here the labels help define what the equation represents.

5.1.2.2 Indexed Equations

The other class of equations commonly used in algebraic modeling involves equations defined over a

family of indices.  Consider for example :

where the "for all" statement defines the family of indices for which the equations exist.  Note that in these

equations the index mentioned in the "for all" clause is not summed over.  Rather, the “for all” clause indicates
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presence of these equations for each of these indices.  The equivalent GAMS statements are 

B(ITEM) = SUM (J, A(ITEM,J)*X(J)) ;
R(WHATISIT,J) = SUM (K, F(K,J,WHATISIT)*Q(I,J)) + Z(J,WHATISIT);

5.1.3 Data Definitions

When using algebraic modeling, data items are usually defined symbolically.  For example, aij  might

be defined as the usage of the ith resource per unit of the jth product manufactured.  In the development of an

application, such items need to be defined numerically.  In GAMS, raw data are entered using the SCALER,

PARAMETER and TABLE syntax. 

Suppose one wishes to enter single numbers which are not referenced with respect to a SET.  In this

case, one uses the SCALER syntax as follows:

SCALARS LAND LAND AVAILABLE /100/

HOURS MACHINE TIME /50/

PRICESTEEL STEEL PRICE /2.25/;

Again the statements contain several parts.  The keyword SCALER (or SCALARS) indicates

unindexed data items are being defined.  Then one enters each data item name followed by a verbal description

and a numerical value enclosed in slashes.  This can be followed by entries for as many scalars as necessary

with the last definition followed by a semi-colon. 

Data are also entered using the PARAMETER syntax.  Parameter statements are used to enter

indexed (subscripted) data in list form.  Examples are given:

PARAMETERS

PRICE (ITEM) ITEM PRICES /LABOR 4.00, COAL 100/

DISTANCE (I,J) INTER CITY  DISTANCES /BOSTON.CHICAGO 20,         
BOSTON.CLEVELAND 15/;

This syntax must begin with the word PARAMETER (or PARAMETERS).  Subsequently, the name

of the data item, its indices description appear followed by a slash.  Within the slashes the name of each data
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set index and their values are given.  Commas separate set members and their values.  This sequence repeats

for each set member to be specified.  In the examples,  LABOR and COAL are members of the set ITEM with

their associated entries in the PRICE data taking on the values 4.00 and 100 respectively.  Similarly, the set I

includes BOSTON and the set J includes CHICAGO and CLEVELAND.   Note, the syntax in the second

expression where BOSTON.CHICAGO indicates this is the data for a pair of elements (i value then j value). 

Finally, a semicolon indicates the PARAMETER statement end.

Yet another data entry possibility involves the TABLE syntax.  This syntax is most convenient for

defining multi-dimensional parameters as illustrated by:

TABLE DISTANCE(I,J) DISTANCE BETWEEN CITIES  

CHICAGO CLEVE

BOSTON 20 10

BALT 20 9 ;

TABLE MODECOST(I,J,MODE) INTER CITY COST OF MOVING ITEMS

TRUCK RAIL

BOSTON.CHICAGO 10 5

BOSTON.CLEVE 8 7

BALT.CHICAGO 10 5

BALT.CLEVE 7 6 ;
or

TABLE MODECOST(I,J,MODE) INTER CITY COST OF MOVING ITEMS

CHICAGO.TRUCK CHICAGO.RAIL CLEVE.TRUCK CLEVE.RAIL

BOSTON 10 5 8 7

BALT 10 5 7 6 ;

The sets appear in the table structure in the order they are listed.  Thus, for the above table the two

dimensional item DISTANCE (I,J) is defined over the sets I and J with the names of the members of the set I

appearing vertically down the left-hand side of the table while the member names for J are identified
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horizontally.  Data values appear underneath the names of the members of the J set.  

The second and third example present alternative ways of entering a set with more than two

dimensions.  In the first case the first two sets are handled in the vertical column, and in the second case the

last two sets are handled across the top.  In both cases, the two sets are handled by identifying the member of

the first indexed set followed by a period then the member name from the second set.

5.1.4 Entering Data Through Calculation

One may also calculate data.  In this case, the set dependence of a parameter and a verbal description

is specified without data.  Then an equation is specified to define the data. For example, suppose the cost of

transporting items was a known linear function of mode and distance.  A procedure to implement this would be

as follows:

PARAMETER  MODECOST (I,J, MODE) COMPUTED COST OF SHIPPING BY  MODE;
TABLE  COSTUNIT (TERM, MODE)   COST DATA FOR SHIPPING MODE 

TRUCK RAIL

CONS 1 1.2

PERMILE .5 .25 ;

MODECOST (I, J, MODE) = COSTUNIT ("CONS",MODE) + COSTUNIT ("PER 
MILE",MODE)*DISTANCE (I,J);

DISPLAY MODECOST;

In this example the PARAMETER statement does not contain data.  Rather, calculations define the

variable MODECOST based on data in the tables DIST and COSTUNIT from the previous page which give

distance and the dependence of transport cost on distance.  After MODECOST is calculated, it is copied to the

output using a DISPLAY statement.  The data calculation feature is powerful as one can enter raw data and

then do calculations of model parameters, and record the assumptions made in calculating the data. 

One also can do simple replacements.  For example, the statement

MODECOST(I,J,MODE) = 5.;
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would result in having all elements of MODECOST equal to 5.

5.1.5 Specification of Variables

In linear programming models, the variables will have nonnegativity or other sign conditions.  In

GAMS this is identified by denoting POSITIVE VARIABLES, NEGATIVE VARIABLES, VARIABLES

which are free variables, and later BINARY or INTEGER VARIABLES.  For example

POSITIVE VARIABLES
VOLUME (ITEM) AMOUNT PRODUCED BY ITEM
QUANTITY (CITY1, CITY2) AMOUNT SHIPPED BETWEEN CITIES;

NEGATIVE VARIABLES
LOSS AMOUNT OF MONEY LOST;

VARIABLES
OBJ OBJECTIVE FUNCTION VALUE;

Note that the variable and its sign restriction are simultaneously defined.  A POSITIVE  specification

means that the variable is restricted to be greater than or equal to zero, NEGATIVE means less than or equal

to zero, and the word VARIABLE means unrestricted in sign.  After these statements, the name of each

variable along with its set dependence appears, and may be followed by a short description of the variable. 

The statement lists each variable with the particular sign restriction, followed by a semicolon.  Every variable

used in a GAMS model must be defined and the model must contain at least one unrestricted variable which is

the item optimized.

5.1.6 Equations

The set of equations which appear in the model are specified through the EQUATIONS statement.  

EQUATIONS
OBJECTIVE OBJECTIVE FUNCTION
AVAILABLE (RESOURCES) RESOURCE AVAILABILITY CONSTRAINTS
SUPPLY (PLANT) SUPPLY AVAILABLE AT A PLANT
LIMIT (RESOURCES, PLANT) RESOURCES AVAILABLE BY PLANT;

These expressions include the name of the equation, an indication of the sets for which this equation



copyright Bruce A. McCarl and Thomas H. Spreen 5-9

Max '
j

cj xj

Max Z

S.t. Z ' '
j

cj xj

exists and a verbal description.  Entries appear for each of the model equations followed by a semicolon.

5.1.7 Writing Model Equations

After the model equations have been defined, then they are defined algebraically.  The algebraic 

specification differs somewhat depending on whether the objective function or the constraints are being

entered.  

5.1.7.1 Objective Function Equations

The objective function equation is typically of the form:

However, GAMS forces the modeler to rewrite the equation so that the objective function expression is set

equal to an unrestricted variable, and that variable is named in the solve statement.  Thus we alter the problem

to become

where Z is a variable which is unrestricted in sign (named in the GAMS VARIABLES list).

Specifying the objective function equation in GAMS requires the specification of an equation name

followed by an algebraic representation.  Suppose we label the objective function equation OBJECTIVEF. 

The resultant GAMS statement is :

Objectivef.. Z =E= SUM (J, c(J)*X(J)); 

Note the structure, first the equation is named followed by two periods.  Then the algebraic statement

appears where the unrestricted variable that is maximized is set equal to an expression for the objective

function following the rules for equation writing as discussed above with one exception.  That is, here the
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'
j

aijXj # bi for all i

'
k

Zk $ dj for all j

'
j

('
i

(fi jmQij) % Zjm) ' 4 for all m

'
m

('
j

('
i

(fi jmQij) % Zjm)) ' 0

equality is written =E= .  Finally, the expression is followed by a semicolon.

5.1.7.2 Constraint Equations

The constraint equations are entered in essentially the same form as the objective function.  First the

equation is named.  In this naming any indices(sets) over which the equations are defined are named.  Then this

is followed by two periods and the algebraic equation for the constraint.  Subsequently, an indication of the

form of the inequality appears (=L= for less than or equal to; =G= for greater than or equal to; and =E= for

equal to).  Finally, this is following by the expression for the right-hand-side and a semi-colon.  Consider for

example the constraints:

where the "for all" statement defines the family of indices for which the equations exist.   Suppose we label the

first constraint RESOURCE indexed over the set ITEM.  Similarly, we call the second constraint DEMAND

indexed over PLACE, the third constraint SOMEITEM indexed over WHAT and the fourth ADDIT.  The

resultant GAMS statements are:

RESOURCE(ITEM).. SUM (J, A(ITEM,J)*X(J))  =L=  B(ITEM);

  DEMAND(PLACE).. SUM (K, Z(K,PLACE))  =G= D(PLACE);

  someitem(what)..  Sum(j,sum(i,f(i,j,what)*q(i,j))+z(j,what)) =e=4;

  addit..  Sum((m,j),sum(i,f(i,j,what)*q(i,j))+z(j,what)) =e=0;

The equations follow the equation writing conventions discussed above and in Appendix A.  The only

exception is that one may mix constants and variables on either side of the equation.  Then one could write the
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first equation as:

RESOURCE(ITEM).. B(ITEM) =G= SUM (J, A(ITEM,J)*X(J));

5.1.8 Specifying Bounds

Upper and lower bounds on individual variables are handled in a different fashion.  For example, if the

variables VOLUME and QUANTITY had been defined, and were to be bounded, then the bounds would be

defined through statements like the following   

VOLUME.UP (ITEM) = 10.;
QUANTITY.LO (CITY1, CITY2) = MINQ (CITY1, CITY2);
VOLUME.UP ("TREES") = 200. + LIMIT ("TREES").

In the first example, upper bounds are specified for the variable VOLUME across all members of the set

ITEM equaling 10.  In the second example, the bound is imposed through a prespecified parameter data.  In

the third example, the bound is calculated.

5.1.9 Forming and Solving a Model

After specifying sets, variables, data, and other appropriate input, one enters statements which define

the model and invoke the solver.  The MODEL definition can be of two forms.  In the first form, the

expression

MODEL RESOURCE /ALL/ ;

gives the model a name (RESOURCE), and specifies that ALL equations are incorporated. Alternatively, the

statement

MODEL COSTMIN /OBJECTIVE,SUPPLY,DEMAND/;

gives the model name and the names of the equations to include.  In this case the model name is COSTMIN

and the equations included are OBJECTIVE, SUPPLY and DEMAND.

  In turn, the SOLVE statement is

SOLVE COSTMIN USING LP MINIMIZING OBJ;
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where the general syntax is SOLVE "modelname" USING LP MAXIMIZING [OR MINIMIZING]  "objective

function variable name."  The objective function variable name is the variable added and set equal to the

mathematical expression for the objective function one may also solve mixed integer problems by altering the

using phrase to "usingmip" and nonlinear problems with "using NLP".

5.1.10 Report Writing

GAMS has useful features which allow solution results to be used in calculations to compute various

items of interest or do various result summaries.  One can, at any time after the SOLVE statement, use:  a) a

variable name followed by a .L to obtain the value of the solution for that variable; b) a variable name

followed by a .M to get the reduced cost associated with that variable; c) an equation name followed by .L to

get the value of the left hand side of that equation; and d) an equation name followed by .M to get the shadow

price associated with the equation.  Slack variables can be computed by taking an equation right hand side

minus the associated .L value.  The DISPLAY statement can be used to print out calculation results.  

5.1.11 Additional GAMS Topics

Two additional GAMS topics are worth mentioning.  These involve the use of conditional statements

and the use of loops.  Conditional statements are utilized to indicate that there are cases where particular items

should not be defined when doing a calculation and involve a syntax form using a $. 

Two examples are

DEMAND(REGION)$DEMANDQ(REGION).. 
SUM (SUPPLY, QUAN(SUPPLY, REGION)) =G= DEMANDQ(REGION);
OBJECTIVE.. OBJ = SUM((I,J)$(DIST(I,J) LT 20), COST(I,J)*QUAN(I,J));

In the first case, the notation $DEMANDQ(REGION) tells GAMS to generate this equation only if the

DEMANDQ term is nonzero resulting in a DEMAND equation being generated for only those members of

REGION which have nonzero demand.  In the second expression, the $(DIST(I,J) LT 20) clause indicates that

one should add (i,j) pairs into the sum only if  the DISTANCE between the pair is less than 20.  In general, use
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of the $ notation allows one to impose conditions within the model setup and data calculation procedures. 

LOOP statements are also worth mentioning as they can be used to repeatedly execute a set of GAMS

statements.  Examples appear in the DIET example on the disc where the LOOP is utilized to vary a price and

solve over and over again.  Similarly, the EVPORTFO example uses a LOOP to solve for alternative risk

aversion parameters.

5.2 Putting GAMS and Algebraic Modeling Together -- The Resource Allocation Problem

The classical LP problem involves the allocation of an endowment of scarce resources among a

number of competing products so as to maximize profits.  In formulating this problem algebraically let us

pursue the logical steps of: a) index identification, b) variable identification, c) constraint identification and d)

objective function identification.  Parameter identification is implicit in steps c and d.  

The indices necessary to formulate this problem are inherent in the problem statement. Since there are

"competing products" we need an index for products which we define here as j.  The index j may take on the

values of 1 through n indicating that there are n different competing products.  The problem statement also

mentions "scarce resources", so we define the index i to represent each of m possible resources (i=1,2,.....,m).

 Now suppose we turn our attention to variables.  Two potential variables are implicit in the above

statement.  The first type involves variables indicating the allocation of resources and the second type is

associated with the competing products.  In structuring this problem we would have to know the exact amount

of each resource that is used in making each product. Thus, when we know how much of a product is made,

we know the quantity of each resource allocated to that product. This means the variable in this problem

involves the amount of each product to be made.  Suppose we define a variable Xj which is the number of units

of the jth product made.

We may now define constraint equations.  In this case, a constraint is needed for each of the scarce

resources.  The constraint forces resource usage across all production possibilities to be less than or equal to
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'
j

aij Xj # bi ,

Xj $ 0, for all j .

'
j

cjXj

Max '
j

cjXj

s.t. '
j

aijXj # bi for all i

Xj $ 0 for all j

the resource endowment.  An algebraic statement of this restriction requires definitions of parameters for

resource usage by product and the resource endowment.  Let aij  depict the number of units of the ith resource

used when producing one unit of the jth product and let bi depict the endowment of the ith resource.  We now

can construct an algebraic form of the constraint.  Namely we need to sum up the total usage of the ith

resource.  The total usage of resource is the sum of the per unit resource usage times the number of units

produced  (aij Xj).  The appropriate algebraic statement of the ith constraint is 

with a constraint defined for each of the resources (i) in the problem.  A condition is also needed which states

only zero or positive production levels are allowed for each production possibility.

Turning to the objective function, an equation for profits earned is also needed. This involves the

definition of a parameter for the profit contribution per unit of the jth product (cj ).  Then, the algebraic

statement of the objective function is the sum of the per unit profit contribution times the amount of each

product made or

which is to be maximized.

Algebraically, the LP formulation of the problem is

where j is indexed from 1 to n, i is indexed from 1 to m, cj is the profit per unit of activity j, Xj is the number

of units of activity j produced, aij is the number of units of resource i required per unit of product j, and bi is

the endowment of resource i.
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This formulation arose early in the development of LP.  While the exact problem is not stated as

above, there are problems very close to it in Koopman's 1949 symposia report.  The formulation explicitly

appears in Dorfman's 1951 book.  Kantorovich also presents an early example.  Over time, this particular

formulation has been widely used.  In fact, it provides the first example in virtually all textbooks.

5.2.1 Example and GAMS Implementation 

Suppose that E-Z Chair Makers are trying to determine how many of each of two types of chairs to

produce.  Further, suppose that E-Z has four categories of resources which constrain production.  These

involve the availability of three types of machines: 1) large lathe, 2) small lathe, and 3) chair bottom carver; as

well as labor availability.  Two types of chairs are produced:  functional and fancy.  A functional chair costs

$15 in basic materials and a fancy chair $25.  A finished functional chair sells for $82 and a fancy chair for

$105.  The resource requirements for each product are shown in Table 5.1.

The shop has flexibility in the usage of equipment.  The chairs may have part of their work substituted

between lathes.  Labor and material costs are also affected.  Data on the substitution possibilities are given in

Table 5.2.  Assume the availability of time is 140 hours for the small lathe, 90 hours for the large lathe, 120

hours for the chair bottom carver, and 125 hours of labor.   

This problem can be cast in the format of the resource allocation problem.  Six different

chair/production method possibilities can be delineated.  Let

X1 = the number of functional chairs made with the normal pattern;

X2 = the number of functional chairs made with maximum use of the small lathe;

X3 = the number of functional chairs made with maximum use of the large lathe;

X4 = the number of fancy chairs made with the normal pattern;

X5 = the number of fancy chairs made with maximum use of the small lathe;

X6 = the number of fancy chairs made with maximum use of the large lathe.
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The objective function coefficients require calculation.  The basic formula is that profits for the jth

activity (cj) equal the revenue to the particular type of chair less the relevant base material costs, less any rele-

vant cost increase due to lathe shifts.  Thus, the cj for X1 is calculated by subtracting 15 from 82, yielding the

entered 67.  The constraints on the problem impose the availability of each of the four resources.  The

technical coefficients are those appearing in Tables 5.1 and 5.2.

The resultant LP model in algebraic form is

Max 67X1 + 66X2 + 66.3X3 + 80X4 + 78.5X5 + 78.4X6

s.t. 0.8X1 + 1.3X2 + 0.2X3 + 1.2X4 + 1.7X5 + 0.5X6 # 140

0.5X1 + 0.2X2 + 1.3X3 + 0.7X4 + 0.3X5 + 1.5X6 # 90

0.4X1 + 0.4X2 + 0.4X3 + X4 + X5 + X6 # 120

X1 + 1.05X2 + 1.1X3 + 0.8X4 + 0.82X5 + 0.84X6 # 125

X1 , X2 , X3 , X4 , X5 , X6  $ 0

This problem can be cast into an algebraic modeling system like GAMS in numerous ways.  Two

approaches are presented here.  The first is faithful to the above algebraic formulation and the second is more

tailored to the problem.  Consider the first formulation as shown in Table 5.3 and the file called RESOURCE. 

The approach we employ in setting up the GAMS formulation involves a more extensive definition of both

variables and constraints than in the algebraic format.  The indices are defined as GAMS sets, but instead of

using the short names i and j longer names are used.  Thus, in statement one the set j (which stands for the

different products that can be produced) is named PROCESS and the definition of the elements of j (rather

than being 1-6) are mnemonics indicating which of the products is being produced and which lathe is being

used.  Thus, FUNCTNORM stands for producing functional chairs using the normal process while the

mnemonic FANCYMXLRG stands for producing fancy chairs with the maximum use of the large lathe. 

Similarly, in line four, the i subscript is named RESOURCE.  In turn, the parameters reflect these definitions. 
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The availability of each resource (bi) is specified through  the RESORAVAIL parameter in lines 13-15.  The

per unit use of each resource by each production process (aij) is entered through the RESOURSUSE definition

in lines 17-28.  The objective function profit parameter (cj) is not directly defined but rather is calculated

during model setup.  The inputs to this calculation are defined in the data with the per unit prices of the chairs

defined by process in PRICE lines 8-9 and the production cost defined in lines 11-12.  In turn, the parameters

are used in computing the objective function in line 39 where price minus production cost is computed.

The variables (Xj) are defined in lines 30-31 where the POSITIVE specification means greater than or

equal to zero.  Note that a variable named PROFIT is defined in line 33.  This variable does not have a

counterpart in the algebraic model.  This unrestricted variable is required by GAMS and will be the quantity

maximized.  Subsequently, the two equations are specified.  The equation for the objective function is not

indexed by any sets and is defined in line 35.  The resource constraint equation indexed by the set

RESOURCE appears in line 36.  In turn then, the algebraic statement of the objective function appears in lines

38-40 which sums net profits over all possible production processes by computing price minus the production

cost times the level produced.  The resource constraints sum resource use over all the processes and hold this

less than or equal to the resource availability (lines 42-44).  The final step in the GAMS implementation is to

specify the model name which contains all the equations (line 46) and then a request to solve the model (line

47).

Another GAMS formulation of the problem appears in Table 5.4 and file RESOURC1.  This is less

faithful to the algebraic formulation, but is presented here since it shows more about GAMS.  Here, the j

subscript definition is broken into two parts.  One of which reflects the type of CHAIR being made and the

second the type of PROCESS being utilized.  Thus, FUNCT.NORMAL refers to a functional chair using the

normal process.  In turn, this allows PRICE and BASECOST to be specified by CHAIR, but the

EXTRACOST from using the additional processes needs to be specified in terms of both CHAIR and
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PROCESS.  The resource usage matrix now has three dimensions:  one for RESOURCE, one for CHAIR, and

one for PROCESS.  Also, the dimensions of the RESOURCUSE array are changed accordingly (line 20). The

model then proceeds basically as before with the PRODUCTION variable now having two indices, CHAIR

and PROCESS (line 33).  The specification also means a slightly more complex expression in the objective

function in which the net return to a particular chair, using a particular process is calculated as chair price

minus production cost, minus extra cost.  In turn, that is multiplied by the production level and summed (lines

41-42).

Examining and contrasting these formulations shows some of the power of GAMS.  Namely, in both

formulations, one can put in raw information such as chair prices and costs and then computations to setup the

model.  This leaves a record of how the numbers were calculated rather than having model coefficients

computed elsewhere.  In addition, the use of longer names (up to 10 characters) in specifying the model, means

that the GAMS instructions can be written in sufficient detail so that they are easily understood.  For example,

look at the objective function equation in Table 5.4.  Note, that it contains production level ties, the price of the

chair minus the cost of the chair minus the extra cost by a process.  This is a much more readily accessible

formulation than exists in many computational approaches to linear programming (see the material below or

treatments like that in Beneke and Winterboer).

5.2.2 Model Solution

The resultant solution under either formulation gives an optimal objective function value of 10,417.29. 

The optimal values of the primal variables and shadow prices are shown in Table 5.5.  This solution indicates

that 62.23 functional chairs and 73.02 fancy chairs should be made using the normal process, while 5.18 fancy

chairs should be made using maximum use of a large lathe.  This production plan exhausts small and large

lathe resources as well as labor.  The dual information indicates that one more hour of the small lathe is worth

$33.33, one more hour of the large lathe $25.79, and one more hour of labor $27.44.  The reduced cost
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valuation information also shows, for example, that functional chair production with maximum use of a small

lathe would cost $11.30 a chair.  Finally, there is excess capacity of 16.91 hours of chair bottom carving.

5.2.3 Comments

The resource allocation problem is the most fundamental LP problem.  This problem has many uses;

however, most uses involve slightly more complex problem structures which will be discussed in the remainder

of the book.  

A number of modeling assumptions are implicit in this formulation.  First, the price received for

production of chairs is independent of the quantity of chairs produced.  The firm would receive the same price

per unit whether it produced 5 or 500 million chairs.  This may be unrealistic for large firms.  Increased

production may bring either an increasing or decreasing price.  Representation of decreasing returns is

presented in the nonlinear approximation chapter and in the price endogenous modeling chapter.  The integer

programming chapter contains a formulation for the case where prices increase with sales.

A second assumption of the above formulation is that the fixed resource availability does not change

regardless of its value.  For example, the E-Z chair problem solution placed a value on labor of $27 an hour. 

However, the firm may feel it can afford more labor at that price.  Consequently, one may wish to extend the

model so that more of the resources become available if a sufficiently  high price would be paid.  This general

topic will be covered under purchase activities which are introduced in the joint products problem below.  It is

also covered in the nonlinear approximation and price endogenous chapters.

Finally, consider an assumption that does not characterize the above formulation.  Many people

ordinarily regard the resource allocation problem as containing a fixed coefficient production process where

there is only a single way of producing any particular product.  However, we included multiple ways of

producing a product in this example problem to show that a LP model may represent not only one way of
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'
j

Xij # si.

'
i

Xij $ dj.

producing a product, but also different ways involving different combinations of inputs.

5.3 The Transportation Problem

The second problem covered is the transportation problem.  This problem involves the shipment of a

homogeneous product from a number of supply locations to a number of demand locations.  This problem was

originally formulated by Kantorovich in 1939 and  Hitchcock in 1941.  Koopmans (1949) restated the model

and spurred research in the area.  

Setting this problem up algebraically requires definition of indices for:  a) the supply points which we

will designate as i, and b) the demand locations which we will designate as j.  In turn, the variables indicate the

quantity shipped from each supply location to each demand location.  We define this set of variables as Xij.

There are three general types of constraints, one allowing only nonnegative shipments, one limiting

shipments from each supply point to existing supply and the third imposing a minimum demand requirement at

each demand location.  Definition of the supply constraint requires specification of the parameter si which

gives the supply available at point i, as well as the formation of an expression requiring the sum of outgoing

shipments from the ith supply point to all possible destinations ( j ) to not exceed si.  Algebraically this

expression is

Definition of the demand constraint requires specification of the demand quantity dj required at demand point j,

as well as the formation of an expression summing incoming shipments to the jth demand point from all

possible supply points ( i ).  Algebraically this yields



     3 This formulation follows after the supply equation has been multiplied through by -1 to transform
it to a greater-than constraint.
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Min '
i
'
j
cij Xij

s.t. '
j
Xij # si for all i

'
i
Xij $ dj for all j

Xij $ 0 for all i , j

Finally, the objective function depicts minimization of total cost across all possible shipment routes. 

This involves definition of a parameter cij which depicts the cost of shipping one unit from supply point i to

demand point j.  In turn, the algebraic formulation of the objective function is the  first equation in the

composite formulation below. 

This particular problem is a cost minimization problem rather than a profit maximization problem. 

The transportation variables (Xij) belong to the general class of transformation variables.  Such variables

transform the characteristics of a good in terms of form, time, and/or place characteristics.  In this case, the

transportation variables transform the place characteristics of the good by transporting it from one location to

another.  The supply constraints are classical resource availability constraints.  However the demand

constraint imposes a minimum level and constitutes a minimum requirement constraint. 

Suppose we address duality before turning to GAMS and an example. The dual of the transportation

problem establishes imputed values (shadow prices) for supply at the shipping points and demand at the

consumption points.  These values are established so that the difference between the value of demand and the

cost of supply is maximized.  The dual problem is given by3
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Max & '
i

siUi % '
j

djVj

s.t. & Ui % Vj # cij for all i, j

Ui , Vj $ 0 for all i, j

where Ui is the marginal value of one unit available at supply point i, and Vj is the marginal value of one unit

demanded at demand point j.

The dual problem is best explained by first examining the constraints. The constraint associated with

Xij requires the value at the demand point (Vj) to be less than or equal to the cost of moving the good from

point i to point j (cij) plus the value at the supply point (Ui).  Consequently, the model requires the marginal

value of supply at the supply point plus the transportation cost to be no smaller than the value at the demand

point.  This also requires the differences in the shadow prices between demand and supply points to be no

greater than the transport cost.  This requirement would arise in a highly competitive market.  Namely if

someone went into the transportation business quoting delivery and product acquisition prices, one could not

charge the demanders of the good more than the price paid for a good plus the cost of moving it, or

competitors would enter the market taking away business.  This also shows the general nature of the dual

constraint imposed by a primal transformation variable.  Namely, a restriction is imposed on the difference in

the shadow prices.  The dual objective function maximizes profits which equal the difference between the value

of the product at the demand points (djVj) and the cost at the supply points (siUi).  

5.3.1 Example

ABC Company has three plants which serve four demand markets.  The plants are in New York,

Chicago and Los Angeles.  The demand markets are in Miami, Houston, Minneapolis and Portland.  The
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quantity available at each supply point and the quantity required at each demand market are

Supply Available Demand Required

New York 100 Miami 30

Chicago 75 Houston 75

Los Angeles 90 Minneapolis 90

Portland 50

The assumed distances between cities are

Miami Houston Minneapolis Portland

New York  3  7  6 23

Chicago  9 11  3 13

Los Angeles 17  6 13  7

Assume that the firm has discovered that the cost of moving goods is related to distance (D) by the

formula -- Cost = 5 + 5D.  Given these distances, the transportation costs are 

Miami Houston Minneapolis Portland

New York 20 40 35 120

Chicago 50 60 20  70

Los Angeles 90 35 70  40

The above data allow formulation of an LP transportation problem.   Let i denote the supply points

where i=1 denotes New York, i=2  Chicago, and i=3  Los Angeles.  Let j represent the demand points where

j=1 denotes Miami, j=2 Houston, j=3 Minneapolis, and j=4 Portland.  Next define Xij as the quantity shipped

from city i to city j; e.g., X23  stands for the quantity shipped from Chicago to Minneapolis.  A formulation of
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this problem is given in Table 5.6. This formulation may also be presented in a more compact format as 

20 40 35 120 50 60 20 70 90 35 70 40 Minimize

1 1 1 1 # 100

1 1 1 1 # 75

1 1 1 1 # 90

+1 +1 +1 $ 30

+1 +1 +1 $ 75

+1 +1 +1 $ 90

+1 +1 +1 $ 50

This shows the common incidence in LP formulations of sparsity.  Although there is room for 84 coefficients

in the body of the constraint matrix only 24 of these are non-zero.  Thus, the problem is only 24/84ths dense,

revealing a large number of zeros within the body of the matrix.  The right hand sides illustrate endowments of

supply through the first three constraints, and minimum requirements in the next four constraints.  The

variables involve resource usage at the supply point and resource supply at the demand point. These activities

transform the place utility of the good from the supply point to the demand point. 

The GAMS implementation is presented in Table 5.7 and in the file TRNSPORT.  Two sets are

defined (lines 1-4) one identifies the supply plants, the other defines the demand markets.  Subsequently,

supply availability and demand requirements are specified through the parameter statements in lines 6-10.  The

distance between the plants is specified in lines 12-17.  Following this, unit transport costs are computed by

first defining the parameter for cost in line 20, and then expressing the formula of $5.00 fixed cost plus $5.00

times the distance in line 21.  Next, the nonnegative shipment variables are specified (Xij).  The unrestricted

variable called TCOST equals the objective function value.  Then, three equations are specified, one equates

the objective value to TCOST and the other two impose the supply and demand limitations as in the algebraic

model.  These in turn are specified in the next few statements, then the model is specified using all the
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equations and solved minimizing the TCOST variable. 

The solution to this problem is shown in Table 5.8.  The optimal value of the objective function value

is 7,425.  The optimal shipping pattern is shown in Table 5.9.  The solution shows twenty units are left in New

York's potential supply (since constraint 1 is in slack).  All units  from Chicago are exhausted and the

marginal value of additional units in Chicago equals $15 (which is the savings realized if more supply were

available at Chicago which allowed an increase in the volume of Chicago shipments to Minneapolis and

thereby reducing New York-Minneapolis shipments).

The solution also shows what happens if unused shipping routes are used.  For example, the

anticipated increase in cost that would be necessary if one were to use the route from New York to Portland is

$75, which would indicate a reshuffling of supply.  For example, Los Angeles would reduce its shipping to

Portland and increase shipping to somewhere else (probably Houston). 

The associated dual problem is:

Max -100U1 - 75U2 - 90U3 + 30V1 + 75V2 + 90V3 + 50V4

s.t. -U1 + V1 # 20

-U1 + V2 # 40

-U1 + V3 # 35

-U1 + V4 # 120

-U2 + V1 # 50

-U2 + V2 # 60

-U2 + V3 # 20

-U2 + V4 # 70

-U3 + V1 # 90

-U3 + V2 # 35

-U3 + V3 # 70

-U3 + V4 # 40

The constraints of this problem are written in the less than or equal to, for requiring the value at

demand point to be no more than the value at the shipping point plus the transportation cost.  The solution to

the dual problem yields an objective function of 7,425 with the optimal values for the variables shown in Table

5.10.
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A comparison of Table 5.8 and Table 5.10 reveals the symmetry of the primal and dual solutions. 

The values of the Xij in the primal equal the shadow prices of the dual, and vice versa for the shadow prices of

the primal and the Ui and Vj in the dual.

5.3.2 Comments

The transportation problem is a basic component of many LP problems.  It has been extended in many

ways and has been widely used in applied work.  A number of assumptions are contained in the above model. 

First, transportation costs are assumed to be known and independent of volume. Second, supply and demand

are assumed to be known and independent of the price charged for the product.  Third, there is unlimited

capacity to ship across any particular transportation route.  Fourth, the problem deals with a single commodity

or an unchanging mix of multiple commodities.  

These assumptions have spawned many extensions, including for example, the transshipment problem

(Orden), wherein transshipment through intermediate cities is permitted.  Another extension allows the quantity

supplied and demanded to depend on price.  This problem is called a spatial equilibrium model (Takayama and

Judge(1973)) and is covered in the price endogenous chapter.  Problems also have been formulated with

capacitated transportation routes where simple upper bounds are placed on the shipment from a supply point

to a demand point (i.e., Xij less than or equal to ULij). These problems are generally in the purview of network

theory (Bazarra et. al., Kennington).  Multi-commodity transportation problems have also been formulated

(Kennington).  Cost/volume relationships have been included as in the warehouse location model in the second

integer programming chapter.  Finally, the objective function may be defined as containing more than just

transportation costs.  Ordinarily one thinks of the problem wherein the cij is the cost of transporting goods

from supply point i to demand point j.  However, modelers such as Barnett et al. (1984) have included the sup-

ply cost, so the overall objective function then involves minimizing delivered cost.  Also the transport cost may

be defined as the demand price minus the transport cost minus the supply price, thereby converting the
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problem into a profit maximization problem.

The transport model has interesting solution properties.  The constraint matrix possesses the

mathematical property of unimodularity (see Bazaraa et al. (1984) for explanation) which causes the solution

to be integer-valued when the right hand sides are integers.  Also, when the sum of the supplies equals the sum

of the demands, then the problem is degenerate, and the dual will have multiple optimal solutions.  That is, the

supply and demand prices will not be unique.  

The transportation problem has been the subject of considerable research and application.  The

research has led to special solution approaches including the Ford and Fulkerson out of kilter algorithm, and

specializations of the primal simplex algorithm.  Discussion of such topics can be found in Dantzig (1951),

Bradley et al., and Glover et al. (1974).  It is worthwhile to point out that the algorithms allow the problem to

be solved at a factor of 100 times faster than the use of the general simplex method.  Readers attempting to

solve transportation problems should consult the network literature for efficient solution procedures.  

There have been many applications of different versions of the transportation problem.  For example,

it has been used to study the effect of railroad regulatory policy (Baumel et al.), grain subterminal facility

location (Hilger et al.), and port location (Barnett et al.(1984)).  The assignment and/or contract award

problems are transport problems which arose early in the development of LP (see the assignment and contract

awards sections in Riley and Gass).  There also are related formulations such as the caterer problem. 

5.4 Diet/Feed Mix/Blending Problem

One of the earliest LP formulations was the diet problem along with the associated feed mix and

blending variants.  The diet context involves composing a minimum cost diet from a set of available

ingredients while maintaining nutritional characteristics within certain bounds.  Usually, a total dietary volume

constraint is also present.  Stigler studied the problem before LP was developed.  However, he noted that tastes
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'
j

aijFj # ULi

'aijFj $ LLi

and preferences cause a disparity between observed and minimum cost human diets.  Basically the human diet

form of this problem takes a largely expository role with few applications.  However, Waugh applied LP to the

livestock feed formulation problem, and it has become one of the most widely used LP applications.  The

formulation has also been applied to the blending of ice cream, sausage, and petroleum (Riley and Gass).

The basic model is formulated as follows.  Define index ( i ) representing the nutritional characteristics

which must fall within certain limits (protein, calories, etc.).  Define index ( j ) which represents the types of

feedstuffs available from which the diet can be composed. Then define a variable ( Fj ) which represents how

much of each feedstuff is used in the diet.  The constraints of the problem include the normal nonnegativity

restrictions plus three additional constraint types: one for the minimum requirements by nutrient, one for the

maximum requirements by nutrient and one for the total volume of the diet.  In setting up the nutrient based

constraints parameters are needed which tell how much of each nutrient is present in each feedstuff as well as

the dietary minimum and maximum requirements for that nutrient.  Thus, let aij be  the amount of the ith

nutrient present in one unit of the jth feed ingredient; and let ULi and LLi be the maximum and minimum

amount of the ith nutrient in the diet.  Then the nutrient constraints are formed by summing the nutrients

generated from each feedstuff (aijFj) and requiring these to exceed the dietary minimum and/or be less than the

maximum.  The resultant constraints are

A constraint is also needed that requires the ingredients in the diet equal the required weight of the diet. 

Assuming that the weight of the formulated diet and the feedstuffs are the same, this requirement 

can be written as 
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'
j

Fj ' 1 .

'
j

cjFj

Min '
j

cjFj

s.t. '
j

aijFj # ULi for all i

'
j

aijFj $ LLi for all i

'
j

Fj ' 1

Fj $ 0 for all j

Finally an objective function must be defined.  This involves definition of a parameter for feedstuff 

cost (cj) and an equation which sums the total diet cost across all the feedstuffs, i.e., 

The resulting LP formulation is

This formulation depicts a cost minimization problem.  The Fj activities provide an example of

purchase variables, depicting the purchase of one unit of feed ingredients at an exogenously specified price

which, in turn, provides the nutrient characteristics in the mixed diet.  The constraints are in the form of

resource limits and minimum requirements.

The dual of this problem contains variables giving the marginal value of the nutrient upper 

and lower limits, as well as the value of the overall volume constraint.  The dual is
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Max &'
i
(iULi % '

i
$iLLi % "

s.t. &'
i
(iaij % '

i
$iaij % " # cj for all j

(i, $i $ 0 for all i

" unrestricted

The dual variables are (i, the marginal value of the ith nutrient upper limit constraint; $i, the marginal value of

the ith nutrient lower limit constraint; and ", the marginal value of the total volume constraint.  The dual

constraints require that the imputed cost of each ingredient plus the cost of the volume constraint to be no

greater than the cost of any ingredient.  The variables (i and $i are nonnegative, but " is unrestricted in sign. 

Since the primal constraints impose nutrient requirements, the dual objective function demonstrates how the

costs of the diet are allocated to individual nutritional requirements.  For further economic interpretation of the

dual objective function, see Thomas et al.

5.4.1 Example

Suppose we use the model in a setting where we value a potential new ingredient in the diet.  Suppose

that cattle feeding involves lower and upper limits on net energy, digestible protein, fat, vitamin A, calcium,

salt and phosphorus.  Further, suppose the feed ingredients available are corn, hay, soybeans, urea, dical

phosphate, salt and vitamin A.  In addition, a new product, potato slurry, is available.  One kilogram of the

feed is to be mixed.  The costs of the ingredients per kilogram (excluding slurry) are shown in Table 5.11.  The

nutrient requirements are given in Table 5.12.

The nutrient requirements give the minimum and maximum amounts of each nutrient in one kilogram

of feed.  Thus, there must be between 0.071 and 0.130 kg of digestible protein in one kg of feed.  The volume

of feed mixed must equal one kilogram.  The nutrient compositions of one kg of each potential feed are shown

in Table 5.13.  The formulation is shown in Table 5.14.  The reader should also note that the potato slurry
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activity has been inserted with a price of P.  This price will be varied. 

First, suppose we specify the price of potato slurry to be one cent per kilogram, then the GAMS

formulation is given in Table 5.15 and the file DIET.  Three sets are involved, the first two are equivalent to

the subscripts for ingredients and nutrients.  The third one is one for convenience in data input and simply tells

whether a minimum or maximum is being defined.  In turn, the cost, minimum, maximum, and the nutrient

content of each of the feedstuffs are defined.  The variables identify the use of each feedstuff and a total cost

variable for the objective function.  The nutrient upper and lower limits, nutrients and the weight constraint are

defined in lines 39-45.  Then the model solve statements appear.  In addition, there are instructions which

appear between the ontext and offtext statements that run the model repeatedly through a LOOP statement to

generate a series of related solutions for increasing potato slurry prices.  This section also contains an example

of report writing.  Namely, 30 slurry price scenarios are defined, and then a set is defined where the results of

the 30 price runs are kept.  The solution printout is suppressed (by the OPTION statement) and only the

summary result is reported.  Inside the LOOP a calculation sets the ingredient cost equal to the previous price

plus a half cent for each scenario.  In turn, the model is solved for each price level, with slurry use and shadow

price recorded in the table.  After the loop is finished, the table with all the results is displayed.  Note the

report writing features in line 55 where the .L parameter on the end of the feed use variable indicates that the

optimal value of the FEED variable for slurry is recorded in a table.

The solution at a slurry price of 0.01 yields an objective value of 0.021 with the variable and con-

straint solutions as shown in Table 5.16.  The optimal solution indicates that the least cost feed ration is 95.6

percent slurry, 0.1 percent vitamin A, 1.5 percent salt, 0.2 percent dicalcium phosphate, 1.4 percent urea, 1.1

percent soybeans and 0.1 percent hay.  The shadow prices indicate that the binding constraints are the net

energy, vitamin A, salt, and calcium minimums along with the phosphorous maximum and the weight

constraint.  The shadow price on the weight constraint is 1.08 cents.
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 The results using the code in lines 49-57 show that the above solution would hold for prices of potato

slurry between 0 and +11 cents.  A second ration with 87% slurry would hold for prices between roughly 11

and 12 cents.  A ration with 18% slurry would hold for prices around 12.5 cents, and for any price greater

than 13 cents no potato slurry would be used.  The resultant demand schedule for potato slurry is graphed in

Figure 5.1.  

The empirical dual formulation is given in Table 5.17 and the file DUALDIET.  This formulation,

with P equal to 0.01, leads to a dual solution with the same objective function value as in the primal.  The

optimal dual solution is shown in Table 5.18.  The dual is degenerate.

5.4.2 Comments

There are three assumptions within the feed formulation problem.  First, the nutrient requirements are

assumed constant and independent of the final product (e.g., livestock) price.  Second, the quality of each feed

ingredient is known.  Third, the diet is assumed to depend on only feed price and nutrients. 

The diet problem is widely used, especially in formulating feed rations.  Animal scientists use the term

"ration-balancing", and several software programs have been specifically developed to determine least cost

rations.  LP models of the ration problem were used by Prevatt, et al., to evaluate fed cattle production in

Florida and by Thomas et al. (1992) who examined nutrient values in dairy production.  Other references and

discussions are given in Dorfman et al., Ashour and Anderson, and Beneke and Winterboer.

5.5 Joint Products

Many applied LP models involve production of joint products.  An example would be a petroleum

cracking operation where production yields multiple products such as oil and naphtha.   Other examples

include dairy production where production yields both milk and calves, or forestry processing where trees yield

sawdust and multiple types of sawn lumber.  Here, we present a formulation explicitly dealing with joint

products.  
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Xp & '
j
qpjYj # 0

'
j
rkjYj & Zk # 0.

Suppose we articulate the problem as follows.  Consider a profit maximizing firm who wishes to

maximize total profits derived from the available production possibilities.  Furthermore, suppose each of the

production possibilities yields multiple products, uses some inputs with a fixed market price, and uses some

resources that are available in fixed quantity.

Formulation of this model requires indices which depict the products which could be produced

 ( p ), the production possibilities ( j ), the fixed price inputs purchased ( k ), and the resources which are

available in fixed quantity ( m ).  Three types of variables need to be defined. The first ( Xp  ) defines the total

quantity of the pth product sold; the second (Yj)  identifies the quantity of jth production possibility utilized;

and the third (Zk) is the amount of the kth input purchased. 

Other than nonnegativity, three types of constraints are needed.  The first relates the quantity sold of

each product to the quantity yielded by production.  Algebraic specification requires definition of a parameter

(qpj) which gives the yield of each product ( p ) by each production possibility.  The 

expression

 

is a supply demand balance.  Here demand, in the form of sales of pth product, is required to be less than or

equal to supply which is the amount generated across the production alternatives.  Further, since production

and sales are endogenous, this is written as sales minus production and is less than or equal to zero. 

 The second type of constraint relates the quantity purchased of each fixed price input to the quantity

utilized by the production activities.  The parameter rkj gives the use of the kth input by the jth production

possibility.  In turn, the constraint sums up total fixed price input usage and equates it to purchases as follows:

This constraint is another example of a supply demand balance where the endogenous demand in this case, use

of the kth input, is required to be less than or equal to the endogenous supply which is the amount purchased. 
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'
j
smjYj # bm

'
p

cpXp & '
j
djYj & '

k
ekZk

Max '
p

cpXp & '
j
djYj & '

k
ekZk

s.t. Xp & '
j
qpjYj # 0 for all p

'
j
rkjYj & Zk # 0 for all k

'
j
smjYj # bm for all m

Xp , Yj , Zk $ 0 for all p, j, k

 The third type of constraint is a classical resource availability constraint which insures that the

quantity used of each fixed quantity input does not exceed the resource endowment.  Specification requires

definition of parameters for the resource endowment (bm ) and resource use when the production possibility is

utilized.  The constraint which restricts total resource usage across all possibilities is

where smj is the use of the mth resource by Yj.

For the objective function, an expression is needed for total profits.  To algebraically expressed the

profits require parameters for the sales price (cp), the input purchase cost (ek), and any other production costs

associated with production (dj).  Then the objective function can be written as 

The individual terms do not reflect the profit contribution of each variable in an accounting sense,

rather this occurs across the total model.  Thus, the production variable term (dj) does not include either the

price of the products sold or the cost of all the inputs purchased, but these components are included by terms

on the sales and purchase variables.  The resultant composite joint products model is 

Several features of this formulation are worth mention.  First, note the explicit joint product

relationships.  When activity Yj is produced, a mix of joint outputs (qpj, p=1, 2, ...) is produced while



copyright Bruce A. McCarl and Thomas H. Spreen 5-35

Min '
m

Umbm

s.t. Vp $ cp for all p

& '
p

Vpqpj % '
k

Wkrkj % '
m

Umsmj $ &dj for all j

& Wk $ &ek for all k

Vp , Wk , Um $ 0 for all p,k,m

simultaneously consuming the variable inputs both directly priced in the objective function (dj) and explicitly

included in constraints (rkj), along with the fixed inputs (smj).  Thus, we have a multi-factor, multi-product

production relationship.

Another feature of this problem involves the types of variables and constraints which are used.  The

variables Xp are sales variables which sell the available quantities of the outputs.  The variables Zk are

purchase variables which supply the inputs utilized in the production process.  The variables Yj are production

variables.  In this case, the production variables show production explicitly in the matrix, and the product is

sold through another activity.  The first two constraints are supply-demand balances.   The reason for the use

of inequalities in supply/demand balances is discussed in Chapter VII.  The last constraint is a resource

endowment.

The dual to this LP problem is

where Vp is the marginal value of product p; Wk the marginal cost of the kth variable input; and Um is the

marginal value of the mth fixed resource.  
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The dual objective function minimizes total marginal value of the fixed resources.  The first constraint

insures that the marginal value of each product is at least as great as the sales price.  This relationship

demonstrates the dual implication of a sales variable; namely, a lower bound is imposed on the shadow price

for the commodity sold.  The third constraint insures that the marginal value of each input is no more than its

purchase price and reflects the dual implication of a purchase variable, i.e., an upper bound is imposed on the

shadow price of the item which can be purchased.  The second constraint is allied with the production variable

and insures that the total value of the products yielded by a process is less than or equal to the value of the

inputs used in production, where the input valuation involves the direct costs in the objective function plus the

imputed costs due to variable and fixed inputs. 

5.5.1 Example

Consider a farm which produces both wheat and wheat straw using seven production processes.  The

basic data for these production processes are given in Table 5.19.  The production process involves the joint

production of wheat and straw using land, seed and fertilizer. 

The relevant prices are wheat - $4.00 per bushel, wheat straw - $.50 per bale, seed - $.20/lb., and

fertilizer - $2.00 per kilogram.  Also there is a $5 per acre production cost for each of the processes and the

farm has 500 acres.  This leads to the empirical formulation 

Max 4X1 + .5X2 - 5Y1 - 5Y2 - 5Y3 - 5Y4 - 5Y5 - 5Y6 - 5Y7 - 2Z1 - .2Z2

s.t. X1 - 30Y1 - 50Y2 - 65Y3 - 75Y4 - 80Y5 - 80Y6 - 75Y7 # 0

X2 - 10Y1 - 17Y2 - 22Y3 - 26Y4 - 29Y5 - 31Y6 - 32Y7 # 0

+ 5Y2 + 10Y3 + 15Y4 + 20Y5 + 25Y6 + 30Y7 - Z1 # 0

10Y1 + 10Y2 + 10Y3 + 10Y4 + 10Y5 + 10Y6 + 10Y7 - Z2 # 0

Y1 + Y2 + Y3 + Y4 + Y5 + Y6 + Y7 # 500

X1 , X2 , Y1 , Y2 , Y3 , Y4 , Y5 , Y6 , Y7 , Z1 , Z2 $ 0

The variables X1 and X2 are the sales of wheat and straw, respectively.  The variables Y1 through Y7

are the production of wheat via the seven different input usage/output production possibilities.  The variables
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Z1 and Z2 are purchases of fertilizer and seed, respectively.  The first two constraints balance product sale with

production; the third and fourth constraints require purchases of seed and fertilizer when production is

undertaken.  The fifth constraint limits land availability.  Note that the Y variables produce the multiple pro-

ducts using multiple inputs.  This problem exhibits seven different ways of producing the two products.  Each

of these seven different ways uses a different input combination.  Also note that by increasing the fertilizer

input one obtains decreasing returns in terms of the production of wheat and straw.

The GAMS formulation for this problem is given in Table 5.20 and the file JOINT.  This formulation

relies on four sets.  One for the products; one for the purchased inputs; one for the fixed inputs; and one for the

possible production processes.  In turn, parameters are specified for the product prices, input costs, the

production process costs, and fixed resource availability.  These data are entered conventionally except for the

constant production cost which is entered algebraically in line 11.

Variables and constraints are defined as associated with the above algebraic formulation, with the net

income variable specified to equal the objective function.  Similarly, the objective function, yield balance, input

balance and available resource constraints are defined.  Then the model is defined indicating all constraints and

solved.

The solution to this problem is shown in Table 5.21.  The solution implies that 40,000 bushels of

wheat and 14,500 bales of straw are produced by 500 acres of the fifth production possibility using 10,000

kilograms of fertilizer and 5,000 lbs. of seed.  The reduced cost information shows a $169.50 cost for the first

production possibility if undertaken.  Under this production pattern, the marginal value of land is $287.50. 

The shadow prices on the first four rows are the sale and purchase prices of the various outputs and inputs

depicted in those rows. 

The dual of the joint product example is given in Table 5.22.  Note the action of the constraints.  The

first two insure that the shadow prices associated with the balance row for each product are at least as great as
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the product prices.  This is a clear condition for optimality.  If the shadow price fell below this, it would be

rational to sell more of the product.  The last two constraints insure that the values of the inputs are less than

or equal to their purchase prices.  If the input was worth more than its purchase price, it would make sense to

purchase more until the value fell to the purchase price.  The middle constraints, under re-arrangement, insure

that the total imputed value of all the products from any one production method is less than or equal to the

value of the fertilizer, seed and land used arising through the terms involving W1, W2 and U.  The optimal

solution to the dual problem is given in Table 5.23 and corresponds exactly to the optimal primal solution.

5.5.2 Comments

The joint products problem illustrates: 1) the proper handling of joint products and 2) production

variables where the returns from production are not collapsed into the objective function but explicitly appear

in the constraints.  

The formulation also illustrates the possible complexity of LP.  In this case product balance

constraints are incorporated in a model along with resource constraints.  Also note that X1 and X2, gives the

sum of total output, and that Z1 and Z2 give the sum of total input usage on the farm which may be convenient

for model interpretation.  It is possible to exclude the X and Z variables by adjusting the objective function

coefficients on Y so they reflect the value of the products (Y) less the costs of the inputs (Z).  The larger

formulation used above may be superior if model use demands easy alteration of prices or summary accoun-

ting on total production.  This is discussed in the Purposeful Modeling section of the Toward Proper Modeling

chapter.

Another observation is the action of the primal variables as reflected in the dual.  Note that the

purchase activities provide upper bounds for the dual variables associated with the output balance constraint,

while the sales activities provide lower bounds for the dual variables associated with the input balance

constraints, and the production activities provide relationships between the dual variables relating to inputs and
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outputs.

Joint product formulations have a relatively long history.  It is difficult to cite many exact

applications; rather such a structure is common and implicit in many models throughout the literature. 

Hildreth and Reiter presented an early joint products example, Beneke and Winterboer provide examples of

joint products, (e.g. p. 46), and many other examples are available. 

5.6 Comments on GAMS and Algebraic Modeling 

 It is beneficial to examine the advantages and disadvantages of this book's orientation toward

algebraic modeling and GAMS usage.  This is done in this section.

5.6.1 Why Use Algebraic Modeling?

Algebraic modeling refers to the formulation of optimization problems in summation notation.  Why is

algebraic modeling desirable and what are its inherent shortcomings?  The major advantages involve the ability

to concisely state problems in an abstract general fashion, largely independent of the data and exact

application context while making general duality implication statements.  One can produce an algebraic

formulation independent of the problem size which initially can be used to consider moving products from two

plants to two regions and later to consider moving products from fifty plants to a hundred regions.  Such an

approach is particularly useful in the textbook presentation herein.  Furthermore, familiarity with algebraic

modeling allows the use of formulations from the literature.  

Nevertheless, these advantages are accompanied by several disadvantages.  Algebraic modeling and

summation notation are difficult for some users.  Some people will always desire to deal with the exact

problem context, not an abstract general formulation.  This does lead to a strategy most modelers use when

employing algebraic modeling.  Namely, algebraic modeling exercises are usually supported by small tableau

based sample models which capture problem essence and serve as an aid in algebraic model formulation.  Dual
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model setup and interpretation can also be difficult. Empirically based duals are usually easier to construct

than algebraic duals. 

Algebraic modeling can be quite cumbersome when dealing with small, one time problems.  In such

cases, the generality of the presentation may not be worth the effort.  Clearly, the gains to using algebraic

modeling rise with problem size.  When a modeler deals with large problems, the algebraic statement is

probably the only thing that is thoroughly understood.  Often the numerical formulation has grown out of

control.  Another problem when using algebraic modeling is that certain tableau based formulation structures

are difficult to express algebraically.  This is illustrated by the sequencing example of Chapter 7.  

Algebraic modeling is not the tool of choice for small, infrequently solved problems, but rather it is

best employed for medium or large sized models (more than 30 rows and/or columns) although the GAMS

report writing and computation features may make it attractive for small models.  In such cases, algebraic

modeling can allow the modeler to gain general insights into the problem.  Furthermore, coupling algebraic

modeling with a modeling system like GAMS permits gains in modeling efficiency and efficacy.  

5.6.2 Why Use GAMS to Support Modeling?

Now, why use GAMS?  GAMS generally requires algebraic modeling and thus, has many of algebraic

modeling's advantages and disadvantages.  However, GAMS is easier to tailor to the problem, so its use

introduces additional advantages and overcomes some of the disadvantages.

The crucial point when considering whether to use GAMS involves a comparison with traditional

linear programming formulation techniques.  Here we compare GAMS usage with: a) direct specification of

equation-based tableaus as used in LINDO (Schrage); b) direct specification of full tableaus as in McMillan;

and c) MPS-based input as in the stand alone version of MINOS (Murtaugh and Saunders). 

First, let us deal with data input.  Given, the resource allocation problem, alternative formulations for

GAMS, a tableau-based approach as in McMillan, a LINDO input stream (Schrage (1985)), a MPS input
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stream (Murtaugh and Saunders(1987)) and an alternative simplified GAMS input stream appear in Table

5.24.

Several features appear in these input streams.  First, the algebraic GAMS is the most complex. 

Second, GAMS can be used in a much simpler fashion becoming competitive with LINDO.  Third, GAMS is

more readable than the tableau or MPS.  Fourth, the versatility of GAMS is shown by the fact that the

structure of the resource allocation problem from the earlier example is maintained with a different data set (in

Panel a). 

Now let us deal with GAMS disadvantages.  Specification of a small model almost always takes a

larger file in GAMS than when using traditional equation or tableau-based methods.  Namely, the LINDO or

McMillan code specification of the resource allocation example takes three to five lines of input, whereas the

GAMS specification takes the better part of a page.  However, GAMS can be used simplistically yielding

almost the same as LINDO (Panel d).  Furthermore, a higher level of computer skill is required with GAMS as

a batch input file, a compiler and a 250 page users guide are involved.  However GAMS is generally easier to

use than MPS-based methods, as an inspection of the treatment in Beneke and Winterboer or Orchard-Hays

reveals.

There are also model formulation characteristics which constitute disadvantages.  GAMS generally

requires everything to be written algebraically which makes some potential users uncomfortable.  Also some

problem structures are difficult to write algebraically (i.e., see the sequencing problem in chapter VII).

Finally, there are shortcomings due to a lack of capabilities in GAMS.  GAMS does not contain a set

of well-developed model debugging aids as are present in many MPS-based installations.  One can add custom

diagnostic aids only with difficulty (The GAMS IO Library document explains how to interface FORTRAN,

PASCAL and C programs through a special programming job).  It is also difficult to construct an extremely

problem-tailored computer implementation as can be done using FORTRAN-based computer implementation
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(i.e., see McCarl et al.(1977)  or McCarl and Nuthall).

Aid with Initial Problem Formulation and Changes in Problem Formulation

GAMS aids both in initially formulating and subsequently revising formulations.  GAMS facilitates

specification and debugging of an initial formulation by allowing the modeler to begin with a small data set,

then after verifying correctness expand to a much broader context.  For example, one could initially specify a

small transportation model with a few suppliers and demanders. Then after that model is debugged one could

respecify the problem to encompass fifty shipping origins and two hundred destinations without needing to

change the algebraic model.  

Second, GAMS makes it easy to alter the model.  Historically large models have been difficult to

modify.  Namely when using traditional MPS-based modeling approaches it is difficult to add new constraints

or variables.  On the other hand, GAMS allows one to add model features much more simply.  Generally,

modelers do not try to make a complete formulation the first time around, rather one starts with a small

formulation and then adds structural features as demanded by the analyst.  GAMS also enforces consistent

modeling, allowing models to be transferred between problem contexts (i.e., code from the transport example is

used in the warehouse location example in the second integer programming chapter).

Automated Computational Tasks

 Many of the tasks that would traditionally have required a computer programmer are automated.  As

such, GAMS automatically does coefficient calculation; checks the formulation for obvious flaws; chooses the

solver; formats the programming problem to meet the exact requirements of the solver;  causes the solver to

execute the job;  saves and submits the advanced basis when doing related solutions; and permits usage of the

solution for report writing.  Also GAMS verifies the correctness of the algebraic model statements and allows

empirical verification.  Furthermore, since GAMS has been implemented on machines ranging from PCs to

workstations to CRAY super computers, it allows portability of a model formulation between computer
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systems.  Switching solvers is also very simple requiring changing a solver option statement or changing from

using LP to using NLP.  Links to spreadsheets have also been developed.  Finally, GAMS does not require

programming using languages like C or FORTRAN as does traditional MPS-based matrix generators and

report writers.  

Facilitates Documentation and Later Use of Models

One of the other convenient features of GAMS is its self-documenting nature.  Perhaps the largest

benefit GAMS has over traditional modeling techniques is that modelers can use longer variable, equation and

index names as well as comments, data definitions etc., allowing a more adequate and readable problem

description.  Model structure, assumptions, and any calculation procedures used in the report writing are

documented as a byproduct of the modeling exercise in a self-contained file.  Comment statements can be

inserted by placing an asterisk in column one, followed by text identifying data sources or particular

assumptions being used (i.e., in some of the authors' models, comments identify data source publication and

page).  Under such circumstances GAMS allows either the original author or others to alter the model

structure and update data. 

Allows Use by Varied Personnel 

Modeling personnel are often rare.  For example, in international development contexts, detailed

GAMS applications have been set-up by modeling experts but subsequently, the model is utilized by policy-

makers with minimal, if any, assistance from the modeling experts.  Often, given proper internal

documentation and a few instructions, clerical labor and nontechnical problem analysts can handle an analysis. 

Supported by Libraries of Applications

GAMS is rapidly becoming a defacto industry standard.  Many examples are provided by the model

library, Thompson and Thore; Kendrick; Zenios and their material.
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Table 5.1. Resource Requirements for the E-Z Chair Makers for the Normal Pattern

Hours of Use per Chair Type

Functional Fancy

Small Lathe 0.8 1.2

Large Lathe 0.5 0.7

Chair Bottom Carver 0.4 1.0

Labor 1.0 0.8

Table 5.2. Resource Requirements and Increased Costs for Alternative Methods to Produce
Functional and Fancy Chairs in Hours of Use per Chair and Dollars

Maximum Use of Small Lathe Maximum Use of Large Lathe

Functional Fancy Functional Fancy

Small Lathe 1.30 1.70 0.20 0.50

Large Lathe 0.20 0.30 1.30 1.50

Chair Bottom Carver 0.40 1.00 0.40 1.00

Labor 1.05 0.82 1.10 0.84

Cost Increase $1.00 $1.50 $0.70 $1.60 
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Table 5.3. First GAMS Formulation of Resource Allocation Example

   1   SET    PROCESS       TYPES OF PRODUCTION PROCESSES
   2                            /FUNCTNORM , FUNCTMXSML , FUNCTMXLRG
   3                            ,FANCYNORM , FANCYMXSML , FANCYMXLRG/
   4          RESOURCE      TYPES OF RESOURCES
   5                            /SMLLATHE,LRGLATHE,CARVER,LABOR/ ;
   6  
   7   PARAMETER PRICE(PROCESS)     PRODUCT PRICES BY PROCESS
   8                     /FUNCTNORM  82, FUNCTMXSML  82, FUNCTMXLRG  82
   9                     ,FANCYNORM 105, FANCYMXSML 105, FANCYMXLRG 105/
  10             PRODCOST(PROCESS)     COST BY PROCESS
  11                     /FUNCTNORM  15, FUNCTMXSML  16  , FUNCTMXLRG  15.7
  12                     ,FANCYNORM  25, FANCYMXSML  26.5, FANCYMXLRG  26.6/
  13             RESORAVAIL(RESOURCE) RESOURCE AVAILABLITY
  14                     /SMLLATHE 140, LRGLATHE  90,
  15                      CARVER   120, LABOR    125/;
  16  
  17   TABLE RESOURUSE(RESOURCE,PROCESS) RESOURCE USAGE
  18  
  19                 FUNCTNORM   FUNCTMXSML  FUNCTMXLRG
  20  SMLLATHE          0.80       1.30        0.20
  21  LRGLATHE          0.50       0.20        1.30
  22  CARVER            0.40       0.40        0.40
  23  LABOR             1.00       1.05        1.10
  24   +             FANCYNORM   FANCYMXSML  FANCYMXLRG
  25  SMLLATHE          1.20       1.70        0.50
  26  LRGLATHE          0.70       0.30        1.50
  27  CARVER            1.00       1.00        1.00
  28  LABOR             0.80       0.82        0.84;
  29  
  30   POSITIVE VARIABLES
  31            PRODUCTION(PROCESS) ITEMS PRODUCED BY PROCESS;
  32   VARIABLES
  33            PROFIT              TOTALPROFIT;
  34   EQUATIONS
  35            OBJT                  OBJECTIVE FUNCTION ( PROFIT )
  36            AVAILABLE(RESOURCE)   RESOURCES AVAILABLE ;
  37  
  38    OBJT..  PROFIT =E=
  39               SUM(PROCESS,(PRICE(PROCESS)-PRODCOST(PROCESS))
  40                             * PRODUCTION(PROCESS)) ;
  41  
  42    AVAILABLE(RESOURCE)..
  43        SUM(PROCESS,RESOURUSE(RESOURCE,PROCESS)*PRODUCTION(PROCESS))
  44                         =L= RESORAVAIL(RESOURCE);
  45  
  46   MODEL RESALLOC /ALL/;
  47   SOLVE RESALLOC USING LP MAXIMIZING PROFIT;
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Table 5.4. Second GAMS Formulation of Resource Allocation Example

   1   SET    CHAIRS        TYPES OF CHAIRS  /FUNCTIONAL,FANCY/
   2          PROCESS       TYPES OF PRODUCTION PROCESSES
   3                            /NORMAL , MXSMLLATHE , MXLRGLATHE/
   4          RESOURCE      TYPES OF RESOURCES
   5                            /SMLLATHE,LRGLATHE,CARVER,LABOR/ ;
   6  
   7   PARAMETER PRICE(CHAIRS)     PRODUCT PRICES BY PROCESS
   8                              /FUNCTIONAL 82, FANCY 105/
   9             COST(CHAIRS)     BASE COST BY CHAIR
  10                              /FUNCTIONAL 15, FANCY 25/
  11             EXTRACOST(CHAIRS,PROCESS) EXTRA COST BY PROCESS
  12                            / FUNCTIONAL.MXSMLLATHE  1.0  ,
  13                              FUNCTIONAL.MXLRGLATHE  0.7
  14                             ,FANCY.     MXSMLLATHE  1.5,
  15                              FANCY.     MXLRGLATHE  1.6/
  16             RESORAVAIL(RESOURCE) RESOURCE AVAILABLITY
  17                                  /SMLLATHE 140,  LRGLATHE  90,
  18                                   CARVER   120,  LABOR    125/;
  19  
  20   TABLE RESOURUSE(RESOURCE,CHAIRS,PROCESS) RESOURCE USAGE
  21           FUNCTIONAL.NORMAL FUNCTIONAL.MXSMLLATHEFUNCTIONAL.MXLRGLATHE
  22  SMLLATHE        0.80               1.30                  0.20
  23  LRGLATHE        0.50               0.20                  1.30
  24  CARVER          0.40               0.40                  0.40
  25  LABOR           1.00               1.05                  1.10
  26   +           FANCY.NORMAL     FANCY.MXSMLLATHE    FANCY.MXLRGLATHE
  27  SMLLATHE        1.20               1.70                  0.50
  28  LRGLATHE        0.70               0.30                  1.50
  29  CARVER          1.00               1.00                  1.00
  30  LABOR           0.80               0.82                  0.84       ;
  31  
  32   POSITIVE VARIABLES
  33            PRODUCTION(CHAIRS,PROCESS) ITEMS PRODUCED BY PROCESS;
  34   VARIABLES
  35            PROFIT               TOTAL PROFIT;
  36   EQUATIONS
  37            OBJT                  OBJECTIVE FUNCTION ( PROFIT )
  38            AVAILABLE(RESOURCE)   RESOURCES AVAILABLE ;
  39  
  40   OBJT..  PROFIT =E= SUM((CHAIRS,PROCESS),
  41                  (PRICE(CHAIRS)-COST(CHAIRS)-EXTRACOST(CHAIRS,PROCESS))
  42                      * PRODUCTION(CHAIRS,PROCESS)) ;
  43  
  44    AVAILABLE(RESOURCE)..
  45        SUM((CHAIRS,PROCESS),
  46          RESOURUSE(RESOURCE,CHAIRS,PROCESS)*PRODUCTION(CHAIRS,PROCESS))
  47                         =L= RESORAVAIL(RESOURCE);
  48  
  49   MODEL RESALLOC /ALL/;
  50   SOLVE RESALLOC USING LP MAXIMIZING PROFIT;
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Table 5.5. Optimal Solution to the E-Z Chair Makers Problem

Variable Value Reduced Cost Equation Slack Shadow Price

X1 62.23 0 1 0 33.33

X2 0 -11.30 2 0 25.79

X3 0 -4.08 3 16.91 0

X4 73.02 0 4 0 27.44

X5 0 -8.40

X6 5.18 0

Table 5.6.Formulation of Transportation Example

Min 20X11 + 40X12 + 35X13 + 120X14 + 50X21 + 60X22 + 20X23 + 70X24 + 90X31 + 35X32 + 70X33 + 40X34

s.t. X11 + X12 + X13 + X14 # 100

X21 + X22 + X23 + X24 # 75

X31 + X32 + X33 + X34 # 90

X11 + X21 + X31 $ 30

X12 + X22 + X32 $ 75

X13 + X23 + X33 $ 90

X14 + X24 + X34 $ 50

Xij$0 
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Table 5.7. GAMS Statement of Transportation Example

   1  SETS  PLANT    PLANT LOCATIONS
   2                  /NEWYORK, CHICAGO, LOSANGLS/
   3        MARKET   DEMAND MARKETS
   4                 /MIAMI,   HOUSTON, MINEPLIS, PORTLAND/
   5  
   6  PARAMETERS   SUPPLY(PLANT)  QUANTITY AVAILABLE AT EACH PLANT
   7                /NEWYORK   100, CHICAGO    75, LOSANGLS   90/
   8               DEMAND(MARKET)   QUANTITY REQUIRED BY DEMAND MARKET
   9                           /MIAMI      30, HOUSTON    75,
  10                            MINEPLIS   90, PORTLAND   50/;
  11  
  12   TABLE   DISTANCE(PLANT,MARKET)   DISTANCE FROM EACH PLANT TO EACH MARKET
  13  
  14                       MIAMI      HOUSTON     MINEPLIS     PORTLAND
  15           NEWYORK       3           7           6            23
  16           CHICAGO       9          11           3            13
  17           LOSANGLS     17           6          13             7;
  18  
  19  
  20   PARAMETER COST(PLANT,MARKET)    CALCULATED COST OF MOVING GOODS ;
  21             COST(PLANT,MARKET) = 5 + 5 * DISTANCE(PLANT,MARKET) ;
  22  
  23   POSITIVE VARIABLES
  24           SHIPMENTS(PLANT,MARKET) AMOUNT SHIPPED OVER A TRANPORT ROUTE;
  25   VARIABLES
  26           TCOST                   TOTAL COST OF SHIPPING OVER ALL ROUTES;
  27   EQUATIONS
  28           TCOSTEQ                 TOTAL COST ACCOUNTING EQUATION
  29           SUPPLYEQ(PLANT)         LIMIT ON SUPPLY AVAILABLE AT A PLANT
  30           DEMANDEQ(MARKET)        MINIMUM REQUIREMENT AT A DEMAND MARKET;
  31  
  32   TCOSTEQ..           TCOST =E= SUM((PLANT,MARKET), SHIPMENTS(PLANT,MARKET)*

  33                                                    
COST(PLANT,MARKET)) ;

  34  
  35   SUPPLYEQ(PLANT)..   SUM(MARKET, SHIPMENTS(PLANT, MARKET)) =L= SUPPLY(PLANT);
  36  
  37   DEMANDEQ(MARKET)..  SUM(PLANT,  SHIPMENTS(PLANT, MARKET)) =G=

DEMAND(MARKET);
  38  
  39   MODEL TRANSPORT /ALL/;
  40   SOLVE TRANSPORT USING LP MINIMIZING TCOST;



copyright Bruce A. McCarl and Thomas H. Spreen 5-52

Table 5.8. Optimal Solution to the ABC Company Problem

Variable Value Reduced Cost Equation Slack Shadow Price

X11 30 0 1 20 0

X12 35 0 2  0 -15

X13 15 0 3 0 -5

X14 0 75 4 0 20

X21 0 45 5 0 40

X22 0 35 6 0 35

X23 75 0 7 0 45

X24 0 40

X31 0 75

X32 40 0

X33 0 40

X34 50 0

Table 5.9. Optimal Shipping Pattern for the ABC Company

Origin
Destination

Miami Houston Minneapolis Portland

Units Variable Units Variable Units Variable Units Variable

New York 30 X11 35 X12 15 X13

Chicago 75 X23

Los Angeles 40 X32 50 X34

Table 5.10. Optimal Dual Solution to the ABC Company Problem

Variable Value Reduced Cost Equation Level Shadow Price

U1 0 -20 1 -20 30

U2 15 0 2 40 35

U3 5 0 3 35 15

V1 20 0 4 45 0

V2 40 0 5 5 0

V3 35 0 6 25 0

V4 45 0 7 20 75

8 30 0

9 15 0

10 35 40

11 30 0

12 40 50
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Table 5.11. Ingredient Costs for Diet Problem Example per kg

Corn $0.133

Dical $0.498

Alfalfa hay $0.077

Salt $0.110

Soybeans $0.300

Vitamin A $0.286

Urea $0.332

Table 5.12. Required Nutrient Characteristics per Kilogram of Mixed Feed

Nutrient Unit Minimum Amount Maximum Amount

Net energy Mega calories 1.34351 --

Digestible protein Kilograms   0.071 0.13

Fat Kilograms -- 0.05

Vitamin A International Units   2200 --

Salt Kilograms   0.015 0.02

Calcium Kilograms  0.0025 0.01

Phosphorus Kilograms  0.0035 0.012

Weight Kilograms 1 1

Table 5.13. Nutrient Content per Kilogram of Feeds

Dical Vitamin A Potato

Net energy 1.48 0.49 1.29 1.39

Digestible protein 0.075 0.127 0.438 2.62 0.032

Fat 0.0357 0.022 0.013 0.009

Vitamin A 600 50880 80 2204600

Salt 1

Calcium 0.0002 0.0125 0.0036 0.2313 0.002

Phosphorus 0.0035 0.0023 0.0075 0.68 0.1865 0.0024
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Table 5.14. Primal Formulation of Feed Problem

Corn Hay Soybean Urea Dical Salt Vitamin A Slurry

Min .133XC + .077XH + .3XSB + .332XUr + .498Xd + .110XSLT + .286XVA + PXSL

s.t. .075XC + .127XH + .438XSB + 2.62XUr + .032XSL # .13

Max .0357XC + .022XH + .013XSB + .009XSL # .05

Nut XSLT # .02

.0002XC + .0125XH + .0036XSB + .2313Xd + .002XSL # .01

.0035XC + .0023XH + .0075XSB + .68XUr + .1865Xd + .0024XSL # .012

1.48XC + .49XH + 1.29XSB + 1.39XSL $ 1.34351

.075XC + .127XH + .438XSB + 2.62XUr + .032XSL $ .071

Min 600XC + 50880XH + 80XSB + 2204600XVA $ 2200

Nut XSLT $ .015

.0002XC + .0125XH + .0036XSB + .2313Xd + .002XSL $ .0025

.0035XC + .0023XH + .0075XSB + .68XUr + .1865Xd + .0024XSL $ .0035

Volume XC + XH + XSB + XUr + Xd + XSLT + XVA + XSL = 1
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Table 5.15 GAMS Formulation of Diet Example

   1   SET  INGREDT  NAMES OF THE AVAILABLE FEED INGREDIENTS
   2                 /CORN,  HAY,  SOYBEAN,UREA,DICAL,SALT,VITA,SLURRY/
   3        NUTRIENT NUTRIENT REQUIREMENT CATEGORIES
   4               /NETENGY, PROTEIN, FAT, VITALIM, SALTLIM, CALCIUM, PHOSPHRS/
   5        LIMITS   TYPES OF LIMITS IMPOSED ON NUTRIENTS /MINIMUM, MAXIMUM/;
   6   PARAMETER INGREDCOST(INGREDT) FEED INGREDIENT COSTS PER KG PURCHASED
   7             /CORN    .133,  HAY     .077, SOYBEAN .300, UREA    .332
   8            , DICAL   .498,SALT    .110,   VITA    .286, SLURRY  .01/;
   9   TABLE NUTREQUIRE(NUTRIENT, LIMITS) NUTRIENT REQUIREMENTS
  10                        MINIMUM       MAXIMUM
  11         NETENGY        1.34351
  12         PROTEIN         .071           .130
  13         FAT                0           .05
  14         VITALIM         2200
  15         SALTLIM         .015            .02
  16         CALCIUM        .0025           .0100
  17         PHOSPHRS       .0035           .0120;
  18   TABLE CONTENT(NUTRIENT, INGREDT)  NUTRIENT CONTENTS PER KG OF FEED 
  19                 CORN   HAY  SOYBEAN  UREA DICAL    SALT   VITA    SLURRY
  20   NETENGY       1.48   .49    1.29                                 1.39
  21   PROTEIN       .075  .127   .438    2.62                          0.032
  22   FAT          .0357  .022   .013                                  0.009
  23   VITALIM        600  50880    80                        2204600
  24   SALTLIM                                            1
  25   CALCIUM       .0002 .0125  .0036         .2313                    .002
  26   PHOSPHRS      .0035 .0023  .0075   .68   .1865                    .0024;
  27  
  28   POSITIVE VARIABLES
  29       FEEDUSE(INGREDT) AMOUNT OF EACH INGREDIENT USED IN MIXING FEED;
  30   VARIABLES
  31       COST   PER KG COST OF THE MIXED FEED;
  32   EQUATIONS
  33       OBJT            OBJECTIVE FUNCTION ( TOTAL COST OF THE FEED )
  34       MAXBD(NUTRIENT) MAXIMUM LIMITS ON EACH NUTRIENT IN THE BLENDED FEED
  35       MINBD(NUTRIENT) MINIMUM LIMITS ON EACH NUTRIENT IN THE BLENDED FEED
  36       WEIGHT          REQUIREMENT THAT EXACTLY ONE KG OF FEED BE PRODUCED;
  37  
  38     OBJT..  COST =E= SUM(INGREDT,INGREDCOST(INGREDT) * FEEDUSE(INGREDT))
  39     MAXBD(NUTRIENT)$NUTREQUIRE(NUTRIENT,"MAXIMUM")..
  40         SUM(INGREDT,CONTENT(NUTRIENT , INGREDT) * FEEDUSE(INGREDT))
  41                                 =L= NUTREQUIRE(NUTRIENT, "MAXIMUM");
  42     MINBD(NUTRIENT)$NUTREQUIRE(NUTRIENT,"MINIMUM")..
  43           SUM(INGREDT, CONTENT(NUTRIENT, INGREDT) * FEEDUSE(INGREDT))
  44                       =G= NUTREQUIRE(NUTRIENT, "MINIMUM");
  45     WEIGHT..       SUM(INGREDT, FEEDUSE(INGREDT)) =E= 1. ;
  46     MODEL FEEDING  /ALL/;
  47     SOLVE FEEDING USING LP MINIMIZING COST;
  48  
  49     SET VARYPRICE PRICE SCENARIOS /1*30/
  50     PARAMETER SLURR(VARYPRICE,*)  
  51     OPTION SOLPRINT = OFF;
  52     LOOP (VARYPRICE,
  53     INGREDCOST("SLURRY")= 0.01 + (ORD(VARYPRICE)-1)*0.005;
  54     SOLVE FEEDING USING LP MINIMIZING COST;
  55     SLURR(VARYPRICE,"SLURRY") = FEEDUSE.L("SLURRY");
  56     SLURR(VARYPRICE,"PRICE") =    INGREDCOST("SLURRY")     ) ;
  57     DISPLAY SLURR;
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Table 5.16. Optimal Primal Solution to the Diet Example Problem

Variable Value Reduced Cost Equation Slack Price

XC 0 0.095   Protein L Max 0.059 0

XH 0.001 0   Fat Max 0.041 0

XSB 0.011 0   Salt Max 0.005 0

XUr 0.014 0   Calcium Max 0.007 0

Xd 0.002 0   Phosphrs 0.000 -2.207

XSLT 0.015 0   Net Engy Min 0.000 0.065

XVA 0.001 0   Protein Min 0.000 0.741

XSL 0.956 0   Vita Lim Min 0.000 0

  Salt Lim Min 0.000 0.218

  Calcium Min .000 4.400

  Phosphrs 0.008 0

  Weight 0.000 -0.108

Table 5.17. Dual Formulation of Feed Mix Example Problem

(1 (2 (3 (4 (5 $1 $2 $3 $4 $5 $6 "

Max - .13 - .05 - .02 - .01 - .12 + 1.34351 +  .071 +    2200 +  .015 + .0025 + .0035 + 1

- .075 - .0357 - .00 - .0035 + 1.48 +  .075 +     600 + .0002 + .0035 + 1 # .133

- .127 - .022 - .01 - .0023 +  .49 +  .127 +   50880 + .0125 + .0023 + 1 # .077

- .438 - .013 - .00 - .0075 + 1.29 +  .438 +      80 + .0036 + .0075 + 1 # .3

-2.62 - .68 + 2.62 + .68 + 1 # .332

- .23 - .1865 + .2313 + .1865 + 1 # .498

- 1 + 1 + 1 # .110

+ 220460 + 1 # .286

- .032 - .009 - .00 - .0024 + 1.39 +  .032 + .002 + .0024 + 1 # P
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Table 5.18. Optimal Solution to the Dual of the Feed Mix Problem

Variable Value Reduced Cost Equation Slack Shadow Price

(1 0 -0.059   Corn 0.095 0

(2 0 -0.041   Hay 0 0.001

(3 0 -0.005   Soybean 0 0.011

(4 0 -0.007  Urea 0 0.014

(5 2.207 0   Dical 0 0.002

$1 0.065 0   Salt 0 0.015

$2 0.741 0   Vita 0 0.001

$3 0 0   Slurry 0 0.956

$4 0.218 0

$5 4.400 0

$6 0 -0.008

" -0.108 0

Table 5.19. Data for the Wheat and Straw Example Problem

Outputs and Inputs Per Acre

Wheat yield in bu. 30 50 65 75 80 80 75

Wheat straw yield/bales 10 17 22 26 29 31 32

Fertilizer use in Kg. 0 5 10 15 20 25 30

Seed in pounds 10 10 10 10 10 10 10
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Table 5.20. GAMS  Formulation of the Joint Products Example

 1  SET  PRODUCTS   LIST OF ALTERNATIVE PRODUCT   /WHEAT, STRAW/
 2       INPUTS     PURCHASED INPUTS              /SEED,  FERT/
 3       FIXED      FIXED INPUTS                  /LAND/
 4       PROCESS   POSSIBLE INPUT COMBINATIONS   /Y1*Y7/;
 5  
 6  PARAMETER  PRICE(PRODUCTS)   PRODUCT PRICES   /WHEAT 4.00, STRAW 0.50/
 7             COST(INPUTS)      INPUT PRICES     /SEED 0.20,  FERT 2.00/
 8             PRODCOST(PROCESS) PRODUCTION COSTS BY PROCESS
 9             AVAILABLE(FIXED)  FIXED INPUTS AVAILABLE / LAND  500 /;
10  
11             PRODCOST(PROCESS) = 5;
12  
13  TABLE YIELDS(PRODUCTS, PROCESS) YIELDS FROM THE PRODUCTION

POSSIBILITIES
14                Y1    Y2    Y3    Y4    Y5    Y6    Y7
15       WHEAT    30    50    65    75    80    80    75
16       STRAW    10    17    22    26    29    31    32;
17  
18  TABLE USAGE(INPUTS,PROCESS) PURCHASED INPUT USAGE BY PRODUCTION

POSSIBLIITIES
19                Y1    Y2    Y3    Y4    Y5    Y6    Y7
20       SEED     10    10    10    10    10    10    10
21       FERT      0     5    10    15    20    25    30;
22  
23  TABLE FIXUSAGE(FIXED,PROCESS) FIXED INPUT USAGE BY PRODUCTION

POSSIBLIITIES
24                Y1    Y2    Y3    Y4    Y5    Y6    Y7
25       LAND      1     1     1     1     1     1     1;
26  
27  POSITIVE VARIABLES
28            SALES(PRODUCTS)          AMOUNT OF EACH PRODUCT SOLD
29            PRODUCTION(PROCESS)     LAND AREA GROWN WITH EACH INPUT

PATTERN
30            BUY(INPUTS)              AMOUNT OF EACH INPUT PURCHASED ;
31  VARIABLES
32           NETINCOME  NET REVENUE (PROFIT);
33  EQUATIONS
34          OBJT                 OBJECTIVE FUNCTION (NET REVENUE)
35          YIELDBAL(PRODUCTS)   BALANCES PRODUCT SALE WITH PRODUCTION
36          INPUTBAL(INPUTS)     BALANCE INPUT PURCHASES WITH USAGE
37          AVAIL(FIXED)         FIXED INPUT AVAILABILITY;
38  
39    OBJT..     NETINCOME =E=
40                     SUM(PRODUCTS , PRICE(PRODUCTS)   * SALES(PRODUCTS))
41                   - SUM(PROCESS  , PRODCOST(PROCESS) *

PRODUCTION(PROCESS))
42                   - SUM(INPUTS   , COST(INPUTS)    * BUY(INPUTS));
43    YIELDBAL(PRODUCTS)..
44        SUM(PROCESS, YIELDS(PRODUCTS,PROCESS) * PRODUCTION(PROCESS))
45                 =G=      SALES(PRODUCTS);
46    INPUTBAL(INPUTS)..
47       SUM(PROCESS, USAGE(INPUTS,PROCESS) * PRODUCTION(PROCESS))
48                 =L=      BUY(INPUTS);
49    AVAIL(FIXED)..
50        SUM(PROCESS, FIXUSAGE(FIXED,PROCESS)*PRODUCTION(PROCESS))
51           =L= AVAILABLE(FIXED);
52  
53  MODEL JOINT /ALL/;
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54  SOLVE JOINT USING LP MAXIMIZING NETINCOME;
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Table 5.21. Optimal Solution of the Wheat and Straw Example Problem 

Objective Function Value 143,750

Variable Value Reduced Cost Equation Slack Shadow Price

X1 40,000 0    Wheat 0 -4

X2 14,500 0    Straw 0 -0.5

Y1 0 -169.50    Fertilizer 0 2

Y2 0 -96.00    Seed 0 0.2

Y3 0 -43.50    Land 0 287.5

Y4 0 -11.50

Y5 500 0

Y6 0 -9.00

Y7 0 -38.50

Z1 10,000 0

Z2 5,000 0

Table 5.22. Dual Formulation of Example Joint Products Problem

Min 500U

s.t. V1 $ 4

V2 $ .5

-30V1 - 10V2 + 10W2 + U $ -5

-50V1 - 17V2 + 5W1 + 10W2 + U $ -5

-65V1 - 22V2 + 10W1 + 10W2 + U $ -5

-75V1 - 26V2 + 15W1 + 10W2 + U $ -5

-80V1 - 29V2 + 20W1 + 10W2 + U $ -5

-80V1 - 31V2 + 25W1 + 10W2 + U $ -5

-75V1 - 32V2 + 30W1 + 10W2 + U $ -5

-W1 $ -2

-W2 $ -0.2

V1 , V2 , W1 , W2 , U $ 0
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Table 5.23. Optimal Dual Solution of the Wheat and Straw

Objective Function Value 143,750

Variable Value Reduced Cost Equation Slacks Shadow

V1 4 0 Wheat 0 40,000

V2 0.5 0 Straw 0 14,500

W1 2 0 Prod 1 169.5 0

W2 0.2 0 Prod 2 96 0

U 287.5 0 Prod 3 43.5 0

Prod 4 11.5 0

Prod 5 0 500

Prod 6 9 0

Prod 7 38.5 0

Fertilizer 0 10,000

Seed 0 5,000
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Table 5.24 Alternative Computer Inputs for a Model

Simple GAMS Input File

POSITIVE VARIABLES    X1 ,    X2,   X3
VARIABLES             Z
EQUATIONS             OBJ,   CONSTRAIN1  ,  CONSTRAIN2;
OBJ..                 Z =E= 3 * X1 + 2 * X2 + 0.5* X3;
CONSTRAIN1..          X1 + X2 +X3=L= 10;
CONSTRAIN2..          X1 - X2 =L= 3;
MODEL PROBLEM /ALL/;
SOLVE PROBLEM USING LP MAXIMIZING Z;                      

LINDO Input file

  MAX 3 * X1 + 2 * X2 + 0.5* X3;
  ST
  X1 + X2 +X3 <  10
  X1 - X2 < 3
  END
  GO

Tableau Input File

   5    3
   3.   2.  0.5   0.   0.
   1.   1.   1.   1.   0.  10.
   1.  -1.   0.   0.   1.   3.

MPS Input File

NAME          CH2MPS
ROWS 
 N            R1
 L            R2
 L            R3
COLUMNS
    X1        R0         3.            R1         1.
    X1        R3         1.
    X2        R0         2.            R1         1.
    X2        R1         -1.
    X3        R0         0.5           R1         1.
RHS
    RHS1      R1        10.            R1        3.
ENDDATA

More Complex GAMS input file

SET   PROCESS       TYPES OF PRODUCTION PROCESSES   /X1,X2,X3/
      RESOURCE      TYPES OF RESOURCES             /CONSTRAIN1,CONSTRAIN2/
PARAMETER
  PRICE(PROCESS)        PRODUCT PRICES BY PROCESS /X1 3,X2 2,X3 0.5/
  PRODCOST(PROCESS)     COST BY PROCESS           /X1 0 ,X2 0, X3 0/
  RESORAVAIL(RESOURCE)  RESOURCE AVAILABLITY     /CONSTRAIN1 10 ,CONSTRAIN2 3/
TABLE RESOURUSE(RESOURCE,PROCESS) RESOURCE USAGE 
                  X1       X2       X3
   CONSTRAIN1      1        1        1
   CONSTRAIN2      1       -1
POSITIVE VARIABLES   PRODUCTION(PROCESS) ITEMS PRODUCED BY PROCESS;
VARIABLES            PROFIT              TOTALPROFIT;
EQUATIONS            OBJT                OBJECTIVE FUNCTION ( PROFIT )
                     AVAILABLE(RESOURCE) RESOURCES AVAILABLE ;
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Figure 5. 1    Demand Schedule for Potato Slurry in Feed Mix Example

OBJT.. PROFIT=E=   SUM(PROCESS,(PRICE(PROCESS)-PRODCOST(PROCESS))*
                    PRODUCTION(PROCESS)) ;
AVAILABLE(RESOURCE).. SUM(PROCESS,RESOURUSE(RESOURCE,PROCESS)
                         *PRODUCTION(PROCESS))  =L= RESORAVAIL(RESOURCE);
MODEL RESALLOC /ALL/;
SOLVE RESALLOC USING LP MAXIMIZING PROFIT;
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Max CX

s.t. AX # b

X $ 0

CHAPTER VI:  TOWARD PROPER MODELING

There is considerable role for judgment when modeling and developing data.  The applied modeler

must make assumptions regarding the variables, constraints, and coefficients.  These assumptions

determine model performance and usefulness. 

 In this chapter the identification of structural components and the development of data are

discussed.  The material presented here is reinforced by material in subsequent chapters.  References are

made to this later material, and readers may wish to consult it for more detailed explanations.

Before beginning this section, the authors must acknowledge their debt to Heady and Candler's

"Setting Up Linear Programming Models" chapter and conversations with Wilfred Candler.

6.1 Structural Component Identification

The LP problem can be expressed as

In order to formulate an applied LP problem, one must identify the constraints, variables and relevant

numerical parameter values.  

6.1.1 Development of Model Constraints

Heady and Candler categorize LP constraints as technical, institutional, and subjective. 
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Constraints also arise because of convenience or model formulation requirements.  Technical constraints

depict limited resources, intermediate products, or contractual requirements.  Technical constraints also

express complementary, supplementary, and competitive relationships among variables.  Collectively, the

technical constraints define the production possibilities and provide links between variables.  Institutional

constraints reflect external regulations imposed on the problem.  Examples include credit limits or farm

program participation requirements.  Subjective constraints are imposed by the decision maker or modeler. 

These might include a hired labor limitation based on the decision maker's willingness to supervise labor.  

Convenience constraints facilitate model interpretation and may be included to sum items of interest. 

Model formulation constraints aid in problem depiction.  These include constraints used in conjunction with

approximations.  Within and across these groupings, constraints can take on a number of different forms. 

A more extensive definition of these forms is presented in the LP Modeling Summary chapter.  

Generally, the constraints included should meaningfully limit the decision variables.  The modeler

should begin by defining constraint relations for those production resources and commitments which limit

production or are likely to do so.  This involves consideration of the timing of resource availability.  Often,

problems covering seasonal production or utilizing seasonally fluctuating resources will contain time

desegregated constraints.  Heady and Candler argue that multiple constraints are needed to depict

availability of a resource whenever the marginal rate of factor substitution between resource usage in

different time periods does not equal one.  Constraints must be developed so that the resources available

within a particular constraint are freely substitutable.  Cases of imperfect substitution will require multiple

constraints. 

 Two other points should be made regarding constraint definition.  First, an LP solution will include

no more variables at a nonzero level than the number of constraints (including the number of upper and

lower bounds).  Thus, the number of constraints directly influences the number of nonzero variables in the
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optimal solution.  However, one should not simply define additional constraints as: 1) this usually results in

additional nonzero slack variables without substantially altering the solution; and 2) one must not impose

nonsensical constraints. 

  Second, subjective constraints should not be imposed before determining their necessity.  Often,

subjective constraints "correct" model deficiencies.  But the cause of these deficiencies is frequently missing

either technical constraints or omitted variables.  For example, models often yield excessively specialized

solutions which force variables into the solution.  This is often combated by imposing "flexibility" con-

straints as suggested by Day (1963), or discussed in Sengupta and Sfeir.  Often, however, the real

deficiency may be the depiction of the time availability of resources (Baker and McCarl).  In such a case,

the subjective constraints give an inadequate model a "nominal" appearance of reality, but are actually

causing the "right" solution to be observed for the wrong reason. 

6.1.2 Avoiding Improper Constraint Specifications

LP model constraints have higher precedence than the objective function.  The first major effort by

any LP solver is the discovery of a feasible solution.  The solver then optimizes within the feasible region.

This has several implications for identification and specification of constraints. 

First, the modeler must question whether a constraint should be established so it always restricts

the values of the decision variables.  Often, it may be desirable to relax a constraint allowing resource

purchases if the value of a resource becomes excessively high. 

Second, modelers should be careful in the usage of minimum requirement constraints

(e.g.,X1+X2$10).  Minimum requirements must be met before profit seeking production can proceed.  Often

purchase variables should be entered to allow buying items to meet the requirements.

Third, judicious use should be made of equality constraints.  Modelers should use the weakest form

of a constraint possible.  Consider the following example:
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Max 3X % 2Y

s.t. X & Y ? 0

X # 10

Y # 15

Where ? is the constraint type (either = or #), X depicts sales and Y production?  Further, suppose we have

made a mistake and have specified the cost of production as a revenue item (i.e., the +2Y should be -2Y). 

Now, if the relation is an equality, then the optimal solution is X = Y = 10 (see file SIXEQ), and we do not

discover the error (although the dual variable on the first constraint is -2).  On the other hand, if the relation

is # then we would produce Y = 15 units while selling only X = 10 units (see file SIXLT).  Thus, the

weaker inequality form of the constraint allows an unrealistic production pattern indicating that something

is wrong with the model. 

6.1.3 Variable Identification

LP variables are the unknowns of the problem.  Variables are included for either technical,

 accounting or convenience reasons.  Technical variables change value in response to the objective function and

constraints. Convenience variables may not always respond to the objective function.  Rather, they may be

constrained at certain levels.  These might include variables representing the number of acres of land used for

houses and buildings.  Accounting variables facilitate solution summarization and model use.   

It is critically important that the technical variables logically respond to the objective function within the

range of values imposed by the constraints.  For example, one could setup a farm problem with variables

responding to an objective of minimizing soil erosion.  However, farmers choosing acreage may not primarily

try to minimize erosion; most farmers are also profit oriented. 

Many types of technical variables are possible.  A taxonomy is discussed in the LP Modeling Summary

chapter. 

Variables must be in consistent units.  Actually, there are no strict LP requirements on the variable
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units.  However, the intersection of the variable and constraint units impose requirements on the aij's as

discussed below.    Now, when can multiple variables be handled as one variable and when can't they? 

There are several cases when multiple variables must be defined: 

(a) When more than one process can be used to produce the same output using different 

resource mixes;  e.g., the production of an item using either of two different machines. 

(b) When different processes produce different outputs using common resources; i.e., one can 

use essentially the same resources to produce either 2 x 4 or 4 x 4 sawn lumber. 

(c) When products can be used in several ways; e.g., selling chickens that can be quartered or

halved.

Collectively, different variables should be used where their coefficients differ (i.e., the objective function

or aij coefficients differ across production possibilities).  However, the coefficients should not be strictly

proportional (i.e., one variable having twice the objective function value of another while using twice the

resources).

Criteria may also be developed where two variables may be treated as one.  The simplest case occurs

when the coefficients of one variable are simple multiples of another (aij = Kaim and cj = Kcm). The second case

occurs when one variable uniquely determines another; i.e., when n units of the first variable always implies

exactly m units of the second.

6.1.4 Objective Function

Once the variables and constraints have been delineated, then the objective function must be specified. 

The variables and constraints jointly define the feasible region.  However, the objective function identifies the

"optimal" point.  Thus, even with the proper variables and constraints, the solution is only as good as the

objective function.  Ordinarily, the first objective function specification is inadequate.  Most situations do not

involve strict profit maximization, but also may involve such things as risk avoidance or labor/leisure tradeoffs. 
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Multiple objective models are discussed in the multi-objective and risk chapters.  Also, ranging analysis can be

used to discover whether the solution will change with alterations in the objective function. 

6.1.5 Development of Model Structure

Model definition is an iterative process.  Consider a simple example where a profit maximizing firm

produces four crops subject to land and labor limitations.  Suppose that the crops are grown at different times of

the year.  Crop 1 is planted in the spring and harvested in the summer; crops 2 and 3 are planted in the spring

and harvested in the fall; and crop 4 is planted following crop 1 and is harvested in the fall.

The first step in developing a model is to lay out a table with potential variables across the top and

constraints/objective function down the side.  In this case we start with the layout in Table 6.1 where the

variables are crop acreages and the constraints are land and labor availability.  We then begin to define

coefficients.  Suppose ci gives the gross profit margins for crop i.   Simultaneously, land use coefficients and the

land endowment (L) are entered.  However, the land constraint only has entries for crops 1, 2 and 3, as crop 4

uses the same land as crop 1.  Thus, a single land constraint restricts land use on an annual basis. We also need

a constraint which links land use by crop 4 to the land use by crop 1.  Thus, our formulation is altered as shown

in Table 6.2, where the second constraint imposes this linkage. 

Now we turn our attention to labor.  In this problem, labor is not fully substitutable between all periods

of the year, i.e., the elasticity of substitution criterion is not satisfied.  Thus, we must develop time-specific labor

constraints for spring, summer and fall.  The resultant model is shown in Table 6.3.  Subsequently, we would

fill in the exact labor coefficients; i.e.; the d's and right hand sides.   

This iterative process shows how one might go about defining the rows and columns.  In addition, one

could further disaggregate the activities to allow for different timing possibilities. For example, if Crop 1

produced different yields in different spring planting periods, then additional variables and constraints would

need to be defined. 
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6.2 The Proper Usage of Variables and Constraints

Students often have difficulties with the definition of variables and constraints.  This section is intended

to provide insight by presenting a number of proper and improper examples. 

The applied LP modeler needs to recognize three concepts when forming constraints and variables. 

First, the coefficients associated with a variable reflect a simultaneous set of commitments which must occur

when a variable is nonzero.  All the resources used by a variable must be used to produce its output.  Thus, if a

variable depicts cattle and calf production using inputs of land, labor, and feed; then the model will simulta-

neously commit land, labor, and feed in order to get the simultaneous outputs - cattle and calves.  One cannot

obtain calves without obtaining cattle nor can one obtain cattle and calves without using land, labor, and feed.

Second, the choice is always modeled across variables, never within a variable.  For example, suppose

there are two ways of producing cattle and calves.  These production alternatives would be depicted by two

variables, each representing a simultaneous event. The model would reflect choice regarding cattle/calf

production within the constraints.  These choices do not have to be mutually exclusive; the model may include

complementary relationships between variables as well as substitution relationships (i.e. the constraint X-Y=0

makes X and Y complementary). 

Third, resources within a constraint are assumed to be homogeneous commodities.  Suppose there is a

single constraint for calves with the calves being produced by two variables.  In turn, suppose calves may be

used in two feeding alternatives.  In such a case the calves are treated as perfect substitutes in the feeding pro-

cesses regardless of how they were produced.

While obvious, it is surprising the number of times there are difficulties with these topics (even with

experienced modelers).  Thus, we will present cases wherein such difficulties could be encountered.

6.2.1 Improper and Proper Handling of Joint Products

Joint products are common in LP formulations.  For purposes of illustration, we adopt the following



     4The example is a disassembly problem, which is discussed in the More LP Modeling chapter.  Readers
having difficulty with its basic structure may wish to study that section.
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simplified example.4  Suppose a chicken is purchased and cut up into four component parts - breasts, legs,

necks, and giblets - following the breakdown data in Table 6.4.  Also, assume that each chicken weighs three

pounds and that there are 1,500 chickens available.

Now suppose that we formulate a profit maximizing LP model.  Such a LP model would involve

variables for cutting the chickens along with variables for parts sale.  Two alternative formulations will be

presented: one proper and one improper.  These formulations are shown in Table 6.5 and are labeled

Formulation 6.5(a) and Formulation 6.5(b).

The models maximize the value of the chicken parts produced.  A constraint is needed which limits the

number of chickens cut up to the number of chickens available.  In both formulations the coefficient 1/3 in the

last constraint transforms the chickens disassembled into pounds of chicken rather than whole chickens, so the

units of the first variable are in pounds of chicken cut up.  The next four variables are the quantities (pounds) of

parts sold.  In formulation 6.5(a) the constraint labeled Balance restrains the amount sold to the quantity of

chicken cut.  The formulation maximizes the value of chicken parts sold.  The decision is constrained by the

quantity of chicken disassembled and chickens available.  In Formulation 6.5(b), the objective function and last

constraint are the same.  However, there are balances for each part. 

Now which formulation is improper?  Suppose we examine what happens when Y equals one (i.e., that

we have acquired one pound of chicken for cutting up). Formulation 6.5(a) implies that variable X1 could equal

two if the other variables were set to zero.  Thus, from one pound of chicken two pounds of chicken breasts

could be sold.  This is not possible.  Similarly, 3.43 pounds of legs (X2) could be sold per pound of chicken.  10

pounds of necks (X3) or 20 pounds of giblets (X4) could be sold.  In formulation 6.5(b), the acquisition of one

pound of chicken would allow only .5 pounds of breasts, .35 pounds of legs and thighs, .1 pounds of necks, and
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.05 pounds of giblets. 

Clearly, formulation 6.5(b) is the proper formulation.  Formulation 6.5(a) depicts improper

representation of the joint products allowing an improper choice between the use of all the chicken meat among

any of the four component parts.  In fact, its optimal solution indicates 90,000 lbs of Giblets can be sold from

the 4,500 lbs of chicken (see the file SIX5A on the disk).  The component parts are a joint product that should

simultaneously occur in the model.

6.2.2 Alternatives for the Use of a Product

Errors also occur when modeling different ways products can be used.  Suppose we introduce the option

of selling chicken parts or deboning the parts then selling chicken meat.  Assume that there are no additional

resources involved, and that the meat yields are those in Table 6.4.  Again, we will illustrate proper modeling

with a right and a wrong formulation. 

The first model Table 6.6(a) has three new variables and constraints.  The three new variables sell meat

at $1.20.  The three new constraints balance meat yields with sale.  Thus, the coefficient in the breast quarter

meat row is the meat yielded when breast quarter is deboned (the breast quarter poundage per chicken times the

percentage of meat in a breast quarter).  

Formulation 6.6(b) adds four variables and one row.  The first three variables transform each of the

products into meat with the fourth selling the resultant meat.  The new constant balances the amount of meat

yielded with the amount of meat sold.          

Now which formulation is proper?  Let us examine the implications of setting the variable Y equal to 1

in Table 6.6(a).  As in our earlier discussion the solution would have, variables X1 through X4 at a nonzero

level.  However, in this formulation M1, M2, and M3 would also be nonzero.  Since both the X variables and the

M variables are nonzero, the chicken is sold twice.  In Table 6.6(b), when Y is set to one, then either X1 or M1

can be set to .5, but not both  (in fact, the sum of X1 + M1 can be no greater than 0.5).  Thus, the chicken parts
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can only be sold once. 

Formulation 6.6(b) is proper.  Formulation 6.6(a) contains an improper joint product specification, as it

simultaneously allocates products to mutually exclusive  uses.  Formulation 6.6(b) restricts any single part to

one use.  

6.2.3 Improper Specification of Multiple Factor Relationships

Factor usage is often subject to misspecification in terms of multiple factor relationships.  This case is

illustrated with yet another extension of the chicken example.  We now wish to allow sales of a mixed quarter

pack which is composed of an arbitrary combination of breast and leg quarters.  Let us introduce two models. 

The first model has the same constraints as Formulation 6.6(b) but introduces new variables where the breast

and leg quarters are put into the mixed quarter package (Formulation 6.7(a)).  

Formulation 6.7(b) involves three new variables and one new constraint.  The first two variables are the

poundage of breast and leg quarters utilized in the mixed packs.  The third variable is total poundage of mixed

quarter pack sold. The new constraint balances the total poundage of the mixed quarter packs sold with that

produced. 

Now the question again becomes which is right?  Formulation 6.7(a) is improper; the formulation

requires that in order to sell one pound of the mixed quarter pack, two pounds of quarters, one of each type,

must be committed and leads to a solution where no packs are made (see the file SIX7A).  In Formulation 6.7(b)

the two sources of quarters are used as perfect substitutes in the quarter pack, permitting any proportion that

maximizes profits.  The optimal solution shows all leg quarters sold as mixed quarter packs.  Formulation 6.7(a)

illustrates a common improper specification - requiring that the factors to be used simultaneously when multiple

factors may be traded off.  One should not require simultaneous factor use unless it is always required.  Multiple

variables are required to depict factor usage tradeoffs. 

6.2.4 Erroneous Imperfect Substitution
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Resource substitution may also be incorrectly prevented.  Consider a problem depicting regular and

overtime labor.  Suppose the basic product is chairs where: a) a chair requires 10 hours of labor of which an

average of 3 hours comes from overtime labor; b) the firm has an endowment of 77 hours of regular labor at

$10 per hour and up to 27 hours of overtime labor at $15 per hour.  We again introduce two formulations.

In Formulation 6.8(a) the variables indicate the number of chairs to produce and sell, along with the

amount of labor to acquire.  The constraints give a balance between the chairs produced and sold; balances

between the labor/quantities hired versus used; and limits on labor time available.

Model 6.8(b) is essentially the same, however, we have aggregated our labor use-hired balance so that

there is no distinction made between the time when labor is used (regular or overtime).

Which formulation is right?  This depends on the situation.  Suppose that labor works with equal

efficiency in both time classes.  Thus, one would be technically indifferent to the source of labor although

economically the timing has different implications. Now let us examine the formulations by setting X1 to one.  In

6.8(a) the model hires both classes of labor.  However, in 6.8(b) only regular time labor would be hired.  In fact,

in 6.8(a) the overtime limit is the binding constraints and not all regular time labor can be used and only nine

chairs are made; whereas in 6.8(b) eleven chairs could be produced and all the labor is used.  The second model

is the correct one since it makes no technical differentiation between labor sources.

6.3 Simple Structural Checking

There are some simple yet powerful techniques for checking LP formulations.  Two are discussed here

another in Chapter 17.

6.3.1 Homogeneity of Units

There are several general requirements for coefficient units.  Consider the LP problem:

Max c1X1 % c2X2

s.t. a11X1 % a12X2 # b1

a21X1 % a22X2 # b2
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Suppose that the objective function unit is dollars.  Let the first row be a land constraint in acres.  Let the

second row be a labor constraint in the unit hours. Further, suppose that X1 represents acres of wheat and X2

number of beef animals.

What implications do these specifications have for the units within the model? Parameter c1 must be the

dollars earned per acre of wheat while c2 must be the dollars earned per beef animal.  Multiplying these two

parameters by the solution values of X1 and X2 results in the unit dollars.  In turn, a11 represents the acres of

land used per acre of wheat.  The parameter a12 would be the number of acres of land utilized per beef animal. 

The units of the right hand side (b1) must be acres.  The units of the parameters a21 and a22 would respectively be

labor hours utilized per wheat acre and labor hours utilized per beef animal.  The units of the right hand side

(b2) must be hours of labor.

This example gives a hint of several general statements about units.  First, the numerator unit of each

coefficient in an equation must be the same and must equal the right-hand side unit.  Thus, a11 is the acres of

land used per acre of wheat, a12 is the acres of land used per beef animal and b1 the acres of land available.

Similarly, the coefficients associated with any particular variable must have a common denominator

unit, although the numerator will vary.  Thus, c1 is in the units dollars per acre of wheat, a11 is acres of land per

acre of wheat, and a21 is the hours of labor per acre of wheat.  In addition, note that the units of the decision

variable X1 are acres of wheat.  The denominator unit of all coefficients within a column must be the same as

the unit of the associated decision variable. 

6.3.2 Numerical Model Analysis

Another possible type of model analysis involves numerical investigation of the model. Here, one simply

mentally fixes variables at certain levels such as the level of 1, and then examines the relationship of this

variable with other variables by examining the equations.  Examples of this procedure are given in the proper

usage section above.
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Numerical debugging can also be carried out by making sure that units are proper, and it is possible to

utilize all resources and produce all products.  Finally, solvers such as OSL contain reduction procedures.

6.4 Data Development

Model specification requires data. The data need to be found, calculated, and checked for 

consistency.  Data development usually takes more time than either model formulation or solution.  However,

this time is essential.  Good solutions do not arise from bad data. 

Data development involves a number of key considerations. These include time frame, uncertainty, data

sources, consistency, calculation methods, and component specification.  

6.4.1 Time Frame 

Models must be established with a time frame in mind.  The time frame defines the characteristics of the

data used.  The objective function, technical coefficient (aij's) and right hand side data must be mutually

consistent.  When the model depicts resource availability on an annual basis, then the objective function

coefficients should represent the costs and revenues accruing during that year. A common misspecification

involves an annual model containing investment activities with the full investment cost in the objective function. 

Dynamic considerations may be relevant in the computation of objective function coefficients. It is

crucial that the objective function coefficients be derived in a consistent manner.  Returns today and returns in

ten years should not be added together on an equal basis.  Issues of dynamics and discounting must be

considered as discussed in the Dynamic LP Chapter.

6.4.2 Uncertainty

The data developer must consider uncertainty.  Coefficients will virtually never be known with

certainty.  For example, when variables involve transport of goods from one place to another, the transport costs

are not entirely certain due to difficulties with pilferage, spoilage, adherence to shipping containers, and leakage.
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The modeler is forever facing decisions on how to incorporate data uncertainty.  The risk programming chapter

presents formal methods for incorporating uncertainty.  However, many modelers use average values or

conservative estimates.

6.4.3 Data Sources

Data may be developed through statistical estimation or deductive processes.  Data for coefficient

estimation can be from either cross-sectional or time series sources.  Data may be developed using a case firm

(or firms) approach where a deductive, economic engineering process is used to manufacture representative

coefficient values.  Data sources will vary by problem, and the modeler must apply ingenuity as well as

problem-specific knowledge to develop consistent, reliable data.  

6.4.4 Calculation Methods

Data can be calculated via economic engineering or via statistical methods.  While these are only two

extremes of a continuum of possibilities, we will discuss only these two.  Economic engineering refers to

coefficient construction through a deductive approach. For example, suppose we compute the profit contribution

of a variable by calculating the per unit yield times sale price less the per acre input usage times input price (i.e.,

if wheat production yields 40 bushels of wheat which sells for $5 per bushel and 20 bales of straw each worth

$.50 while input usage is $30 worth for seed and 6 sacks of fertilizer, which cost $4 each;  then, the objective

function coefficient would be $156.) 

At the other extreme, one could develop multiple observations from time series, cross-sectional or

subjective sources and use averages, regression or other data summarization techniques.  Such data might in

turn be transformed using an economic engineering approach to generate relevant coefficients. For example, one

might estimate a function statistically relating yield to fertilizer use and labor use.  Then one might set a level of

fertilizer use, calculate the yield, and use an economic engineering approach to develop the objective function

coefficients. 
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6.4.5 Consistency

Coefficients in a model must be mutually consistent.  The most common causes of inconsistency are

dynamic inconsistencies and inconsistencies in coefficient units (e.g., a technical coefficient in hours and a

right-hand side in thousands of hours).  The homogeneity of units rules above must be followed. 

6.4.6 Specification of Individual Components

LP problems require right hand side, objective function, and technical coefficient specification.  There

are comments that can be made pertinent to the specification of each. 

6.4.6.1 Objective Function Coefficients

Ordinarily, the objective function coefficients should be the value that the decision maker expects.  This

is particularly important when using time series data as the decision maker will not necessarily expect the series

average.  Rather, some extrapolation of the trend may be appropriate.  Brink and McCarl encountered

difficulties when attempting to validate a LP model because of differences in expectations between the time the

model was developed and the time actual decisions were made. 

Several other comments are relevant regarding the objective function.  First, multiplication of a LP

objective function by a positive constant always leads to the same solution in terms of the decision variables. 

Thus, one does not need to be extremely concerned about the absolute magnitude of the objective function

coefficients but rather their relative magnitudes.

Second, the coefficients must reflect the actual prices received or paid for the product.  If a product is

being sold, one should not use prices from distant markets but rather prices adjusted to include marketing costs. 

Input prices often need to be adjusted to include acquisition costs. 

Finally, each objective function coefficient should be developed in harmony with the total model

structure.  Often, students try to insure that each and every objective function coefficient in a profit maximizing

model is the per unit profit contribution arising from that particular variable.  This often leads to mistakes and
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Max 3X1 & 2X2

s.t. X1 & X2 ' 0

X1 # 10

X2 # 8

great confusion.  Consider the model 

Suppose X1 represents the sale of a commodity and X2 the purchase of inputs.  In order to sell X1 one must

purchase X2 as reflected by the first constraint.  One could use the equality constraint to collapse X1 and X2 into

a single variable, but this may not be desirable.  The contribution of X1 is fully represented in the above model. 

The objective function should collectively represent the net margin and one does not need to compute each varia-

ble's coefficient so that it is the per unit net contribution. 

6.4.6.2 Right hand Side Coefficients

Right hand side coefficients are not always easily specified.  For example, consider the amount of labor

available.  One could think that this is the number of employees times the hours they work a week.  However,

the nominal and real availability of resources often differs.  In the labor context, there are leaves due to sickness,

vacation, and alternative assignments diverting labor to other enterprises.  Weather can also reduce effective

availability.  Finally, the right hand sides need to be developed on the same time frame as the rest of the model. 

6.4.6.3 Technical Coefficients

The aij (technical) coefficients within the model give the resource use per unit of the variables.  In

developing technical coefficients, one usually uses economic engineering.  For example, per unit labor use might

be calculated by dividing the total hours of labor by the number of units produced.  Such a calculation

procedure by its nature includes overhead labor usages such as setup time, cleaning time, etc.  However, one

needs to be careful in handling fixed usages of labor which do not vary with production.
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6.5 Purposeful Modeling

The purpose of a modeling exercise influences how a model is implemented.  Some variables and

constraints become relevant or irrelevant depending upon what exactly is to be done with the model.  For

example, when studying short-run operating decisions one can omit investment variables and capital constraints. 

On the other hand, if the focus of the study is investment one may be able to simplify the short-run operating

model and come up with an approximation of how investments should be utilized if acquired.  Model purpose

also has important implications for the specific way a model answer is given to a decision maker.

6.5.1 Model Structure

Any problem can be formulated in a number of different ways. Modelers almost always have the option

of collapsing items into the objective function or entering them explicitly in the constraints.  Often the purpose of

a modeling exercise influences model structure (although this is less true when using GAMS than with using

conventional methods).

Years ago when LP models were solved by hand or with early LP solvers, it was desirable to construct

the smallest possible representation for a particular situation.  Today, model condensation is not as desirable

because of increased computer and solver capability.  Rather, modelers often introduce size increasing features

which reduce modeler/analyst interpretation and summarization time.  This section discusses ways which study

purpose may change formulations (although the discussion is not entirely consistent with our GAMS focus).  

Consider a case in which products (Xj) are sold at an exogenously fixed price, pj.  Suppose production

utilizes a number of inputs, Zm, purchased at an exogenously fixed price, rm.  Each unit of the production

variable (Yk) incurs a direct objective function cost, qk, yields (ajk) units of the jth product and uses bmk units of

the mth input.  Also, there are constraints on unpriced inputs (i).  A formulation is: 
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'
k
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'
k

cik Yk # ei for all i
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Max '
k

gk Yk

s.t. '
k

cik Yk # ei for all i

Yk $ 0

gk ' j
j

pj ajk & j
m

rm bmk & qk

This formulation contains a constraint for each product and each input. One could utilize the first two

constraint equations to eliminate Xj and Zk from the model yielding the formulation: 

where the gk's are given by

Suppose the study involves examination of the implications of input and output prices.  In the second

formulation,  these prices are compacted into the objective function coefficients.  In the first problem, however,

these prices are explicitly included in the objective function. This difference gives a reason why one might prefer

the first as opposed to the second formulation.  If the prices were to be repeatedly changed, then only one

coefficient would have to be changed rather than many.  Further, one could easily use cost-ranging features

within LP algorithms to study the effects of changes in  rm.  In addition, the solution would report the optimal
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production (Xj) and input usage (Zm) levels.  Post-solution summarization of total yield and input usage would

require many calculations under the condensed model, but with Zm explicitly included in the formulation, only

one number would need to be recorded. 

Usage of modeling systems like GAMS places a little different twist on the discussion above as one can

easily use GAMS to do post solution report writing and since GAMS computes the whole model every time,

changing one or many coefficients makes little difference.

6.5.2 Report Writing

A very important aspect of model use is properly summarizing the output so that understandable

information is generated for the decision makers involved with the modeling exercise.  This introduces the

general topic of report writing.  

Linear programming solution reports are generally inadequate for conveying the essence of the solution

to the decision maker.  It is highly desirable to develop reports which summarize the solution as part of the

computer output, possibly an autonomous part.  Such reports can be designed to translate the model solution

into decision maker language using both the solution results and the input parameters.  An example of such

report writing is presented in Table 6.10 which gives summary reports on the transportation model from the last

chapter.  These reports are broken into five tables.  The first Table entitled MOVEMENT gives the quantity

moving between each pair of cities along with the total movement out of a particular plant and into a particular

market.  The elements of this table are largely optimal levels of the decision variables in the solution.  The

second table (COSTS) gives a summary of commodity movements cost by route telling the exact cost of moving

between pairs and then the total costs of moving goods out of plants or into markets.  This set of outputs is not

directly from the linear programming solution, but rather is the cost of movement between a particular city pair

times the amount moved.  The only number in the table directly from the linear programming output is the

objective function value.  The third gives a supply use report for each supply point giving the available supply,
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the amount shipped out, and the marginal value of that shipment (which is the shadow price).  The fourth table

gives similar information for the demand markets.  Finally, there is the table CMOVEMENT which gives the

cost of changing the commodity movement pattern which is a reformat of the reduced costs of the decision

variables.  In general, the function of a report writer is to summarize the essence of the solution, making it more

readable to decision makers.  In many applied studies it is valuable to develop a report format ahead of time,

then structure the model and model experiments so that the report data are directly generated.  The use of

computerized report writing instead of hand summaries is a great advantage and can save hours and hours of

modeler time.  This is particularly facilitated when one uses a computerized modeling system such as GAMS.  
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Table 6.1. Initial Schematic for Example Farm Planning Problem

Crop 1 Crop 2 Crop 3 Crop 4 RHS

Objective c1 c2 c3 c4

Land 1 1 1 #  L

Labor

Table 6.2. Revised Schematic for Example Farm Planning Problem

Crop 1 Crop 2 Crop 3 Crop 4 RHS

Objective  c1 c2 c3 c4

Land  1 1 1 #  L

Land After Crop 1 -1 1 #  0

Labor

Table 6.3. Final Table for Example Farm Planning Problem

Crop 1 Crop 2 Crop 3 Crop 4 RHS

Objective  c1 c2 c3 c4

Land  1 1 1 # L

Land After Crop 1 -1 1 # 0

Labor -Spring  d1 d3 d5 # sp

Labor - Summer  d2 d7 # su

Labor - Fall d4 d6 d8 # f
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Table 6.4.  Composition of a Chicken and Sales Prices for the Component Parts 

Percent of Chicken
Body Weight

Sale Price 
of Part

Percentage Chicken
Meat

lbs. part/lbs. chicken $/lb. lbs. meat/lb. part

Breast Quarter 50 1.00 75

Leg Quarter 35 .80 60

Neck 10 .20 20

Giblets 5 .70 0

Table 6.5.  Alternative Formulations of Chicken Processing Problem

Formulation 6.5(a)

Chickens
(lbs.)

Breast
Quarter
(lbs.)

Leg
Quarter
(lbs.)

Neck
(lbs.)

Giblets
(lbs.)

Maximize

Objective function ($) + 1.00X1 + 0.80X2 + 0.20X3 + 0.70X4

Balance (lbs.)    -Y + 0.50X1 + 0.35X2 + 0.1X3 + 0.05X4 # 0

Chickens Available
(birds)

1/3Y # 1500

Formulation 6.5(b)

Chickens
(lbs.)

Breast
Quarter
(lbs.)

Leg
Quarter
(lbs.)

Neck
(lbs.)

Giblets
(lbs.)

Maximize

Objective Function ($) + 1.00X1 + 0.80X2 + 0.20X3 + 0.70X4

Breast Quarter -0.50Y + X1 # 0

Leg Quarter -0.35Y + X2 # 0

Neck -0.10Y + X3 #  0

Giblets -0.05Y + X4 # 0

Chickens 1/3Y # 1500
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Table 6.6.  Formulations for Processing Chickens with the Option of Deboning

Formulation 6.6(a)

Chicken
Breast
Qtr.

Leg
Qtr. Neck Giblet

Breast
Qtr.
Meat

Leg
Qtr.
Meat

Neck
Meat

Objective 1.0X1 + 0.8X2 + 0.2X3 + 0.7X4 + 1.2M1 + 1.2M2 + 1.2M3

Breast
Qtr.

-0.5Y + X1 # 0

Leg Qtr. -0.35Y + X2 # 0

Neck -0.1Y + X3 # 0

Giblets -0.5Y + X4 # 0

Chickens 1/3Y # 1500

BQ Meat -(0.05)(0.75)Y + M1 # 0

LQ Meat -(0.35)(0.6)Y + M2 # 0

N Meat -(0.2)(0.1)Y + M3 # 0

Formulation 6.6(b)

Chicken
Breast
Qtr.

Leg
Qtr. Neck Giblet

Breast
Qtr.
Meat

Leg
Qtr.
Meat

Neck
Meat

Total
Meat
Sold

Objective 1.0X1 +0.8X
2

+0.2X
3

+0.7X
4

+
1.2M4

Breast Qtr. -0.5Y + X1 +M1 # 0

Leg Qtr. -0.35Y + X2 +M2 # 0

Neck -0.1Y + X3 +M3 # 0

Giblets -0.05Y  + X4 # 0

Chickens 1/3Y # 1500

Meat -
0.75M1

-0.6M2 -0.2M3 +M4 # 0
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Table 6.7.  Formulations of the Chicken Assembly-Disassembly Problem

Formulation 6.7(a)

Chicken
BQ LQ Neck Giblet BQ Meat LQ Meat Neck

Meat
Total
Meat Sold

MQ Sold

Objective 1.0X1 + 0.8X2 + 0.2X3 + 0.7X4 + 1.2M4 + 0.95Q

BQ -0.5Y +     X1 + M1 +   0.5Q # 0

LQ -0.35Y +     X2 + M2 +   0.5Q # 0

Neck -0.1Y +     X3 + M3 # 0

Giblets -0.05Y +     X4 # 0

Chickens 1/3Y # 1500

Meat - 0.75M1 - 0.6M2 - 0.2M3 + M4 # 0

Formulation 6.7(b)

Chicken BQ LQ Neck Giblet BQ Meat LQ Meat Neck
Meat

Total
Meat
Sold

BQ
included
in MQ

LQ
include
d in
MQ

MQ
Sold

Objective 1.0X1 + 0.8X2 + 0.2X3 + 0.7X4 + 1.2M4 0.95Q
3

BQ -0.5Y + X1 + M1 + Q1 # 0

LQ -0.35Y + X2 + M2 + Q2 # 0

Neck -0.1Y + X3 + M3 # 0

Giblets -0.5Y + X4 # 0

Chickens 1/3Y # 1500

Meat - 0.75M1 - 0.6M2 - 0.2M3 + M4 # 0

Qtr. Pack - Q1 - Q2 0 Q3 # 0
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Table 6.8.  Alternative LP Formulations of Chair Production Example

Formulation 6.8(a)

Chair
Production

 Regular
Labor

Overtime
Labor

Chair
Sale

Objective - 10 - 15 + 220

Chairs -1 + 1 # 0

Regular Labor 7 - 1 # 0

Overtime Labor 3 - 1 # 0

Regular Labor Constraint 1 # 77

Overtime Labor Constraint 1 # 27

Formulation 6.8(b)

Chair
Production

Regular
Labor

Overtime
Labor

Chair
Sale

Objective - 10 - 15 +    220

Chairs -1 +        1 # 0

Regular Labor 10 - 1 - 1 # 0

Regular Labor Constraint 1 # 77

Overtime Labor Constraint 1 # 27
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Table 6.9 Example of GAMS Report Writing

----     53 PARAMETER MOVEMENT      COMMODITY MOVEMENT

               MIAMI     HOUSTON    MINEPLIS    PORTLAND       TOTAL

NEWYORK           30          35          15                      80
CHICAGO                                   75                      75
LOSANGLS                      40                      50          90
TOTAL             30          75          90          50         245

----     61 PARAMETER COSTS         COMMODITY MOVEMENT COSTS BY ROUTE

               MIAMI     HOUSTON    MINEPLIS    PORTLAND       TOTAL

NEWYORK          600        1400         525                    2525
CHICAGO                                 1500                    1500
LOSANGLS                    1400                    2000        3400
TOTAL            600        2800        2025        2000        7425

----     68 PARAMETER SUPPLYREP     SUPPLY REPORT

           AVAILABLE        USED   MARGVALUE

NEWYORK       100.00       80.00
CHICAGO        75.00       75.00       15.00
LOSANGLS       90.00       90.00        5.00

----     75 PARAMETER DEMANDREP     DEMAND REPORT

            REQUIRED    RECEIVED    MARGCOST

MIAMI          30.00       30.00       20.00
HOUSTON        75.00       75.00       40.00
MINEPLIS       90.00       90.00       35.00
PORTLAND       50.00       50.00       45.00

----     80 PARAMETER CMOVEMENT     COSTS OF CHANGING COMMODITY MOVEMENT 
                                    PATTERN

               MIAMI     HOUSTON    MINEPLIS    PORTLAND

NEWYORK                                            75.00
CHICAGO        45.00       35.00                   40.00
LOSANGLS       75.00                   40.00



     5  The GAMS formulations are included on the attached disk in the CH7 subdirectory.
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Xj $ gj for all j

Xj , Qk $ 0 for all k , j

CHAPTER VII:  MORE LINEAR PROGRAMMING MODELING

In this chapter we continue our concentration on LP modeling.  However, we lessen our concentration on

GAMS5 and duality.  This presentation is organized around common LP problems.  The first problem involves

product assembly where component parts are assembled into final products.  This is followed by problems which

cover:  a) raw products disassembled into component parts; b) simultaneous raw product disassembly and

component assembly processes; c) optimal operation sequencing; d) commodity storage; e) input output analysis;

and f) block diagonal problems. 

7.1 Assembly Problem

An important LP formulation involves the assembly or blending problem.  This problem deals with

maximizing profit when assembling final products from component parts. The problem resembles the feed

formulation problem where mixed feeds are assembled from raw commodities; however, the assumption of known

component mixtures is made.  This problem appears in Dano, who presents a brief literature review.

The problem formulation involves k component parts which can be purchased at a fixed price.  The

decision maker is assumed to maximize the value of the final products assembled less the cost of c

components.  Each of the final products uses component parts via a known formula.  Also, fixed resources

constrain the production of final products and the purchase of component parts.  The formulation is

where:  j is the final product index; cj is the return per unit of final product j assembled; Xj is the number of units of

final product j assembled; k is the component part index; dk is the cost per unit of component part k; Qk is the

quantity of component part k purchased; akj is the quantity of component part k used in assembling one unit of

product j; wk is the number of units of the component part received when Qk is purchased; I is the index on resource

limits; eij is the use of limited resource I in assembling one unit of product j; fik is the use of the ith limited resource

when acquiring one unit of QK; bi is the amount of limited resource I available; gj is the amount of jth product which
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& wkUk % '
i

fik Zi $ &dk

'
i

fikZi % dk $ wkUk

'
i

fikZi % dk

wk

$ Uk

must be sold; and hk is the firm's inventory of ingredient k. 

In this formulation the objective function maximizes the return summed over all the final products produced

less the cost of the component parts purchased.  The first constraint equation is a supply-demand balance and

constrains the usage of the component parts to be less than or equal to inventory plus purchases. The second

constraint limits the resources used in manufacturing final products and purchasing component parts to the

exogenous resource endowment.  The last constraint imposes a minimum sales requirement on final product

production.  All of the variables are assumed to be nonnegative.  This problem contains production variables which

produce the jth product (Xj) and purchase variables (Qk). 

The dual problem is not very much different from those before, thus, suppose we only look at the dual

constraint associated with Qk.  That constraint

where Uk is the return to one unit of component part k; and Zi is the return to one more unit of limited resource I.  

This constraint is more easily interpreted if it is rewritten as follows

or, equivalently,

This inequality says that the internal value of a component part unit is less than or equal to its purchase price plus

the cost of the resources used in its acquisition.  Therefore, the internal value of a component part can be greater

than the amount paid externally. 

7.1.1 Example

The assembly problem example involves PC compatible computer assembly by Computer Excess (CE). 

CE is assumed to assemble one of six different computer types: XT, AT, 80386-25, 80386-33, 80486-SX, and

80486-33.  Each different type of computer requires a specific set of component parts.  The parts considered are

360K floppy disks, 1.2 Meg floppy disks, 1.44 Meg floppy disks, hard disks, monochrome graphics setups,  color

graphics setups, plain cases, and fancy cases.  The component part requirements to assemble each type of computer

are given in Table 7.1.  The table also contains component parts’ prices, as well as sales, inventory and resource

(labor and shelf space) requirements.  The resource endowment for labor is 550 hours while there are 240 units of
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system space and 590 units of shelf space.  The problem formulation is given in Table 7.2 while the solution is

given in Table 7.3.  The GAMS implementation of this formulation is called ASSEMBLE. 

There are no particularly unique features of the empirical formulation or solution, so interpretation is left to

the reader.

7.1.2 Comments

The assembly problem is related to the feed formulation problem.   Namely, the assembly problem assumes

that known least cost mixes have been established, and that one wishes to obtain a maximum profit combination of

these mixes.  There are numerous assumptions in this problem.  For example we assume all prices are constant and

the quantity of fixed resources is constant.  One could extend the model to relax such assumptions.

7.2 Disassembly Problems

Another common LP formulation involves raw product disassembly.  This problem is common in

agricultural processing where animals are purchased,  slaughtered and cut into parts (steak, hamburger, etc.) which

are sold.  The problem is also common in the forest products and petroleum industries, where the trim, cutting stock

and cracking problems have arisen.   In the disassembly problem, a maximum profit scheme for cutting up raw

products is devised.  The primal formulation involves the maximization of the component parts revenue less the raw

product purchase costs, subject to restrictions that relate the amount of component parts to the amount of raw pro-

ducts disassembled.  The basic formulation is 

where j indexes the raw products disassembled; k indexes the component parts sold; r indexes resource availability

limits; cj is the cost of purchasing one unit of raw product j; Xj is the number of units of raw product j purchased;

dk is the selling price of component part k; Qk is the quantity of component part k sold; akj is the yield of component

part k from raw product j; erj is the use of resource limit r when disassembling raw product j; frk is the amount of
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resource limit r used by the sale of one unit of component part k; br is the maximum amount of raw product limit r

available; gj is the maximum amount of component part I available; and hk is the maximum quantity of component

k that can be sold, while Mk is the minimum amount of the component k that can be sold.

The objective function maximizes operating profit, which is the sum over all final products sold (QK) of the

total revenue earned by sales less the costs of all purchased inputs.  The first constraint is a product balance -

limiting the quantity sold to be no greater than the quantity supplied when the raw product is disassembled.  The

next constraint is a resource limitation constraint on raw product disassembly and product sale.  This is followed by

an upper bound on disassembly as well as upper and lower bounds on sales. 

The Xj are production variables indicating the amount of the jth raw product which is disassembled into the

component parts (the items produced) while using the inputs ejr.  The Qk are sales variables indicating the quantity

of the kth product which is sold.   

7.2.1 Example

The disassembly problem example involves operations at Jerimiah's Junk Yard.  The firm is assumed to

disassemble up to four different types of cars : Escorts, 626's, T-birds, and Caddy's.  Each different type of car

yields a unique mix of component parts.  The parts considered are metal, seats, chrome, doors and junk.  The

component part yields from each type of car are given in Table 7.4 as are data on car purchase price, weight,

disassembly cost, availability, junk yard capacity, labor requirements, component part minimum and maximum

sales possibilities, parts space use, labor use, and sales price.   The resource endowment for labor is 700 hours

while there is 42 units of junk yard capacity and 60 units of parts space.  We also extend the basic problem by

requiring parts to be transformed to other usages if their maximum sales possibilities have been exceeded.  Under

such a case, chrome is transformed to metal on a pound per pound basis, while seats become junk on a pound per

pound basis, and doors become 70% metal and 30% junk.  The problem formulation is given in Table 7.5 while the

solution is given in Table 7.6.  The GAMS implementation of this formulation is called DISSASSE. 

Note the empirical formulation follows the summation notation formulation excepting for the addition of

the parts transformation activities and the equality restrictions on the parts balance rows.  This is reflected in the

solution where, for example, the excess seats are junked making more seats worth the junk disposal cost. 

7.2.2 Comments

It is difficult to find exact examples of the disassembly problem in literature.  This formulation is a rather

obvious application of LP which, while having been studied a number of times, is not formally recognized.
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A number of observations are possible.   First, raw products are assumed to be separable into the

individual component parts.  While this assumption is not restrictive here, it is more important in the

assembly-disassembly problem as discussed below.  Second, the product demand curve reflects an finitely inelastic

demand at the minimum, then an infinitely elastic portion at the price up until the maximum is met, then zero

demand.  This is very common in LP, although inventories or minimum requirements would yield slightly different

setups.  Third, this is an example of the joint product formulation where multiple products are created by the

acquisition of the raw products. 

7.3 Assembly-Disassembly

A unification and extension of the above two models involves the assembly-disassembly problem. In that

problem, one purchases raw products, disassembles them and reassembles the component parts into finished

products.  This type of problem would be most applicable for vertically integrated processing facilities.  One

example is meat packing, where animals are purchased, disassembled into parts, and then reassembled into such

composite products as sausage, ham, processed meats, etc.  A similar example would be given by a furniture manu-

facturer that bought raw logs, cut them up, then used the sawn lumber in a furniture manufacturing business.  The

basic formulation is

where: j indexes raw product; k indexes manufactured product; i indexes component parts; r indexes resource

limits; cj is the cost per unit of raw material; Xj is the number of units of raw product purchased; dk is the return per

unit of manufactured product k;  Qk is the number of units of manufactured product k which are assembled; si is the

return the firm realizes from selling one unit of component part i; Ti is the number of units of component parts i

which are sold;  pi is the per unit purchase price for acquiring component part i; Zi is the number of units of
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component part i purchased;  aij is the yield of component part i from one unit of raw product j; bik is the use of

component part i to produce one unit of manufactured product k; erj is the use purchasing one unit of the Xj raw

product makes of the rth resource; frk is the use manufacturing one unit of Qk product makes of the rth resource; gri is

the use that one unit of Ti  makes of the rth resource; hri is the use one unit of Zi makes of the rth resource; and "r is

the availability of the rth resource.  In addition each of the four types of variables are bounded above and

nonnegative. 

This model covers the disassembly of raw products (Xj), the assembly of final products (Qk), the sale of

component parts (Ti), and the purchase of component parts (Zi).  The objective function maximizes the revenue

from final products and component parts sold less the costs of the raw products and component parts purchased. 

The first constraint is a supply-demand balance, and balances the use of component parts through their assembly

into final products and direct sale, with the supply of component parts from either the disassembly operation or

purchases.  The remaining equations impose resource limitation constraints and upper bounds.  The problem

contains production (Xj, Qk), sale (Ti) and purchase variables (Zi).  

7.3.1 Example

Charles Chicken Plucking and Sales Company purchases chickens, cuts them and repacks them into

chicken meat packages.  All chickens are available for $1.00, have the same weight and breakdown identically in

terms of wings, legs, etc.  Charles can, however, cut up the chickens in several different manners.   Chickens may

be cut into parts, meat, quarters, halves, or breast, thigh, and leg cuts.  From these Charles gets wings, legs, thighs,

backs, breasts, necks, gizzards, meat, breast quarters, leg quarters and halves.  Chickens yield 1 lb. of meat, 80

percent of which is in the leg-thigh and breast region.  The  cutting patterns and yields, labor requirements, and sale

prices are shown in Table 7.7.  

Charles sells parts individually or sells packs which contain: a) a cut-up chicken with all parts from one

chicken except gizzards; b) 4 breast quarters; c) 4 leg quarters; d) 2 chicken halves; and e) two legs and two thighs. 

Charles also sells gizzard packs with 10 gizzards in them.  The individual parts sell at prices shown in Table 7.7.

Production capacity allows 1,000 chickens to be cut up per day.  The company may purchase wing, leg, or

thighs from other suppliers; however, no more than 20 units of each part are available.  The price of purchasing is

$0.02 above the market sales price.  The firm has 3,000 units of labor available.

To formulate this problem four classes of variables must be defined: 1) chicken disassembly variables

depicting the number of chickens cut via the patterns for - Parts (Xp), Halves (Xh), Quarters (Xq), Meat (Xm), and
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Leg-Breast-Thigh (XL); 2) assembly variables for the packs A - E (Xa - Xe) and the gizzard pack (Xg); 3)

raw-product sales variables; and 4) raw product purchase variables.  These variables are set subject to constraints

on part supply, chicken availability, labor and purchase limits.  The formulation is shown in Table 7.8.  The

GAMS implementation is called ASSDISSM.

There are several features of this formulation which merit explanation.  First, negative coefficients in the

supply and demand rows depict supplies of component parts from either purchase or raw product disassembly,

while the positive coefficients depict usages.  Examining the thigh row, thighs can be obtained if one cuts a chicken

into parts, or into the leg-breast-thigh pattern.  Thighs may also be acquired through external purchase.  Demand

for these thighs comes from the sale of packs of A and E, as well as the direct sale of thighs.  Second, the last three

constraints give the resource limit constraints on purchases.  However, these constraints limit a single variable by

placing an upper bound on its value. Constraints which limit the maximum value of a single variable are called

upper bound constraints.  

The solution to this problem is shown in Table 7.9.  This solution leads to an objective function value of

$1362.7 where 1000 chickens are bought, cut by the Leg-Breast Thigh Pattern and sold as 1010 units of pack E. 

In addition, 2000 breasts, 1000 necks, 200 lbs. meat, 20 thighs and 20 legs purchased.  The resultant marginal

value of products of the resources are given by the shadow prices.

7.3.2 Comments

There are several important assumptions embodied in the Charles Chicken problem.  One of these involves

separability -- that the parts can be disassembled and assembled freely.  While this assumption appears obvious, let

us illustrate an example wherein this assumption is violated.  Suppose that one wishes to solve a blending problem

mixing two grades of grain (A,B) from two batches (G1, G2).  Suppose that moisture and foreign matter are the

component parts, and the relevant parameters are given in Table 7.10.  Further, suppose there are 20 units of each

of two batches of grain available, and that grade A grain sells for $3.00 per unit, and grade B grain for $2.00 per

unit. 
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Max 3A % 2B

s.t. & A & 2B % 2G1 % G2 # 0

& A & 2B % G1 % 2G2 # 0

A % B & G1 & G2 ' 0

G1 # 20

G2 # 20

A, B, G1 , G2 $ 0

Now suppose this problem is formulated as an assembly-disassembly problem.  This formulation 

is where A is the quantity of grade A grain made, B the quantity of grade B grain made, G1 the quantity of batch 1

grain used, and G2 the quantity of batch 2 grain used (see file GRAIN1).  The model balances the maximum

moisture, foreign matter, and weight with the amount in each grain.  The resultant solution gives an objective

function value equal to 100.  The variable values and shadow prices are presented in Table 7.11.

There is a problem with this solution.  It is impossible, given the data above, to make a mix 20 units each

of grade A and grade B grain.  The requirement for maximum moisture and foreign matter is 1 percent in grade A

grain, so neither of the grain batches could be used to produce grade A, as they both exceed the maximum on this

requirement.  The solution above, however, implies that we could make 20 units of grade A grain and 20 units of

grade B grain.  The model uses excess moisture from grain batch 1 in grade B grain, while the excess foreign

material from grain batch 2 is also put in the grade B grain.  This is clearly impossible, as moisture and foreign

matter are not separable (Ladd and Martin make this mistake as pointed out in Westgren and Schrader).  Thus, this

situation violates the separability assumption; the items in a row cannot be used freely in either of the two blends. 

The proper formulation of the blending problem is
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Max 3A % 2B

s.t. & A % 2G11 % G21 # 0

& A % G11 % 2G21 # 0

A & G11 & G21 ' 0

& 2B % 2G12 % G22 # 0

& 2B % G12 % 2G22 # 0

B & G12 & G22 ' 0

G11 % G12 # 20

G21 % G22 # 20

A, B, G11 , G21 , G12 , G22 $ 0

The optimal solution gives an objective function value of 80 (see file GRAIN2).  The optimal value of the variables

and equation information is shown in Table 7.12.

Here, note that all the grain goes into grade B, and the objective function is smaller.  Separability is an

important assumption, and one must be careful to insure that it holds in any assembly-disassembly problem.

7.4 Sequencing Problems

Often, production entails multiple intermediate processes and requires that each process be completed

before the next one is started.  Furthermore, the intermediate processes often compete for resources.  A farming

example of this situation involves the requirement that plowing be done before planting and that planting be done

before harvest.  However, plowing and planting may go on at the same time on different tracts of land.  Thus,

plowing and planting could draw from the same labor and machinery pools.  Similarly, plowing could be done in

the fall during the harvesting period, thus harvesting and fall plowing compete for the same resources. 

A problem which explicitly handles such a situation involves sequencing.  Sequencing models insure that

the predecessor processes are completed before the successor processes can begin.  In LP models the sequencing

considerations generally take one of two forms.  Sequencing may be controlled within a variable or between

variables using constraints.  Sequencing within a variable is done whenever the occurrence of one event implies that

another event occurs a fixed time afterward, or whenever the timing of events influences their economic returns.  In

this case both the predecessor and successor tasks are embedded in a variable.  Sequencing between variables is

done whenever the successor process follows the predecessor process an indefinite amount of time later, but the
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Y1 # X1 or &X1 % Y1 # 0

Y2 # X1 % X2 & Y1 or &X1 & X2 % Y1 % Y2 # 0

Y3 # X1 % X2 % X3 & Y1 & Y2 or &X1 &X2 & X3% Y1 % Y2 % Y3 # 0

economic return to the successor is not a function of when the predecessor was done.  For example, one may plant a

crop and not care when it was plowed; on the other hand, if one harvests a crop and the yield of the crop depends on

both the planting and harvesting dates, then this would require sequencing within a variable.  Both cases will be

illustrated. 

Sequencing considerations are hard to write algebraically and the result is often confusing to students. 

Thus, we will alter our presentation style and use an example before the algebraic formulation.  Suppose a firm

produces an output using two tasks.  Further suppose that production process occurs somewhere in a three week

period, and that the successor or predecessor can be done in any of those three weeks.  However, the predecessor

task must be completed before the successor task.  Two cases can arise.  First, the successor/predecessor date could

jointly determine economic returns and/or resource use.  Second, the yield, returns, etc., could be independent of

timing as long as the predecessor occurs first. 

Let us consider the latter case first.  Suppose we denote X1, X2 and X3 as the amount of the predecessor

done in weeks 1, 2, and 3, and Y1, Y2 and Y3 as the amount of the successor done in weeks 1, 2, and 3.  In week 1

the level of the successor activity (Y1) must be less than or equal to the amount of the predecessor activity (X1)

completed.  Algebraically, this implies

In week 2, the amount of the predecessor activity which could be completed by then is X1+X2. The total

amount of the successor activity at that time would be that used this week (Y2), plus that used last week Y1.  The

sequencing requirement is that Y2  must be less than or equal to X1 plus X2 minus what was used in Period 1 or,

algebraically

The intersection of this constraint with that above allows no more of the successor activity to be nonzero in

the first week than is present at that time.  However, more of the predecessor may be produced than used in the first

week; with the extra carried over into later weeks for usage.

In the third week, the amount of the successor activity (Y3) is less than or equal to the amount of

predecessor activity that could be supplied up to that period (X1 + X2 + X3) less that used in periods 1 and 2 (Y1 +

Y2).

Algebraically, the action of this set of constraints is such that X1 could equal 500, while Y1=100, Y2=100
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Week1 & X1 % Y1 # 0

Week2 & X1 & X2 % Y1 % Y2 # 0

Week3 & X1 & X2 & X3 % Y1 % Y2 % Y3 # 0

Week1 aX1 % dY1 # T1

Week2 bX2 % eY2 # T2

Week3 cX3 % fY3 # T3

and Y3=300, indicating that the predecessor activity was completely undertaken in the first week but the successor

activity slowly used up the inventory during the life of the model.  However, the successor cannot get ahead of the

predecessor.  A complete tableau of this setup is given by

The first three constraints are discussed above.  The others are resource limitations.  Week 1 resources are

used by X1 and/or Y1; Week 2 resources by X2 and/or Y2; and Week 3 by X3 and/or Y3. The sequencing constraints

insure that successor activities will not be undertaken until the predecessors are complete. 

The sequencing restraints may also be explained in terms of the variables.  Suppose X1 and Y1 are

variables for acres of land.  X1 supplies land for use in time periods 1, 2 and/or 3.  Y1 requires land for use in

period 1 and precludes use in periods 2 and 3.  Variable X2 supplies land in periods 2 and 3 while Y2 uses land in

period 2 and precludes use in period 3.  

The above formulations assume that returns and resource usage are independent of activity timing.  This

may not always be true.  Returns to the successor activities may depend on the timing of the preceding activities. 

Such a formulation involves changing the variable definitions so that the week of the predecessor and successor

define the variable.  In the above example, this yields six variables - the first involving the successor and

predecessor both carried out in week 1; the second, the predecessor in week 1 and the successor in week 2, etc.  A

tableau of this situation is 

Predecessor
date

Wk 1 Wk 1 Wk 1 Wk 2 Wk 2 Wk 3

Successor
date

Wk 1 Wk 2 Wk 3 Wk 2 Wk 3 Wk 3

Wk 1 aZ11 + bZ12 + dZ13 # T1

Wk 2 cZ12 + fZ22 + gZ23 # T2

Wk 3 eZ13 + hZ23 + iZ33 # T3

The variables represent the amount of predecessor and successor activities undertaken during

specific times (ie. Z13 involves the predecessor in week 1 and the successor in week 3).  The constraints

restrict resource usage by week.  Resource use or objective function coefficients would differ from activity

to activity, indicating that features of the model are dependent on the sequencing.
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Max & '
j
'
t1

cjXjt1
& '

k
'
t2

dkYkt2
% '

s
'
t3

esZst3

s.t. & '
j
'

t1—t
Xjt1

% '
k

'
t2—t

Ykt2
# 0 for t , t2

& '
k
'

t2—t
Ykt2

% '
s
'

t3<t
Zst3

# 0 for t , t3

% '
j

aj Xjt % '
k

bj Ykt % '
s

fsZst # gmt for all m, t

Xjt, Ykt2
, Zst2

$ 0 for all j, k, s, t1, t2, t3

Given this background, we may now introduce a general formulation.  Suppose we have three

phases, X, Y and Z, each of which must be completed in sequence.  Further, we will allow a set of

alternatives for each of X, Y, and Z.  A general summation model embodying sequencing considerations is 

The variables are  , the jth alternative for the completion of task X in time period t1; , theXjt1
Ykt2

kth alternative for the completion of task Y in time period t2; and  the sth alternative for the completionZst2

of task Z in time period t3.  The first two constraints depict sequencing as in the first example where the

predecessor activities are summed as long as they precede the period over which the constraint is defined

(denoted by t1— t).  These constraints are defined for the time periods in which the successor activities

begin.  The third constraint depicts resource availability.

A formal definition of notation is: t designates time periods; j indexes the technologies by which the

first task can be done; k indexes the technologies by which the second task can be done; s indexes the

technologies by which the third task can be done; t1 gives the periods in which the first task can be done; t2

gives the periods of the second task; t3 gives the periods of the third task; cj is the cost of a unit of first task

j;  is the number of units of first task j performed in time period t1; dk is the cost of a unit of secondXjt1

task k;  is the number of units of second task k performed in period t2; es is the revenue of a unit ofYkt2

third task version s;  is the number of units of third task version s performed in period t3;  ajm is theZst3

number of units of resource m used by the jth alternative for X; bkm is the number of units of resource m

used by the kth alternative for Y, fsm is the number of units of resource m used by the sth alternative for Z;

gmt is the endowment of resource m in period t.  

There are no particularly new features to this formulation in terms of types of constraints and/or

variable.  All the variables are some form or another of a production variable.  The first two constraints are

supply/demand balances on the intermediate products passed between the predecessor and successor
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variables, and the last constraint is a resource limitation constraint.

Due to the complexity of the above formulation, two examples will be given, one straight forward

but of limited realism, the other more complex.

7.4.1 Example 1

Suppose that a farmer plows, discs, plants, cultivates, and harvests land and that yield does not

depend on activity timing.  Assume plowing is done in April, May and June.  The principal resources are

land and plowing labor.  Plowing labor usage is 0.2 hours of labor per acre with a cost of $100 per acre. 

Discing follows plowing.  Suppose that discing is done in May, June and July, requiring 0.3 hours of labor

per acre while costing $20 per acre.  Planting is done in May, June and July, requiring 0.3 hours of labor

per acre and costing $25 per acre.  Cultivation is done in each of the three months following planting, and

harvesting must be done in the fourth month.  Cultivation requires 0.1 hours of labor per acre with no

added cost, while harvesting uses 0.5 hours of labor per acre plus a cost of $75 per acre.  Further, suppose

that the crop yield is worth $500 an acre.  Also, the farm's resource endowment is 600 acres of land and

160 hours of labor in each of the months of April through November.

A LP formulation of this situation is given in Table 7.13 and the GAMS implementation of this

formulation is called SEQUEN.  The activities X represent the plowing possibilities and are defined for

April, May and June.  The activities Y represent the discing possibilities and are defined for May, June and

July.  The activities Z represent the planting-harvesting possibilities and are defined by beginning month -

May, June, and July.  The second three constraints give the link between plowing and discing.  Note these

constraints are defined for the periods in which discing can be started - May, June and July.  The next three

constraints are the link between discing and planting and are again defined for May, June and July.  The

next eight constraints are labor constraints which are defined for each of the months during which farm

activity can be done.  The last constraint is the land constraint.  

The planting variable Z encompasses the sequencing between planting, cultivating and harvesting

since those activities are done in fixed sequence.  This variable's coefficients require resources committed in

May be accompanied by a commitment in June, July and August for cultivating and in September for

harvesting.  The objective function for these activities is calculated as margin between the cost of planting

and harvesting and the value of the crop sold.  Thus, the return is $400 per acre.  The solution to this model

is given in Table 7.14.
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This solution depicts 600 acres of plowing in April followed by 407.41 acres of discing in May and

192.59 acres in July.  Finally, 125.93 acres are planted in May, 281.48 in June and 192.59 in July.  The

sequencing constraints allow the predecessor to occur initially faster than they are used by the successor,

although the successor eventually catches up.  Labor has no shadow prices.  Land is the only binding

resource constraint.  

7.4.2 Example 2

The second example is more complex and does not closely follow the summation notation. 

However, it does contain the sequencing considerations reflected above.  This example again reflects a farm

planning situation and illustrates what needs to be done when planting and harvesting date influence yield. 

Assume that a farm grows two crops.  The crops are plowed in March through June.  Plowing is done the

same way regardless of the crop, and the plowing rate is four acres per hour.  In addition, the farmer needs

one hour of maintenance for each 20 acres of plowing, and the plowing cost is $5.00 an acre.  Both crops

are then disced.  Discing can be done in April-June for crop 1 and March-June for crop 2.  The farmer can

disc five acres an hour of either crop.  Crop 2 is always disced exactly one month preceding planting. 

Discing of crop 1 can be done any time before planting.  Discing costs $3.00 per acre. 

Both crops are planted in April-June.  The farmer figures it takes 0.22 hours of labor to do one

acre.  The planting cost for crop 1 is $40 per acre, and the cost for crop 2 is $20 per acre.  Both crops are

cultivated exactly one month after planting.  The farmer can cultivate 10 acres in one hour, the cost for

cultivation is $10 per acre. 

The yield achieved depends on the crop planting and harvest dates and is given in Table 7.15. 

Harvesting takes 0.7 hours per acre for crop 1 and 0.6 hours for crop 2.  Harvesting costs are $10 per acre.

The farm has 1500 acres and 300 hours of labor available in each month.  Labor can be hired for

$10 an hour.  The objective of the model is to maximize profits.  Crop 1 sells for $3.00 per unit, Crop 2 for

$8.70 per unit.  

A formulation of this problem is given in Table 7.16.  The GAMS implementation of this

formulation is called FARM2.  The tableau is formed with plowing variables defined in March through

June.  These variables use land and supply plowed land for the subsequent discing activities.  The discing

operation is modeled in two different ways, depending on crop.  For crop 1 there are explicit discing

variables; for crop 2, the discing activities are embedded into the planting activity because of the one month
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sequencing requirement.  Crop 1 planting variables are defined for April, May and June.  We also add the

harvest time to the variable definition.  Cultivating resource usages are also included.  Thus, the variable

for a crop planted in April and harvested in September includes resource use for April planting, May

cultivating, and September harvest.  Plowing resource usage is computed as 1/(acres per hour) +

1/(maintenance time per acre) = 0.25 + 0.05 or 0.3 hours for the total.  Similarly, the discing time is

1/(acres per hour) = 0.20 

The crop 2 planting and harvesting activities reflect a slightly different setup.  Here, discing is also

included.  Thus, the resources use accounts for discing, planting, cultivation, and harvest.  Also note that

the yields are entered in the bottom of the tableau and are sold through the selling activities.  

The resultant solution to this problem is given in Table 7.17 and indicates that $449,570 is made

from the farm with 775 acres planted to crop 1 and remainder planted to crop 2.  Labor is hired only in

October.  The value of land is $292.50 per acre; labor is worth $10 an hour in March, April, and October,

which means the labor is fully exhausted up until the point at which it will need to be hired.  Labor is in

slack in June and July and worth $3 in May and September.

7.4.3 Comments

The above sequencing problem is a special case of a much larger class of sequencing problems. 

The particular problem we present has the predecessor followed by only one type of successor task.  There

have been many differently setup sequencing problems.  For example the PERT/CPM project scheduling

problems allow multiple following activities to occur (see Bradley, Hax and Magnanti).  Job shop

scheduling problems are related (Bradley, Hax and Magnanti).  Most of the scheduling problems, however,

are integer programming problems.  In addition, numerous sequencing problems have been formulated and

solved which involve sequencing between years.  Such problems are examined in the dynamics chapter. 

The second example illustrates an important general point.  That is, in applied modeling, we often

should not reflect annual resource constraints (i.e. labor for the year) but, rather, period by period resource

constraints within a year.  Often resources in some periods of the year are not perfect substitutes with

resources in other periods of the year (Heady and Candler).  Farming provides an obvious example where

labor during the winter is not substitutable with labor during the harvest or planting periods.  Similarly,

labor during the planting periods  is not usually substitutable with labor during the harvest period. 
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Max '
t

ctXt & '
t

t…T

cstHt

s.t. X1 % H1 # s0

Xt & Ht&1 % Ht # 0 for all 1 < t < T

XT & HT&1 # 0

Xt # Ut for all t

Xt $ Lt for all t

H1 # Sl

Xt , Ht $ 0 for all t

7.5 Storage Problems

Problems can involve storage where a product resource or input can be retained between time

periods.  LP has been used to analyze such problems virtually since its inception, (see Dantzig [1963] and

Gass (1985) for a historical perspective).  This section reviews a general formulation of a relatively simple

storage problem.  Ordinarily, a storage problem would not be solved alone but, rather would be a model

subcomponent.  

Assume a decision maker is planning over a time horizon involving T periods and has a single item

in inventory which can be stored or sold in period.  Let us assume that the decision maker incurs a storage

cost in carrying the item from one time period to the next.  The decision problem involves maximizing the

value of the sales less storage costs subject to storage capacity.  Thus, the problem is to determine the

optimum sale and holding policy.  We will also include constraints on maximum storage capacity and the

maximum/minimum amount which can be sold in any time period.  Further, it will be assumed that the

inventory is not increased at any time during the time horizon.  Thus, the storage constraint is only active in

the first time period.  The formulation of the problem is 

Xt stands for the amount sold in the tth period; Ht stands for the amount held over from time period t to time

period t+1; ct stands for returns from sales of the item in time period t; cst stands for the cost of storing

from period t into period t+1; s0 the amount of inventory available in the first time period; Ut is the upper

limit on the sales possibility in time t; Lt is the lower limit on the sales possibility in time period t; S is the

total storage capacity limit which only is binding on the amount stored in the first time period during which

the greatest amount would be stored.
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The first equation in the model is the objective function.  It involves summation across all the

periods of the revenues from the sales of the good less the costs of storage of the good.  We only include

storage from the time periods 1 through T-1, assuming that everything must be sold in the last time period. 

The first constraint limits the quantity sold in the first period plus the quantity stored into the second period

to be less than or equal to the initial inventory available.  The next constraints are active in all time periods

excepting 1 and T.  This limits the amount sold in each period plus the amount stored into the next period

to not exceed the amount held over from the period before.  The third constraint gives the inventory con-

dition for the last time period requiring that sales not exceed inventory carried over from the time period

before.  This constraint precludes outgoing storage because we are assuming everything has to be sold by

the last period. Similarly, the first constraint does not include incoming storage except as an exogenous

quantity on the right hand side.  The next two constraints impose upper and lower limits on the amount that

can be sold during any time period.  The last constraint imposes an upper limit on storage in the first

period.  Additional constraints on storage capacity are not needed for the subsequent periods as stored

amount cannot increase.

This problem does not contain new types of constraints and variables.  However, it does use a new

form of the transformation variable.  The H variables transform the time utility of an item by moving it

from one time period to another at a cost.  The X variables are again sales activities.  The constraints are a

mixture of resource limitations and supply demand balances. 

Insight can be gained into the model solution properties considering the dual.   The dual constraint

associated with the variable Xt states that the value of the item in time period t must be greater than or

equal to the revenue from selling it less the costs of the upper bound plus the costs of the lower bound. 

Assuming there are no bounds, this constraint then would require that the value of grain be no less than the

price at which it could be sold.  The dual constraints associated with the storage activities insure a

relationship between the marginal values of grain in adjacent periods where they state that the value of

grain in time period t+1 must be less than or equal to its value in time period t plus the cost of storing it

between the periods.  This occurs at optimality since, if the sale price of grain in time period t+1 is greater

than or equal to the sale price of grain in time t by more than the storage costs, then it would be economical

to store.  The only exception comes in relation to period 1, where storage is limited.  If storage is binding

there may be a larger wedge between the first two shadow prices than the cost of storage. 
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7.5.1 Example

Suppose a farmer has 100 bushels of a crop available to sell over four time periods.  The farmer

expects the price in the first time period to be $2.30; in the second, $2.50; in the third, $2.70; and in the

fourth, $2.90.  The farmer expects the cost of holding grain from time period 1 to time period 2 to be $.10

a bushel; from time period 2 to time period 3, $.20 a bushel; and from time period 3 to time period 4, $.30

a bushel.  The farmer cannot sell any more than 50 bushels in any one time period.  Also, the farmer must

(for cash flow reasons) sell at least 15 bushels in the first time period and at least 5 in the second.  Finally,

the farmer has no more than 75 bushels of storage capacity available.  A formulation of this is presented in

Table 7.18.  The GAMS implementation of this formulation is called STORE.

The solution to this problem is given in Table 7.19.  The solution has 25 bushels of grain sold in

time period 1; these are sold because there is not enough capacity to store into the second time period as

reflected by the $.10 shadow price on the overall storage constraint.  Then, 50 bushels of grain are sold in

the second time period limited by the upper limit on the ability to sell in the time period.  Subsequently, 25

bushels are sold in the third time period.  The inventory pattern shows 75 bushels carried from the first to

the second period with 25 carried from the second to the third.  The first four shadow prices show the

marginal values of grain in each time period.  The fifth equation exhibits slack of 25 bushels indicating 25

more bushels could be sold in the first time period.   

7.5.2 Comments

Several assumptions could be relaxed in this formulation.  One could allow inventory to be

replenished.  Storage costs could be made a function of volume and/or one could allow acquisition of

storage capacity.  The model is commonly used in conjunction with a planning problem to develop an

overall aggregate plan (as discussed in Holt et al.), wherein production and storage decisions are jointly

determined.  More examples of storage and dynamic carry-over will be presented in the dynamic modeling

chapter. 

Another comment involves the nature of the dual relationships that a transformation variable

imposes.  Transformation variables bound the maximum difference between the shadow prices.  This is an

absolute property in any LP solution containing such variables.  This is exhibited in our solution where the

storage variables cause the shadow prices to differ by no more than the storage cost. 

7.6  Input Output Analysis
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Another application of linear programming involves the use of Leontiefs' (1951) input output (IO)

formulation.  However, IO formulations are not used alone in an LP context as there is specialized software

for IO models.  Rather IO's are used in conjunction within larger LP models (i.e. see Penn et al.).  

Leontief formulated the IO model and it has been utilized in a number of different contexts since

then (Miernyk).  The IO model fundamentally deals with the development of the economy wide implications

of changes in the export level and/or production practices within the economy.  

The fundamental data in setting up an IO model involves three things.  First, there is an

identification of the sectors.  These sectors are divided into endogenous and exogenous sectors.   The

endogenous sectors are integral parts of the economy which purchase and sell items to other sectors within

the economy.  The exogenous sectors are those from which imports are made or those to which goods and

services flow or export.  Given identification of these, one develops the transaction matrix which tells how

the endogenous sectors within the economy dispose of the revenue that they receive for production.  These

endogenous sectors completely dispose of the revenue that they receive across the endogenous and

exogenous sectors.  Thus, the model data accounts for the full distribution of earnings including that to

exogenous sectors and retained earnings.  The third data item is the final demand vector.  This tells the

value of goods that flow outside the local economy.

Suppose we identify four components of an economy.  There are endogenous sectors:  1)

manufacturing, 2) services, and 3) agriculture with an exogenous sector for other uses of funds which

includes imports and retained earnings.  The transaction matrix gives the distribution of revenue by sector. 

For example, in the manufacturing sector, that matrix would tell how much was spent: a) within the

manufacturing sector on manufactured goods from other producers; b) on the service sector for purchasing

services used in the manufacturing process; c) on agricultural goods; and d) on acquisitions from or

distributions to exogenous parties.  In turn, this would also be done for the service and households sectors. 

The household sector data gives the household consumption function showing how the gross household

income is distributed across purchases of manufactured goods, services and other household activities as

well as flows into the exogenous category which accounts for savings and purchases from outside the

economy.  Finally, final demand gives the money flow from outside the economy into the manufacturing,

service, and agricultural sectors.

After formation of the transactions matrix one then turns to forming the technical coefficients

matrix.  This tells the proportion of revenue spent by sector.  The parameters of the technical coefficient
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X ' Y % AX

X & AX ' Y

(I & A) X ' Y.

X ' ( I & A )-1 Y

Max '
j

Xj

s.t. '
j

(Iij & Aij)Xj # Yi for all i

Xj $ 0 for all j

matrix (aij) given the transaction matrix tij equal:  

aij ' tij/'
K

tKj

The denominator term is total revenue to the jth sector.  All the coefficients will be less than or equal to one

indicating the proportion spent within each sector. 

In turn then, given this technical coefficients matrix one can form the fundamental equation of

input output analysis which states that 

where Y is final demand, A is the technical coefficients matrix, and X is a vector giving the amount of total

activity in the economy.  This indicates that the total economic activity is equal to the amount of final

demand plus the value of the intermediate products that are necessary in order to produce that final

demand.  In turn, this equation can be manipulated to say

which indicates the total production minus the intermediate use needed to support that total production

equals exports or 

Now I - A in this case is a square matrix with one positive entry for each of the sectors of the economy. 

Providing I - A is invertible then the solution is 

This is the computational procedure in conventional Input Output analysis.  However, in a linear

programming context one utilizes the fundamental equation and an objective function to obtain input output

solutions.  We use the objective function recommended by Brink and McCarl (1977) which maximizes the

sums of the activity across all sectors.  The resulting formulation is 

where X, A and Y are  as defined before and Iij  is an identity matrix (possessing entries of 1 if I = j and

zero otherwise).  This particular formulation should lead to all the X's being nonzero with the dual

variables equaling the total amount of activity induced in the sector from a change in the right hand side

(final demand).  This duality property can be argued as follows: if all the X's are nonzero then the LP basis
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'
i

(I & A)-1
ij

inverse should equal (I -A)-1 and since all the objective function coefficients of the basic variables are ones,

then the dual variables will equal 

or should equal the total induced activity inside the model by one unit of additional exports the classic

output multiplier (Miernyk).

7.6.1 Example

Consider an example with four sectors:  manufacturing, agriculture, finance, households and

imports.  Suppose that the relevant transaction matrix is given in Table 7.20 as is the final demand vector. 

Under these circumstances the technical coefficient matrix is Table 7.21 and one sets up the linear

programming model with the first three sectors as endogenous as in Table 7.22.  The GAMS

implementation of this formulation is called INOUT.  The solution is given in Table 7.23.  This solution

shows that sectoral activity is $250 for manufacturing, $122 for agriculture, $75 for finance and $230 for

services, but that this activity is used to supply a lesser amount of final demand.  Namely, there is $250 of

production by manufacturing to directly deliver $75 of final demand.  Across all sectors, $677 of total

production is needed to satisfy the $145 of final demand.  Thus, there is $532 worth of intermediate

production.  Also, notice that the values of the shadow prices on the manufacturing balance row is 4.615. 

This implies that in order to meet one dollar worth of demand, $ 4.615 worth of total manufactured

products need to be created.

7.6.2 Comments

Input-Output models have been used in many contexts (See Miernyk for a review).

7.7 Block Diagonal

Many of the early LP problems involved a "block diagonal" structure (see Dantzig (1963) for a

historical perspective).  Models depicting production in several different locations and/or time periods

exhibited such a structure.  The name arose since the models contained blocks of  constraints and activities

which did not overlap with other sets of constraints and other activities.  The blocks arise when individual

production units utilize immobile resources.  The problem also depicts some usage of unifying resources at

the overall firm level.   The primal formulation of the block diagonal problem is given by 

Max +'
k

ckXk '
j
'
L

djLYjL
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cX % d1Y1 % d2Y2 . . . % dnYn max

AX % g1Y1 % g2Y2 . . . % gnYn # b

e1Y1 # f1

e2Y2 # f2

. .

. .

. .

enYn # fn

s.t. + # bi   for all I'
k

aikXk '
j
'
L

gijLYjL

# fLM   for all L and M'
j

ejLMYjL

Xk , YjL $ 0   for all k, j and L

where:  k indexes variables for the overall firm; j indexes variables for the separate entities; L indexes

entities; I indexes overall resources; M indexes separate entity resources; ck  is the per unit return of overall

firm variable k; Xk is the number of units produced of overall firm variable k; djL is the per unit return of

separate entity L's jth production variable; YjL is the number of units produced of separate entity L's jth

production variable; aik is the use of overall firm resource I by Xk; gijL is the use of overall firm resource I

by YjL; bi is the endowment of overall firm resource I; ejLM is the use of the mth resource at location L by

YjL; and fLM is the endowment of resource M at location L. 

The decision variables Xk reflect actions at the unifying level of the problem, while the YjL reflect

actions at the sublevels of the problem.  Generally, the sublevels arise because of spatial, temporal or

functional separations.  The first constraint is the overall unifying set of constraints. The second set of

constraints deal with each sub-unit.  The problem maximizes profit summed over the global and sub-unit

activities subject to an overall linking constraint and individual sub-unit constraints.  Note that the second

set of constraints do not involve sums across L, thus only one sub-unit is involved in any constraint.  Thus,

the second set of constraints is independent across the sub-units.  This particular problem is called block

diagonal because of the structure of the second constraint.  An overview of this problem is given below

All the cells in this matrix which do not have entries or dots are 0's and the name "block 

diagonal" comes from the diagonal blocks representing each of the subcomponent resource constraints and

activities. This formulation also illustrates the phenomena of sparsity.  Linear programming often possesses

large blocks of zero coefficients.  This particular one is famous for it.  Sparsity is commonly exploited in
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LP algorithms. 

7.7.1 Example

The block diagonal problem will be illustrated using the data from the resource allocation example

above, adding features regarding multiple plants and the making of tables.  Suppose the firm from the

resource allocation example has expanded and now possesses 3 plants.  At these plants they fabricate and

sell chairs and tables which are sold individually or together as dinette sets.  Plant 1 makes only tables,

plant 2 only makes chairs, and plant 3 can make chairs and tables.  The costs and input usages for the

chairs and tables are the same across all three plants, and the chair data is in the above example.  Making

functional tables requires three hours of labor and one unit of top capacity.  It takes five hours of labor to

make fancy tables and one unit of top capacity.  Functional tables involve direct costs of $80 per unit and

fancy tables $100 per unit.  Chairs can be sold either at their point of production or can be transported to

an overall assembly point which is located at plant 1.  Chairs cost $5 to transport to the assembly point

from plant 2 and $7 from plant 3.  Tables cost $20 to ship in from plant 3 to the assembly point. 

Functional tables sell for $200 when sold alone and fancy tables sell for $300.  The firm can sell functional

sets containing four chairs and one table for $600 and fancy sets containing six chairs and one table for

$1100.   Resource endowments in plant 1 are 175 units of labor and 50 units of top capacity.  Plant 2 has

140 units of small lathe capacity, 90 units of large lathe capacity, 120 units of chair bottom capacity, and

125 units of labor.  Plant 3 has 130 units of small lathe capacity, 100 units of large lathe capacity, 110

units of chair bottom capacity, 210 units of labor, and 40 units of top capacity.  

This problem's objective is to maximize net returns to the total firm operation subject to the overall

firm linking considerations and the various constraints arising at the plants.  The resultant formulation is in

Table 7.24.  The GAMS implementation is called BLOCKDIA.  Note the block diagonal structure

involving the resources at plants 1, 2, and  3.  Also note the linking considerations on tables and chairs. 

The solution to this problem is given in Table 7.25.  The variables Y10 and  Y11 are the table

fabrication activities for plant 1.  Variables Y20 - Y29 are the transportation and fabrication activities for

plant 2, and the variables Y30 - Y35 are the transportation and fabrication activities for plant 3.  The

objective function value is $36,206.9.  The firm manufactures tables and chairs in plants across the various

locations as the reader may determine by investigating the solution. 

7.7.2 Comments

This type of formulation appears in many places in the literature, usually linking other
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formulations.  In the example, we have used elements of the transportation, resource allocation, and

assembly problems.  Generally, many LP problems look like this where multiple formulations are combined

together in the analysis of a particular problem.  Other classes of block diagonal structures appear in the

integer programming and dynamic model sections.  Dynamic models can be made block diagonal by

incorporating the transfer activities from one period to the next into the overall structure.  However,

dynamic models generally contain a second type of block angular structure where there is some overlap; for

example, production in period t is carried into period t+1 using storage.  

The final comment involves the solution to this problem.  Dantzig and Wolfe observed that one

could solve the block diagonal problem as a set of independent problems providing one had an estimate of

the shadow prices on the overall linking constraints.  This led to the Dantzig-Wolfe decomposition

algorithm which formally exploits problem structure.  

7.8 Concluding Comments

A number of LP formulations have been presented in this and the preceding chapter.  These have

all been simplified and are not easily applicable to any actual case.  However, we hope the material

increases the reader's familiarity with common usages of LP and shows how formulations may be combined

in the analysis of empirical problems.  There are a number of other additional comments which arise out of

the above.  

First, we hope the reader gained appreciation for empirical modeling issues.  Data are never

directly available rather, they must be calculated.  We illustrate this in our examples where, for example,

the coefficients required calculation through economic engineering or deductive accounting.  Readers

should also gain an appreciation for sparsity, as many LP problems contain few non-zero coefficients. 

This is exploited in the modern implementations of the simplex method where only nonzeros are stored, and

fancy re-inversion schemes are utilized to solve the problems exploiting matrix sparsity (Orchard and Hays;

Murtaugh). 

In addition, we hope the reader has developed an appreciation for the implications of the particular

primal variable structures on the shadow prices as arise through duality.  Generally, the dual restraints

require that the marginal cost of any variable be greater than or equal to the marginal revenue arising under

that variable.  Specific forms of this for any problem can be discovered by examining the dual.  Often, such

an exercise clears up confusion regarding shadow price values.  

Another important point involves the role of summation notation.  In many of the examples we
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were able to generate summation notation representations which later exactly translated into empirical

models.  This provides an important way of thinking about the problem and getting its structure right.  Sub-

sequently, one can easily check the properness of the structure and the properties of the dual variables.  We

believe this is important for modelers, as they can utilize summation representations to generate small

example problems which are typical of larger structures.  This allows one to try out structures in small

empirical problems and also provides guidelines from which computer implementations may be written.  It

also provides an important way of thinking about and analyzing the overall structure of the problem

without concentrating a great deal on the particular empirical numbers involved.  

Finally, we would like to mention that the coverage above is by no means comprehensive.  We will

present many LP problems in the subsequent chapters.  There are also LP problems such as the

input/output problem (Dorfman, Samuelson and Solow), the trim problem (Eisemann and Golden), and the

caterer problem (Jacobs), along with many others which will not be included in this book.  The reader

should see:  a) the literature cited in Riley and Gass, Day and Sparling, and Assad and Golden; b) the

presentations and literature cited in such texts as Hillier and Lieberman; Gass (1985); Wagner (1969),

Williams (1985); Bradley, Hax, and Magnanti; or Salkin and Saha, along with many others; and c) the

many articles appearing in such journals as Management Science, Operations Research, Decision Sciences,

Mathematical Programming,  American Journal of Agricultural Economics, Canadian Journal of

Agricultural Economics, Western Journal of Agricultural Economics, North Central Journal of Agricultural

Economics, and Southern Journal of Agricultural Economics.
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Table 7.1. Data for Computer Excess Example

Components Required to Assemble a System

XT AT 386SX 38633 486SX 48633

360FLOPPY 1 1

12MFLOPPY 1 1 2 1 1 1

144MFLOPPY 1 1 1

HARDDISK 1 1 1 1 1

MONO 1 1 1

COLORVGA 1 1 1

PLAINCASE 1 1 1

FANCYCASE 1 1 1

Components Parts Acquisition Information    

Name Cost Inventory Labor
Shelf Space

360KFLOPPY 35 20 0.01 0.01

12MFLOPPY 49 29 0.01 0.01

144MFLOPPY 52 32 0.01 0.01

HARDDISK 245 45 0.03 0.03

MONO 102 15 0.07 1.50

COLORVGA 302 45 0.10 2.00

PLAINCASE 41 11 0.15 1.70

FANCYCASE 80 12 0.12 1.70

Final Products Assembly and Sales Information

Name Sales Price
Minimum

Sales
Assembly

Cost Labor Space

XT 689 1 59 2.00 1

AT 992 3 102 2.05 1

386SX 1200 2 100 2.21 1

38633 1400 4 300 2.24 1

486SX 1500 2 400 2.18 1

48633 1800 2 700 2.12 1
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Table 7.2. Tableau of Computer Excess Example

Assembly Buy

XT AT 386SX 38633 486SX 48633 360k 12M 144M HARD MONO CVGA PLAIN FANCY RHS

OBJECTIVE 630 890 1100 1100 1100 1100 -35 -49 -52 -245 -102 -302 -41 -80 Max

360KFLOPPY 1 1 -1 #  20

12MFLOPPY 1 1 2 1 1 1 -1 #  29

144MFLOPPY 1 1 1 -1 #  32

HARDDISK 1 1 1 1 1 -1 #  45

MONO 1 1 1 -1 #  15

COLORVGA 1 1 1 -1 #  45

PLAINCASE 1 1 1 -1 #  11

FANCYCASE 1 1 1 -1 #  12

LABOR 2 2.05 2.21 2.24 2.18 2.12 0.01 0.01 0.01 0.03 0.07 0.1 0.15 0.12 # 550

SHELFSPACE 0.01 0.01 0.01 0.03  1.5 2.0  1.7  1.7 # 590

SYSTEMSPC 1 1 1 1 1 1 # 240

Lower Bound 1 3 2 4 2 2
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Table 7.3. Solution for Computer Excess Example

Objective   155330.097                      

Variable Value Reduced Cost Constraint Slack  Shadow Price

XT 1.0 -168.4 360KFLOPPY 16 0

AT 3.0 -159.1 12MFLOPPY 0 50.9

386SX 172.9 0.0 144MFLOPPY 0 53.9

38633 41.0 0.0 HARDDISK 0 250.7

486SX 2.0 0.0 MONO 0 385.4

48633 2.0 0.0 COLORVGA 0 343.4

360KFLOPPY 0.000 -36.9 PLAINCASE 0 362.2

12MFLOPPY 365.772 0.0 FANCYCASE 0 401.2

144MFLOPPY 13.000 0.0 LABOR 10.09 0

HARDDISK 175.886 0.0 SHELFSPACE 0 188.9

MONO 161.886 0.0 SYSTEMSPC 18.11 0

COLORVGA 0.000 -336.5

PLAINCASE 165.886 0.0

FANCYCASE 33.0 0.0   
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Table 7.4. Data for Jerimiah Junk Yard Example

Car Data ESCORTS 626S TBIRDS CADDIES

PURCHASE PRICE 85 90 115 140

WEIGHT 2300 2200 3200 3900

DISASSEMBLY COST 100 120 150 170

AVAILABILITY 13 12 20 10

Resource Use to Breakdown Cars

CAPACITY 1 1 1.2 1.4

LABOR 10 12 15 20

Proportional Breakdown of Cars into Component Parts

ESCORTS 626S TBIRDS CADDIES

METAL .60 .55 .60 .62

SEATS .10 .10 .06 .04

CHROME .05 .05 .09 .14

DOORS .08 .10 .10 .07

JUNK .17 .20 .15 .13

Part Data MINIMUM MAXIMUM PRICE PARTSPACE LABOR

METAL 0 0.15 0         0.0010 

SEATS 4000 6000 1.00 0.003  0.0015 

CHROME 70 0.70 0.0014 0.0020 

DOORS 2 5000 0.70 0.0016 0.0025 

JUNK -0.05 0         0.0001 
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Table 7.5. Tableau of Jerimiah Junk Yard Example

ESCORTS 626S TBIRDS CADDIES METAL SEATS CHROME DOORS JUNK CONVERT
SEATS

CONVERT
CHROME

CONVERT
DOORS 

RHS
MIN

OBJECTIVE -185 -210 -265 -310 0.15 0.90 0.70 1.00 -0.05

METAL -1380 -1210 -1920 -2418 1 -1 -0.7 =    0

SEATS -230 -220 -192 -156 1 1 =    0

CHROME -115 -110 -288 -546 1 1 =    0

DOORS -184 -220 -320 -273 1 1 =    0

JUNK -391 -440 -480 -507 1 -1 -0.3 =    0

CAPACITY 1 1 1.2 1.4 # 42

LABOR 10 12 15 20 .001 .0015 .0020 .0025 .0001 # 700

PARTSPACE .003 .0014 .0016 #  60

LOWER BOUND 4000 70 2

UPPER BOUND 13 12 20 10 6000 10000 5000
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Table 7.6. Solution for Jerimiah Junk Yard Example

Objective = 18337.2

Variable  Value Reduced Cost Constraint Slack Shadow Price

ESCORTS 4.00 0 Parts

626S 0 -49.960 METAL 0 0.150

TBIRDS 20   31.688 SEATS 0 -0.050

CADDIES 10   91.356 CHROME 0 0.150

DOORS 0 0.090

Sell JUNK 0 -0.050

METAL 73186.2 0 CAPACITY 0 24.760

SEATS 6000 0.95 LABOR 43.512 0

CHROME 10000 0.550 PARTSPACE 20 0

DOORS 5000 0.910

JUNK 18013.8           0

Convert

SEATS 320 0

CHROME 1680 0

DOORS 4866 0
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Table 7.7. Data for Chicken Example Yields from Cutting

Parts Halves Quarters Meat
Leg-Breast-

Thigh

Wings 2

Legs 2 2

Thighs 2 2

Back 1

Breasts 1 2

Necks 1 1

Gizzards 1 1 1 1

Meat 0.05 0.07 1 0.2

Breast Quarter 2

Leg Quarter 2

Halves 2

Selling Price and Labor Use for Chicken Packs 

Pack Labor Price

A 2 $2.05

B 1.3  2.00

C 1.2  1.45

D 1.1  1.95

E 1.25  1.25

Gizzard 1.0  0.90

Individual Selling Prices for Parts

Part Price Part Price

Wings 0.10 Gizzards 0.07

Legs 0.20 Meat 2.00/lb.

Thighs 0.25 Breast Quarters 0.45

Backs 0.12 Leg Quarter 0.40

Breasts 0.33 Halves 0.90

Necks 0.05
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Table 7.8. Primal Formulation of Charles Chicken Company Problem
B

Sell r Buy RHS

e

G a L

Disassemble Assemble B i s e H T

W T r z t g a W h

i h B e N z M l i L i

n L i a a e a e Q Q v n e g

g e g c s c r a t t e g g h

Xp Xh Xq Xm XL Xa Xb Xc Xd Xe Xg s g h k t k d t r r s s s s

Object -1 -1 -1 -1 -1 2.05 2.00 1.45 1.95 1.25 .90 .10 .20 .25 .12 .33 .05 .07 2.0 .45 .40 .90 -.12 -.22 -.27 Max

Wings -2 2    1 -1 # 0

Legs -2 -2 2    2 1 -1 # 0

Thighs -2 -2 2    2 1 -1 # 0

Backs -1 1    1 # 0

Breasts -1 -2 1    1 # 0

Necks -1 -1 1    1 # 0

Gizzards -1 -1 -1 -1     10 1 # 0

Meat -.05 -.07 -1 -.2 1 # 0

Breast Qtr. -2 4   1 # 0

Leg Qtr. -2 4   1 # 0

Halves -2 2 1 # 0

Chickens 1 1 1 1 1 # 1000

Labor 2 1.3 1.2 1.1 1.25 1 # 3000

Wing 1 # 20

Leg 1 # 20

Thigh 1 # 20
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Table 7.9. Solution to the Charles Chicken Co. Problem 
Objective function = 1362.7

Variable Value Reduced Cost Equation Slack Shadow Price

Xp       0 -0.22 Wings  0 0.120

Xh       0 0 Legs  0  0.355

Xq       0 -0.33 Thighs  0  0.270

Xm       0 -0.27 Backs  0  0.180

XL       1000 0 Breasts  0  0.330

Xa       0 0 Necks  0  0.050

Xb       0 0 Gizzards  0  0.090

Xc       0 -0.15 Meat  0  2.000

Xd       0 -0.22 Breast Qtr.  0  0.500

Xe      1010 0 Leg Qtr.  0  0.400

Gizzards      0 0 Halves  0  1.085

Wings      0 -0.02 Chickens  0  1.36 

Legs      0 -0.02 Labor 1737.5  0      

Thighs      0 -0.155

Backs      0 -0.06

Breasts     2000 0

Necks     1000 0

Gizzards       0 -0.02

Meat       200 0

Breast Qtr.       0 -0.05

Leg Qtr.       0 0

Halves       0 -0.185

Wings     0 0

Legs     20 0

Thighs      20 0.135
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Table 7.10. Data for the Grain Blending Example

Grade Characteristics

Maximums Grain
Batch 1

Grain
Batch 2

A B

Moisture 1 2 2 1

Foreign Matter 1 2 1 2

Table 7.11. Solution of the First Formulation of the Grain Blending Problem

Objective = 100       

Variable Value Reduced Cost Equation Slack Shadow Price

A 20 0 Moisture 0 1

B 20 0 Foreign Matter 0 0

G1 20 2 Weight 0 4

G2 20 3
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Table 7.12. Optimal Solution to the Correct Formulation of the Grain Blending Problem

Objective = 80

Variable Value Reduced Cost Equation Slack Shadow Price

A 0 0 1 0 1

B 40 0 2 0 1

G11 0 0 3 0 5

G12 20 0 4 20 0

G21 0 0 5 20 0

G22 20 0 6 0 2

7 0 2

8 0 2
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Table 7.13. LP Formulation of Sequencing Example 1

Plow - X Disc - Y Plant etc. - Z RHS

April May June May June July May June July

Obj -100 -100 -100 -20 -20 -20 400 400 400 max

X - Y May -1 -1 1 # 0

link June -1 -1 -1 1 1 # 0

July -1 -1 -1 1 1 1 # 0

Y - Z May -1 1 # 0

link June -1 -1 1 1 # 0

July -1 -1 -1 1 1 1 # 0

Labor April 0.2 # 160

May 0.2 0.3 0.3 # 160

June 0.2 0.3 0.1 0.3 # 160

July 0.3 0.1 0.1 0.3 # 160

Aug. 0.1 0.1 0.1 # 160

Sept. 0.5 0.1 0.1 # 160

Oct. 0.5 0.1 # 160

Nov. 0.5 # 160

Land 1 1 1 # 600
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Table 7.14. Solution to Sequencing Example 1

Objective function = 168,000              

Variable Value Reduced Cost Equation Slack Shadow
Price

Plow April 600 0 Plow-
Disc

 May -192.59 0

May 0   0 (alt) June 200.00 0

June 0   0 (alt) July 0 380

Disc May 407.41 0 Disc-
Plant

May 88.89   0 

June 0 0 June 0   0 

July 192.59 0 July 0 400

Plant May 125.93 0 Labor April 97.78 0

June 281.48 0 May 0   0 

July 192.59 0 June 0 0

July 0   0 

Aug. 100 0

Sept. 11.11 0

Oct. 51.11 0

Nov. 60 0

Land  0 280

Table 7.15. Yields for Crops 1 and 2 by Crop Planting and Harvest Dates

Planting Date

Harvest
Date

Crop 1 Crop 2

April May June April May June

September 110 105 90 38 40 35

October 125 120 118 35 38 40
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Table 7.16. Formulation of Problem for Sequencing Example 2

Plow in Monyh

Disk for

Crop 1

in Month

Plant and Harvest

Crop 1 in Months

Disk Plant and Harvest

Crop 2 in Months Hire Labor Sell RHS

Rows Mar April May Mar April May

Mar Apr May Jun Apr May Jun Apr May Jun Apr May Jun Apr May Jun Apr May Jun Mar Apr May Jun Sep Oct Nov Crop 1 Crop 2

Sep Sep Sep Oct Oct Oct Sep Sep Sep Oct Oct Oct

Objective -5 -5 -5 -5 -3 -3 -3 -60 -60 -60 -60 -60 -60 -43 -43 -43 -43 -43 -43 -10 -10 -10 -10 -10 -10 -10 3 8.7 Max

Land Balance 1 1 1 1 # 1500

Mar -1 1 1 # 0

Plowed Apr -1 -1 1 1 1 1 1 # 0

Land May -1 -1 -1 1 1 1 1 1 1 1 1 # 0

Balance Jun -1 -1 -1 -1 1 1 1 1 1 1 1 1 1 # 0

Disced Apr -1 1 1 # 0

Land May -1 -1 1 1 1 1 # 0

Balance Jun -1 -1 -1 1 1 1 1 1 1 # 0

Mar 0.3 0.2 0.2 -1 # 300

Apr 0.3 0.2 0.22 0.22 0.22 0.2 0.22 0.2 -1 # 300

Labor May 0.3 0.2 0.1 0.22 0.1 0.22 0.1 0.22 0.2 0.1 0.22 0.2 -1 # 300

Avail- Jun 0.3 0.2 0.1 0.22 0.1 0.22 0.1 0.22 0.1 0.22 -1 # 300

ability Jul 0.1 0.1 0.1 0.1 -1 # 300

Sep 0.7 0.7 0.7 0.6 0.6 0.6 -1 # 300

Oct 0.7 0.7 0.7 0.6 0.6 0.6 -1 # 300

Yield Crop 1 -110 -105 -90 -125 -120 -118 1 # 0

Crop 2 -38 -40 -35 -35 -38 -40 1 # 0
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Table 7.17. Solution for Sequencing Example 2

                           Objective function = 449,570

Variable Value Reduced Cost Equation Slack Shadow
Price

Acreage Plowed in: March 1275 0 Land 0 292.5

April 0 0 Plowed
Land:

March 1275 0

May 225 0 April 0 2.10

June 0 0 May 0 14.4

Acreage Disced for
Crop 1 in:

April 775 0 June 0 284.0

May 0 0 Disced
Land:

April 0 13.16

June 0 0 May 0 5.34

Acreage of Crop 1
planted/harvested in:

Sept./April 0 -40.15 June 0 287.0 

Sept./May 0 -49.81 Labor: March 0 10

Sept./June 0 -92.65 April 0 10

Oct./April 775 0 May 0 3

Oct./May 0 -9.66 June 200.5 0

Oct./June 0 -13.5 July 277.5 0

Acreage of Crop 2
planted/harvested in:

Sept./April 0 -19.24 Sept. 0 3.067

Sept./May 500 0 Oct. 0 10

Sept./June 0 -39.34 Yield: Crop 1 0 3

Oct./April 0 -49.5 Crop 2 0 8.7

Oct./May 0 -21.56

Oct./June 225 0

Labor hired in: March 82.5 0

April 125.5 0

May 0 -7

June 0 -10

July 0 -10

Sept. 0 -6.93

Oct. 377.5 0

Crop 1 Sales 96875 0

Crop 2 Sales 29000 0

Table 7.18. Formulation of Storage Example

Objective Sell Store

2.3X1 + 2.5X2 + 2.7X3 + 2.9X4 - .1h1 - .2h2 - .3h3
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Grain
Inven
t-ory

   1 X1 + h1 # 100

   2 X2 - h1 + h2 #    

   3 X3 - h2 + h3 # 0

   4 X4 - h3 # 0

   1 X1 # 50

Max    2 X2 # 50

Sales    3 X3 # 50

   4 X4 # 50

Min    1 X1 $ 15

Sales    2 X2 $ 5

Max Store h1 # 75

Table 7.19. Primal Solution to the Storage Problem Example

Objective = 237.5

Variable Value Reduced Cost Constraint Slack Shadow Price

X1 25 0 Pd1 Inventory 0 2.3

X2 50 0 Pd2 Inventory 0 2.5

X3 25 0 Pd3 Inventory 0 2.7

X4 0 0 Pd4 Inventory 0 2.9

h1 75 0 Max sale Pd1 25 0

h2 25 0 Max sale Pd2 0 0

h3 0 -0.1 Max sale Pd3 25 0

Max sale Pd4 50 0

Capacity 0 0.1

Min sale Pd1 10 0

Min sale Pd2 45 0

Min sale Pd3 25 0

Min sale Pd4 0 0
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Table 7.20. Input Output Example Data

Transactions Matrix

Manufacturing Agriculture Finance Services

Manufacturing 50 40 10 75

Agriculture 20 10 2 40

Finance 25 8 12 20

Services 100 40 40 40

Exogenous 55 24 11 55

Final Demand Data                         

Sector
Final Demand

for Sectors

Manufacturing 75

Agriculture 50

Finance 10

Services 10
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Table 7.21. Technical Coefficient Matrix for Input Output  

Manufacturing Agriculture Finance Services

Manufacturing 0.200 0.328 0.133 0.326

Agriculture 0.080 0.082 0.027 0.174

Finance 0.100 0.066 0.160 0.087

Services 0.400 0.328 0.533 0.174

Exogenous 0.220 0.197 0.147 0.239

Table 7.22. LP Formulation of Input Output Example

Manufacturing Agriculture Finance Services

Maximize 1 1 1 1

Manufacturing 0.8 -0.33 -0.13 -0.33 #  75

Agriculture -0.08 0.92 -0.03 -0.17 #  50

Finance -0.1 -0.07 0.84 -0.09 #  10

Services -0.4 -0.33 -0.53 0.83 #  10

Table 7.23. Solution for Input Output Example

Objective = 677

Variable Value Reduced Cost Constraint Slack Shadow Price

Manufacturing 250 0 Manufacturing 0 4.615

Agriculture 122 0 Agriculture 0 4.716

Finance 75 0 Finance 0 4.960

Services 230 0 Services 0 4.547



copyright Bruce A. McCarl and Thomas H. Spreen 7-46

Table 7.24.  Matrix Formulation of Block Diagonal Problem

PLANT 1 PLANT 2                   PLANT 3

Sell 

Sets 

FC       FY

Make

Table

 FC        FY

Sell Table 

Transport

Chair

FC       FY

Sell 

Chair 

FC      FY

Make Functional Chairs 

Norm MxSm MxLg

Make Fancy

Chairs 

Norm MxSm MxLg

Transport

Table 

FC  FY

Transport

Chair 

FC  FY

Sell

 Table

 FC  FY

Sell 

Chair 

FC  FY

Make

Table

FC  FY

Make Functional

 Chairs

 Norm MxSm MxLg

Make Fancy 

Chairs

Norm MxSm MxLg

RHS

Objective 600     1100 -80       -100 200    300 -5          -5 82      105 -15       -16       -15.7 -25      -26.5      -26.6 -20      -20 -7         -7 200    300 82    105 -80   -100 -15      -16      -15.7 -25      -26.5      -26.5 Max

P

L

A

N

T

1

Table           FC  1 -1  1 -1 # 0

Inventory    FY 1 -1 1 -1 # 0

Chair           FC  4 -1 -1 # 0

Inventory    FY 6   -1 -1 # 0

Labor      3   5 # 17

5

Top Capacity 1   1 # 50

P 

L A

N

T

2

Chair           FC  1 1 -1         -1          -1 # 0

Inventory    FY 1 1 -1        -1         -1 # 0

Small Lathe 0.8       1.3      0.2 1.2        1.7      0.5 # 14

0

Large Lathe 0.5       0.2      1.3 0.7      0.3      1.5 # 90

Chair Bottom

Carver

0.4       0.4      0.4  1          1          1 # 12

0

Labor 1       1.05        1.1 0.8      0.82     0.84 # 12

5

P

L

A

N

T

3

Table        FC 1 1 -1 # 0

Inventory   FY 1 1 -1 # 0

Chair      FC 1 1 -1         -1         -1 # 0

Inventory   FY 1 1 -1      -1      -1 # 0

Small Lathe 0.8      1.3      0.2 1.2     1.7     0.5 # 13

0

Large Lathe 0.5       0.2      1.3 0.7     0.3     1.5 # 10

0
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Chair Bottom

Carver

Labor 3          5

Top Capacity 1          1

Table 7.25. Primal Solution to the Block Diagonal Problem

Objective = 36206.9

Variable Value Reduced Cost Equation       Slack Shadow Price

Plant1 Sell FC set 24.40 0 Plant1 FC Tables 0 212

Sell FY set 29.01 0 FY Tables 0 320

Make FC Table 24.40 0 FC Chairs 0 97

Make FY Table 20.36 0 FY Chairs 0 130

Sell FC Table 0 -12 Labor 0 44

Sell FY Table 0 -20 Top Cap 5.240 0

Plant2 Trans FC Chair 62.23 0 Plant2 FC Chair 0 92

Trans FY Chair 78.2 0 FY Chair 0 125

Sell FC Chair 0 -10 Sm Lathe 0 47.77

Sell FY Chair 0 -20 Lrg Lathe 0 38.83

Make FC Table 0 -58.11 Chair Bot 16.907 0

Make FY Table 0 -96.85 Labor 0 19.37

Make FC Chair N 62.23 0 Plant3 FC Table 0 200

Make FC Chair MS 0 -14.2 FY Table 0 300

Make FC Chair ML 0 -5.04 FC Chair 0 90

Make FY Chair N 73.02 0 FY Chair 0 123

Make FY Chair MS 0 -10.24 Sm Lathe 0 18.50

Make FY Chair ML 5.18 0 Lrg Lathe 0 12.19

Plant3 Trans FC Table 0 -8 Chair Bot 0 35.27

Trans FY Table 8.649 0 Labor 0 40.00

Trans FC Chair 35.37 0 Top Cap 20.562 0

Trans FY Chair 95.85 0

Sell FC Table 0 0

Sell FY Table 10.79 0

Sell FC Chair 0 -8

Sell FY Chair 0 -18

Make FC Table 0 0

Make FY Table 19.44 0

Make FC Chair N 35.37 0

Make FC Chair MS 0 -8.59
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Make FC Chair ML 0 -3.35

Make FY Chair N 76.83 0

Make FY Chair MS 0 -6.68

Make FY Chair ML 19.02 0

CHAPTER VIII:  MULTI-YEAR DYNAMICS AND LINEAR PROGRAMMING

Many problems contain multiple year dynamic elements (hereafter called dynamics).  This is especially

true in agricultural problems covering perennial crops, livestock and/or facility investments.  Dynamic concerns

arise when decision makers face: a) binding financial constraints which change with time (i.e. cash flow

considerations); b) a production situation in which current actions impact the productivity of future actions (e.g.,

crops in rotation, livestock breeding or equipment purchases); c) a need to adjust over time to exogenous stimulus

(e.g., altering production as prices or resource endowments change); d) future uncertainty and/or e) an exhaustible

resource base.  This section presents modeling techniques for incorporating dynamic considerations into linear

programs.  The discussion will be limited to the modeling of multiple-period situations.   Within-period (year)

dynamics are covered in the sequencing example of the previous chapter.  Before beginning a discussion of

methods, we first present background principles. 

8.1 Dynamics Background

A number of key questions are involved with the modeling of dynamic situations.   Fundamentally, one

must ask whether an explicit multiple time period representation is necessary.  If so, a number of other questions

are relevant.  First, the length of the total time period and the starting date must be determined.  Second, the length

of the time intervals explicitly represented within the total time period must be determined.  Third, initial and final

inventory conditions must be specified.   Fourth, one must decide on activity life; i.e., when a particular activity is

begun and how long it lasts.  Fifth, the rate of time preference must be determined; i.e., one needs the discount

rate at which future returns are considered when compared with current returns.  Sixth and finally, one must

decide whether to include uncertainty.  The sections below present discussion on each of these topics. 

8.1.1 Should Dynamics be Explicit? 
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Dynamic situations may not require multi-period dynamic models.  Some dynamic questions must be

explicitly modeled, allowing the solution to change over time.  On the other hand, other questions may be

adequately depicted by a steady state equilibrium model.  In an equilibrium model the same decision is assumed to

be repeatedly made in all time periods and thus a "representative" single period representation is used. 

Choice between these two modeling alternatives depends on a number of considerations.   First, one must

ask whether modeling adaptation is important.  This depends upon whether the modeled entity is likely to

experience growth, development/exhaustion of its resource base, and/or dynamic changes in model parameters. 

Second, one must be interested in the time path of adjustment and must not be content to solve a model for an

optimal final state with the adjustments required to attain that state determined exogenously.  Simultaneously, one

must ask whether the data are present in sufficient detail to support a dynamic model.  Finally, the multi-period

dynamic analysis must be affordable or practical given the model size and data required. 

Dynamic equilibrium models may be used when one is willing to assume: a) the resource, technology and

price data are constant; and b) a long-run "steady state" solution is acceptable.   Disequilibrium models are used

when these assumptions do not hold.  Often reliance on equilibrium models is stimulated by the absence of data on

parameter values over time.

The decision on whether or not to assume equilibrium needs to be addressed carefully.  Two common

errors occur in the context of dynamic models: unnecessarily entering explicit dynamics into a model and

improperly omitting them.  Naturally, the proper dynamic assumption depends upon the problem.  Treating

dynamics as an equilibrium does not imply ignoring dynamics, but rather assumes repetitive decision making with

equal initial and final inventory, a zero growth rate and a constant resource base. 

8.1.2 How Long? 

Given that a dynamic model is to be used, one must determine the length of time that the model covers. 

There are trade-offs between time coverage and size.  Longer lengths generally add variables and constraints

along with data needs. 

Determination of the model time frame involves many considerations.  One of the simplest, yet powerful

statement comes from Madigliani and Cohen, who stated that the time horizon must be long enough so that

alterations in its duration do not impact the initial period solution.  However, this statement is based on the
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assumption that the first period variables are the main focus of interest.   When more periods are of interest (e.g.,

first five years), an obvious restatement is that the time frame should be long enough so that its extension does not

alter the variables of interest.  Such a criteria, while appealing, may not be terribly practical.  Model size may

limit its attainment.   An alternative modeling strategy is to specify a number of periods explicitly, then introduce

terminal conditions for in-process inventories.  Specification of terminal conditions is discussed below.  

Resolution of the model duration question is well beyond the scope of this effort.  The questions of time

preference and uncertainty are intimately related.  Resolution of the question, however depends upon the problem

at hand.  Theoretical investigation may be found in Arrow and Kurtz; Graff; and Boussard.  Also, a review of the

literature may be found in Nuthall.

8.1.3 Time Interval Representation 

A discrete time representation is used in all models in this book.  Within such a setting one must define

time sub-intervals, hereafter called periods.  One may specify periods of uniform or non-uniform duration. 

Basically, the specification depends upon the nature of the decisions to be made and the length of the production

cycle.  

Annual time disaggregation is most common.  However, decades, half years, quarters and months have

been used depending upon the problem structure.  Model size usually increases rapidly as more periods are

specified.  Further, it is possible to have fine breakdowns in resource availability within time periods, for example,

having weekly detail on some variables (e.g., product scheduling), but coarser detail on others (i.e., machinery

investment).  The breakdown used must be determined by the elasticity of substitution (0) between resources at

different times; i.e., when labor in two weeks is perfectly substitutable (0=1) then include these weeks in one

larger period.  Otherwise, multiple periods are defined. 

8.1.4 Initial and Terminal Conditions

Often initial and terminal conditions are specified when formulating a multi-period dynamic model.  In

such a model it is important to adequately reflect the in-process inventory and previously made commitments

(e.g., trees planted in the past, animals on hand, or partially depreciated investments) as initial conditions.

Most models do not contain either an infinite time horizon or conditions where all dynamic enterprises

stop at the end of the horizon.  Consequently, terminal conditions are important.  Terminal conditions reflect the

value of in-process inventory beyond the final period explicitly modeled and should either value or require a

minimum level of inventory.  When used, terminal values should reflect the net present value of the future income
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stream earned by ending the time horizon with a unit of the in-process inventory.  Such conditions can insure that

model activity will be reasonable up until the final year.  The error created by ignoring terminal conditions can be

illustrated through example.  Suppose a firm uses trucks which must be replaced after 6 years.  Given a model

with a 7 year horizon and no terminal conditions, there would be little incentive to buy new trucks toward the end

of the model time horizon, say in the 6th year.  The model would simply not reflect gains from the future

availability after the 7 year horizon.  Thus in a seven year model, a new truck acquired in the 6th year would need

a terminal condition reflecting the returns to having the truck in its 5 years of existence after the explicit model

time frame.  The specification of terminal values can be difficult, particularly in the case of investments which

enhance production and therefore alter the income stream. 

Initial and terminal conditions may be specified in several ways, as always dependent upon the problem. 

The most common specification of initial conditions has the initial quantities specified as an exogenous limit (i.e.

that there are 40 acres of existing trees that are 20 years old).  Initial conditions may also allow inventory to be

purchased at a price or according to a price quantity schedule.  The same basic modeling alternatives are available

for depicting terminal conditions.  The terminal in-process inventory may be required to equal or exceed a fixed

quantity, valued at a fixed price, or valued according to a price quantity demand schedule.  It is usually improper

to omit terminal conditions.  Terminal values sometimes can be inferred by observing, for example, the model

shadow prices on intermediate inventory in early time periods.  Terminal values are much more difficult to specify

than initial conditions (due to the element of forecasting involved).  However, these parameters are key to the

meaningful modeling of multi-period dynamic situations.  

8.1.5 Enterprise Life 

Enterprise life refers to the number of years that an activity lasts and may be assumed to be known or

unknown.  If enterprise life is unknown and is to be determined in the model, then constraints and activities must

be present in the model to keep track of age of the items on hand.  If not, a single activity can be used.  Models

using alternative enterprise life assumptions are given below. 

8.1.6 Time Preference 

Time preference is an important dynamic modeling concern.  Given that returns and costs occur over time

and alternative streams must be compared, these must be placed on common footing, usually using the concepts of

discounting and present value.  The present value of a dollar earned in year t, given a constant opportunity cost of

funds of r is (1+r)-t.  Thus, the current value of a flow of funds which varies from year to year (ct) over T years is
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PV ' 'T
t'0

( 1% r )& t Ct

Once time preference is considered, the question of specifying the appropriate cost of funds, (also called

the discount rate) arises.  Many considerations enter, such as whether the rate should be in real or nominal terms,

how to determine the opportunity cost of capital, how to include the cost of borrowing funds, how to consider the

value of alternative investments, and how to take risk into account.  It is beyond the scope of this book to cover

how to determine such a rate.  Rather, the reader is referred to the discussion in Bussey relative to rates in private

firms or Mishan for discussion of rates in social choice situations.  

8.1.7 Risk

Risk is definitely a factor in dynamic situations.  Risk is almost always present as situations evolve over

time.  This chapter only treats certainty models and unique aspects of risk in the context of dynamics; The

majority of the risk techniques which have been used are discussed in the risk programming chapter below.

8.2 Dynamic Linear Programming

The most straight forward linear programming model of a dynamic situation contains multi-year

enterprises of known life with multiple years modeled.  This is where our discussion of dynamic models will

begin.  Subsequently, models with unknown life will be discussed, followed by sections on the equilibrium, typical

single period model with known and unknown life.  For economy of description, we will refer to multi-period

models as disequilibrium models, and typical period representations as equilibrium models. 

8.2.1 Disequilibrium - Known Life

Consider a problem involving decisions on how to commit resources over a number of time periods

considering items which, once begun, will require resources for a known number of periods.  A formulation of this

problem must consider resource availability, choice of variables and continuing resource usage during the life of

multi-period enterprises.  Time preference of income and initial and terminal conditions must also be incorporated. 

Assume all enterprises have a K year life so that an enterprise undertaken in year t lasts until t+K.  A model of

this situation, assuming resource use, yields and returns are independent of the year in which the activity begins is
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Max '
t
'
j

(1% r)& t Cjt Xj,t % (1% r)&T '
e

e<K

'
j

Fje Ije

s.t. '
e
'
j
Aije Xj,t& e # bit for all i and t

Xj,& e ' X (

j,& e for all e > 0 and all j

& '
j

Xj,T& e % Ije ' 0 for all e < K and all j

Xj,t , Ije $ 0 for all j, t and e < K

Cjt ' '
e

(1% r)& (t% e) hje

where e # { K& t , T& t}

Here t is the year identifier and begins at zero for the first year; T is the last year in the model;  j identifies

alternative variables; e indexes the elapsed age of an enterprise; K is the life of an enterprise (i.e., the number of

periods after starting the enterprise that resources are used); i indexes resources; r is the discount rate; Cjt is the

profit from initiating variable Xjt in year t; Xjt is the number of units of alternative j initiated in year t; Fje is the

terminal value of Xje after the explicit time period in the model lapses; Ije is the number of units of Xj which are e

years old at the model completion; Aije is the usage of resource i by the jth alternative when it is e years old; bit is

the endowment of resource i in year t; and  X*
j,-p is the initial condition giving the amount of Xj done p years

before the model begins.

The model maximizes net present value of activity from years 0 through T plus the terminal value of

in-process inventory.  Annual profits are converted to present value by multiplying through by the discount factor. 

The model assumes the profits (Cjt) are collapsed into the period when the Xj variable is initiated.  This is done by

calculating the term Cjt as

where hje is the net profit from Xjt.  When it is e years old.  The inequality for e accounts for cases where the life

of the enterprise extends beyond the time horizon.  

The second term of the objective function gives the terminal value of enterprises not entirely completed

during the years the model explicitly covers.  For example, enterprises begun in the last year explicitly modeled

are valued at Fj1, since they will be one year old in the period following the model.  The Fje terms depict a future

stream of profits to activities lasting beyond the model horizon discounted back to year T.  

The first model constraint requires resource use to be less than or equal to resource availability in 

that year.  Annual resource use depends upon enterprises begun in the current time period as well as items which

began up to K years in the past.  Thus, the summation subscripting adds all variables which are of age
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 0 to K years old in the current year (t).  Resource use is assumed to depend only on the elapsed age (e) of the

activity.  Each alternative (j) once committed will always exist for years t+0 to t+K using an a priori specified

amount of resources (Aije) each year.  The next constraint set specifies the initial conditions: i.e., the amount of

enterprises undertaken before the model was started which use resources during the time period covered by the

model.  The last constraint set adds up in process inventory at the end of the explicit time horizon setting the

variable Ije equal to the amount of Xj which is e years old in the final model year and will extend into future years,

thus the e=K case is not included.

The formulation assumes all enterprises have the same life.  This clearly is not necessary and will be re-

laxed in the example.  The assumption could be relaxed in the general model by adding a subscript j to the e

parameter which would depict the life of the jth activity.  The model also assumes equal length periods.  

8.2.1.1 Example

Suppose a farmer wishes to establish a five-year crop plan.  Two crops are under consideration: 

wheat and strawberries.  Constraints restricting the choice of plans include quantities of land and water.  Assume

wheat has a one year life and requires one acre of land while an acre uses $60 of variable costs per acre using 1

acre-ft/acre of water and yielding 100 bushels of wheat which sell for $4.00 each.  Assume strawberries have a 3

year life.

The Strawberry costs, resource usage and yields are 

Year 0 Year 1 Year 2

Cost/Acre 150 280 300

Yield/acre in tons 0 7 7

Water/acre in acre-feet .8 4.5 4.5

The price per ton of strawberries is $140.  The farm has 700 acres, 50 planted in 0 year old strawberries and 10
in 1 

year old strawberries.  Water available consists of 1200 acre ft. per year. 

We need terminal conditions to value those items which are carried into the fifth and beyond years. 

Assume that the following values have been derived.     

Product Terminal Value
New strawberries (0 years old the year after the model) $160/acre 
1 year old strawberries $110/acre 

The initial tableau of this formulation appears in Table 8.1.  The tableau reflects the known life

assumption in that, under the strawberry activities, when the strawberries are begun, they commit resources both
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Max '
t
'
j
'
e

(1% r)& t Cje Xj,t,e % (1% r)&T '
e

e…K

'
j

Fje Ije

s.t. '
e
'
j

Aije Xj,t,e # bit for all i and t

Xj,0,e ' X (

j,0,e for all j and e < K

& Xj,T,e % Ije ' 0 for all j and e < K

& Xj,t&1,e&1 % Xj,t,e # 0 for all tj , j and e > 0

Xj,t,e , Ije $ 0 for all j , t , e

in the year they are begun and in later years.  Thus, while one acre of land in year one is used for year zero

strawberries, it is also matched by an acre in years one and two.  This reflects the assumption that strawberries

are always kept three years, i.e. that they have a known life.  The initial conditions on the problem are reflected by

the right-hand sides.  Notice the year one land constraint has a resource availability of 640, which is the 700 acres

of available land less the sixty acres previously planted to strawberries.  The water constraint is similarly

adjusted.  This is also reflected in the second year where the resource endowments reflect continuation of the ten

acre patch previously existing.  Terminal conditions in the model are reflected on the strawberries begun in years

three and four, which are not fully completed during the model time frame.  

The solution is shown in Table 8.2.  The GAMS file DISEQK depicts this problem.  The solution reflects

the disequilibrium nature of the model.  Wheat acreage varies from year to year as the acres of strawberries are

established.  Note that no strawberries are established in the last couple of years, and therefore there are no

terminal quantities of strawberries.  This is due to relatively low terminal conditions on strawberries.  The

solution indicates that it would cost as much as $330 in year five to plant strawberries.  This means that the

terminal conditions would have to be at least $490 before it would be optimal in the model to do that.  

8.2.2 Disequilibrium - Unknown Life

A second possibility involves modeling of situations wherein the exact life of activities is to be

endogenously determined (although a maximum life is known) in a multi-period context.  A formulation of this

problem must include the considerations in the known life model as well as variables depicting the decision on

whether to continue or terminate an activity.  Adopting the same assumptions as above, a general formulation of

this model is

Where t is the time index; T is the length of the total planning horizon; j is an index for identifying alternative
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variables;  e is an index identifying the elapsed age of a variable; K is the maximum age of a variable; i is an

index which identifies resources; r is the discount rate; Cje is the per unit profit from variable j when it is of age e;

Xjte is the number of units of alternative j on hand in period t which are of elapsed age e; Fje is the terminal value

of incomplete units of Xj which are of elapsed age e; Aije is the resource i usage by one unit of the production

represented by variable j when it is of elapsed age e; bit is the endowment of resource i in period t; and Xjoe is the

initial amount of enterprise j of elapsed age e before the model begins (in time period 0).

This model has many common features with the known life model.  In particular, the objective function

interpretation is virtually identical.   However, there are several distinctive features which should be brought out. 

Since the life of a production variable may be terminated, the decision variable now is Xjte which allows

for the possibility of employing variable j in year t when it is of elapsed age e.  The constraint before the

nonnegativity conditions relates the amount of e year old variable in year t to the amount of e-1 year old variable

in year t-1.  The inequality on this constraint permits the predecessor to be nonzero and the successor to be zero

(thus depicting selections less than maximum life for the variable). 

This model is probably more realistic than the earlier one, but this has a price.  The number of variables

has been multiplied by the number of years a production activity could exist (K + 1) and the number of

constraints has expanded.  This is potentially a much larger model. 

8.2.2.1 Example

For this example we use the data above plus longer retention of strawberries.  Assume they may be kept

up to 4 years and that in the fourth year the planting costs $400 with the yield being 5, and water use being  5.7

acre feet.  We will also assume that the terminal value of 3-year old strawberries is $20/acre. 

The resultant model is given in Table 8.3.  The model shows several things.  First the initial endowments

of strawberries, are reflected on the right-hand side in the first year.  Here there are 50 acres of zero year old

strawberries, 10 of one year old strawberries, and zero of two year old strawberries.  Second, the unknown life

assumption is reflected in the linkage constraints that are labeled straw 0-1 year one etc.  These constraints

require that the strawberries in year one that are zero years old be a prerequisite for strawberries that are one year

old in the second year, and similarly two year old strawberries in year two are a prerequisite for three year old

strawberries in year three.  Third, the model thus has its choice of whether to continue or not continue the

strawberries throughout their life.  This is reflected in the solution (Table 8.4), which shows that three year old

strawberries are never used, indicating their life is always terminated, except that the two year old strawberries
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are kept in the terminal condition in the final year.  Fourth, disequilibrium behavior is reflected in that different

amounts of strawberries are established in each year, as are different amounts of wheat.

8.2.2.2 Comments

An alternative form of the disequilibrium unknown life model merges the concepts of the known and

unknown life models.  In this model the linkage equations above are dropped and the X variables are assumed to

have known life wherein the alternative variables are formulated for each possible activity age. Thus in our

example, we would have first year variables for strawberries planted in the first year and kept with a known life of

1, 2, 3, and 4 years (4 variables).  Such an example will be illustrated in the equilibrium unknown life section.

8.2.3 Equilibrium - Known Life

Disequilibrium models are usually relatively large.  Further, the specification of the initial and terminal

conditions is of key importance.  However, such conditions can be difficult to specify.  Equilibrium models

provide an alternative approach.  In an equilibrium model, the firm is assumed to operate in a steady state manner,

repeatedly making identical decisions year after year.  In such a case, initial and final inventories of in-process

goods will be equal; thus, the initial and final conditions may simply be set equal and their optimal levels

determined by the model.  This leads to a smaller model depicting a representative equilibrium year.  Equilibrium

solutions, however, do not portray growth situations or time paths of adjustment; only final equilibriums are

created. 

Equilibrium models are developed as follows: assume we have a variable with life of 4 periods and

resource use, yield, etc., equal to Ae, where e is the elapsed age of the activity (0-3).  Let us (assuming we start

with zero initial activity) portray the resource use over several periods.

Begin Activity in Period

 1      2 3     4 5 6

Period 1 resource use   A0

Period 2 resource use   A1 A0

Period 3 resource use   A2 A1 A0

Period 4 resource use   A3 A2 A1 A0

Period 5 resource use A3 A2  A1 

Period 6 resource use A3 A2 A0  

Period 7 resource use A3  A1 A0    

Once the activity pattern enters period 4 we have resource use by each age of the activity.  In this and

subsequent periods, resource use in any period may be written as 
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Rt ' A3 Xt&3 % A2 Xt&2 % A1Xt&1 % A0 Xt

t ' A3 Xt % A2 Xt % A1 Xt % A0 Xt ' (A0 % A1 % A2 % A3 )Xt ' XtE
e

A

Max '
j

CjXj

s.t. '
j

AijXj # bi for all i

Xj $ 0 for all j

where Xt is the quantity of the activity begun in period t. 

Under an equilibrium assumption the same thing is done each year in a continually repeated sequence. 

Thus, Xt = Xt-1 = Xt-2 = Xt-3 and the resource use may be rewritten as 

In an equilibrium model, then, the resource use for a variable is the sum of its resource usages over its whole life. 

(At this juncture we should observe that these assumptions imply that initial and final inventories are equal.) 

Thus, a general formulation of the equilibrium model with known life is 

where: Xj is the quantity of the jth enterprise produced in equilibrium.

Cj is the revenue per unit of Xj and equals the sum of the returns to the activity over the periods (e) of its
life, which is assumed to be known;

Aij is the use of resource i per unit of Xj and equals Aije or the sum of the resource usages over the years
of the enterprise’s life; and

bi is the amount of resource i available.

8.2.3.1 Example 1

Two examples will be shown for this particular formulation to illustrate its features.  The first continues

the example used throughout the chapter; in the second, initial and final inventory are explicitly handled. 

The equilibrium known life nature of this model is reflected in Table 8.5 and GAMS formulation

EQUILK.  The model reflects the known life assumption under the strawberry activity in that the objective

function of the strawberry activity equals the sum of the objective function values over all three years of its life. 

Similarly, land use equals three, indicating that when one acre is started in the first year that implicitly an acre is

committed a year from now and two years from now.  Under the equilibrium assumption for each acre started

now, there will be two additional acres; one that was started one year ago and one that started two years ago, for

a total of three acres of land.  Initial and terminal conditions are not reflected.  The solution to this model is given

in Table 8.6, which shows that the equilibrium solution is to plant 479 acres of wheat each and every year and 74
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acres of strawberries.  This model can also be re-expressed in terms of average resource use.  This is done in

Table 8.7, where an average of one acre of land is used every year generates an average of $410 and the usage of

3.27 acre feet of water.  The solution for this model essentially identical to the solution for the previous model,

but the strawberry variable equals 221.  This indicates that the equilibrium solution averages 221 acres of

strawberries.  Thus, in the strawberry rotation, one-third of the 221 acres (or 74 as in the earlier model) would be

first year, one-third second year and one-third year.

8.2.3.2 Example 2

The above example does not explicitly show the initial and final inventory situations. Therefore, we wish

to construct another example that demonstrates this point more explicitly. 

Suppose a farmer wishes to establish a crop rotation.  Two crops are planted: corn and soybeans. 

Assume crop yield varies with dates of planting and harvest, thus the yields are dependent upon time of planting. 

Time is disaggregated into five annual periods: one in the fall after harvest through spring before planting, two

during planting, and two during harvest.  Cultural operations of the crop are plowing, planting and harvesting. 

Plowing may be done any time after a crop is harvested (during or after the harvest period) and before planting

(during or before the planting period).  Also assume that corn yields depend upon whether corn follows corn or

soybeans.  Land and labor are the limiting resources.

Technical data pertinent to the model are: 

Corn Soybeans

Prices/Unit $2.50 $6.50

Production Cost/ Acre 100 50

Labor Use in hrs/acre

Plowing .4 .3

Planting .15 .15

Harvesting .35 .17

Yields:
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Corn after Corn
Planting Period

Corn After Soybeans
Planting Period

Soybeans
(after Anything)
Planting Period

Pd2 Pd3 Pd2 Pd3 Pd2 Pd3

Harvest Pd4 130 120 145 133 35 45

Period Pd5 125 110 137 129 33 42

Labor Availability (hrs)

Period Available Labor

Post harvest/Preplant (Pd1)  80

Plant (Pd2)  65

Plant (Pd3)  75

Harvest (Pd4) 100 

Harvest (Pd5) 80

The farm has 400 acres. 

Before formulating this model, its dynamic nature should be explored.  Specifically, we must address this

question: what are the items which constitute the initial and terminal conditions? 

A diagram of the dynamic process appears below:

This dynamic process reflects linkages between last year's fall plowing with this years activities.  The

equilibrium assumption then is that this year's fall plowing and crop mix equals last year's.  Therefore, we will

require this to be true by using only one set of variables for fall plowing which by nature assumes equality.  The 
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spring plow plant harvest fall plow

diagram of the resulting dynamic process is which implies that planting precedes harvest which precedes planting;

thus, planting precedes itself in an assumed equilibrium situation. 

The model formulation' reflecting this is shown in Table 8.8.  Note that sequencing is modeled as

illustrated earlier.  This introduces the dynamic equilibrium assumption, in that plowing precedes planting, which

precedes harvest, which precedes plowing, making the timing circular where the functions both precede

themselves and follow themselves.  The solution to this model is indicated in Table 8.9, and shows a continuous

rotation with 200 acres of corn are planted after soybeans and 200 acres of soybeans are planted after corn.

8.2.3.3 Comments

Several aspects of the equilibrium model require discussion.  First when a model reaches an equilibrium,

the resources available must be in equilibrium.  Thus, the same amount of resources must be available on a

continuing basis.  Similarly, resource use of a variable of a given age must be the same year after year.  Such

assumptions rule out the use of this model when examining cases with depletable resources. 

A second assumption involves the word repeatability.  Namely, the plan at any point in time must be

repeatable.  Given an alternative which lasts n periods the solution will have 1/n units of the alternative in each

stage of its life.  In the wheat strawberry 1/3 of the acreage is in each of the three years of the strawberries life. 

Further, in the corn-soybean example, no more than ½ the acreage will be devoted to corn following soybeans and

an equal acreage must be devoted to soybeans followed by corn. 

A final line of comments relates to discounting.  These authors have not examined discounting at great

length, but feel that discounting should not be included in this model since the return in every year is identical. 
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Max '
j

'
e

CjeXje

s.t. '
j

'
e

AijeXje # bi for all i

&Xj,e&1 % Xje # 0 for all j and e > 0

Xje $ 0 for all j and e

8.2.4 Equilibrium - Unknown Life

A version of the equilibrium model may be formulated in which the multi- period activities are of

unknown life.  The assumption is retained that the same thing is done each period.  Thus, resource use in a typical

period is summed across the possible ages that an activity may be kept.  A general formulation of the model is

where: Xje  is the quantity of the jth activity produced and kept until it is e periods old;   

Cje  is the per unit returns to Xje; 

Aije is the per unit usage of resource i by Xje; 

bi   is the amount of resource i available; 

The model maximizes profits subject to constraints on resource use and age sequencing.  The age

sequencing constraints state that the amount of enterprise j of age e must be less than or equal to the amount of

that enterprise that was kept until age e-1. 

8.2.4.1 Example

A tableau of the unknown life equilibrium model in the wheat, strawberry example context is given in

Table 8.10.  There we again have the structure where first year strawberries are required before second year

strawberries can be grown.  Similarly, two year old strawberries are required before three year old strawberries,

etc.  The solution, which is given in Table 8.11, indicates that the model chooses to terminate the life of

strawberries at the end of three years and that it would cost $88 to continue them into the fourth year.  The

solution also is indicative of what terminal conditions would be needed had we set them appropriately in the

equilibrium model, where the terminal value of zero year old strawberries is around $488 and the terminal value

of one year old strawberries is $164 and the terminal value of two year old strawberries is $0.  A slightly more

compact formulation may be constructed in which the activities represent the activity kept for e years.  This

model is illustrated in Table 8.12. 

8.2.5 Overall Comments on Dynamic Linear Programming
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Dynamic LP may be used in many settings.  The models, however, do involve numerous assumptions and

require different computational and data resources.  The disequilibrium models in particular become quite large

when used and also require constructing "good" terminal conditions.  Equilibrium models are more compact, yet

use assumptions which may be unrealistic given a problem situation.

Further, both models suffer from a "curse of certainty"; clearly the optimal solution depends upon the

assumed current and future conditions.  However, the model can include uncertainty.   Kaiser and Boeljhe (1980)

included uncertainty in the disequilibrium model using the expected value variance and MOTAD formulations

(although their MOTAD approach is wrong).  Yaron and Horowitz (1972B) incorporated risk via a multi-stage

discrete stochastic method. 

Three types of models have been used in many research studies.  In terms of equilibrium - known life

models, Swanson and Fox (1954); and Peterson (1955) present early models.  Throsby (1967) formalized the

approach.  In fact, the use of average statistical budgets in a single year model assumes equilibrium (e.g., the

models in Heady and Srivistava [1975]).  Brandao, McCarl and Schuh (1984); and El Nazer and McCarl (1986)

present models which apply the equilibrium model.  Equilibrium - unknown life models are not as easily found,

although El Nazer and McCarl (1986) and McCarl et al. (1977) provide examples. 

In terms of disequilibrium models, early models with known life come from Swanson and Fox (1954) and

Dean and deBeredictus (1964) while White et al. (1978); and Spreen et al. (1980) provide later examples. 

Unknown life type models are given in Loftsguard and Heady (1959); and Candler (1960) while Irwin (1968)

provides a review article and Boussard (1971); Norton, Easter and Roe (1980); and Reid, Musser and Martin

(1980) provide other examples and references.

8.3 Recursive Programming

Another LP formulation dealing with dynamic situations is known as recursive programming (Day,

1963).  Basically, recursive programming models involve problems in which model coefficients are functionally

dependent upon earlier model solutions and an exogenously specified time path.  Following Day and Cigno, a

recursive programming model consists of a constrained optimization model; and a data generator.  The data

generator given the solution in period t, prepares the input for period t+1 including defining a set of constraints

which relates the feasible values of current variables to past values of variables and exogenous events.  The model

then is optimized for each time period with the data generator updating the model to the next time period. 

While recursive programming does not have to be cast as a LP, the LP version will be presented.  The

general recursive LP sequentially maximizes an LP for each of a number of periods.  
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Max for period t Zt ' '
j

CjtXjt % '
k

dkYkt

s.t. '
j

AijtXjt % '
k

EikYkt # bit for all i

Xjt , Ykt $ 0 for all j and k

 Where:  Cjt are objective function parameters functionally dependent upon the previous objective function

parameters (Cj,t-1), lagged optimal decision variables (Xjt-1, Ykt-1), and exogenous events; Xjt are the values of the

decision variables at time t; Aijt are the resource i usages by Xjt functionally dependent upon lagged values, dk are

objective function coefficients which are stable over time; Ykt are the optimal values of the kth Y variable in time

period t; Eik are the usages of resource i which do not change over time; bit are the resource i limits, functionally

dependent upon lagged phenomena. 

The recursive model is not solved over all time periods simultaneously, rather an optimal solution is

constructed for each time period.  There is no guarantee (or necessarily a desire) that these solutions are optimal

over all periods.  Rather, the solution represents an adaptive stream of decisions. 

We have not specified the functional form of the lagged functions as they most often depend upon the

problem at hand.

8.3.1 Example 

A simple recursive programming example arises from a "cobweb" type model.  Assume we have a group

of producers who choose between two crops based on last year's price.  Further assume that producers dampen

their adjustment so that production varies only as much as 2 percent from last year's acreage.  Production costs

are $135 per acre for Crop 1 and $85 per acre for Crop 2.  The yields are Crop 1 - 130 bu/acre; Crop 2 - 45

bu/acre.  Assume the typical producers each have 600 acres.  Suppose, last year's acreage mix was 50 percent

Crop 1 and 50 percent Crop 2 (300 acres of each for the average producer).  Lastly, assume the demand curve for

Crop 1 in terms of this producers production price dependent form is P1 = 20 - .00045 Q1 and the demand curve

for Crop 2 is P2 = 10.9 - .00045 Q2 where Q is the quantity produced.  Such a situation leads to the following

programming problem.
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Max Zt ' (130 P1t & 135) X1t % (45 P2t & 85) X2t

X1t % X2t # 600

X1t # 1.02 X1t&1

X1t $ .98 X1t&1

X2t # 1.02 X2t&1

X2t # .98 X2t&1

X1t, X2t $ 0

where: Plt+1 = 20 - 0.00045 Qit 

 Qlt = 130 Xlt  

P2t+1 = 10.9 - 0.00045 Q2t 

Q2t = 45 X2t

The recursive solution to this model over 6 periods is

Time Period X 1t X2t P1t+1 P2t+1 Zt

0 300.000 300.000 2.450 4.825      ----

1 306.000 294.000 2.099 4.703 94995.750

2 311.880 288.120 1.755 4.584 79491.454

3 306.118 293.882 2.092 4.701 64163.394

4 311.995 288.005 1.748 4.582 79182.851

5 306.235 293.765 2.085 4.699 63860.831

6 312.110 287.890 1.742 4.580 78874.189

8.3.2 Comments on Recursive Programming 

Recursive programming models explicitly represent lagged adjustment.  Several forms of lagged

adjustment have been commonly used.  A frequently used form involves "flexibility constraints" in which a

variable is allowed to vary at most from its predecessor by a percentage (as done in the example).  Day

 (1963) first used this form of constraint; Schaller and Dean did so later.  Sahi and Craddock (1974, 1975)

present information on estimation of these parameters. 

Models involving lagged adjustment to price are also common.  Day (1978) reviews the early literature

involving the cobweb model and goes over a number of considerations involved in its use. The approach involved

is similar to the example above where current price is a function of lagged production.  Such an approach is

common in recursive programming, and in fact has been used in other contexts (e.g., see the discussion of
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iterative methods in Judge and Wallace (1958) and Tramel and Seale (1959,1963)).  The recursive programming

model generally adjusts in one-year sequences.  Multi-year activities must then be converted to single-year

activities by annualizing costs and putting in expected future returns.  The literature does not cover considerations

where resource use of an activity is expected to change over time, but they are possible. 

Finally, we come to usage of recursive programming.  Actually, the vast majority of the usages are

centered in and around the work of Day.  A review of applications is given in Day and Cigno and several other

references appear in Judge and Takayama (1973). 
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Table 8.1.  Disequilibrium Known Life Example
Year 1 Year 2 Year 3 Year 4 Year 5 Terminal

Conditions
Rows

Wheat
Straw-
berries Wheat

Straw-
berries Wheat

Straw-
berries Wheat

Straw-
berries Wheat

Straw-
berries

Strawberries RHS
Aje 0 Aje 1

Objective 340 1230 340 1230 340 1230 340 550 340 -150 160 110 Max
Land Year 1 1 1 # 640
Water Year 1 1 0.8 # 930
Land Year 2 1 1 1 # 690
Water Year 2 4.5 1 0.8 # 1155
Land Year 3 1 1 1 1 # 700
Water Year 3 4.5 4.5 1 0.8 # 1200
Land Year 4 1 1 1 1 # 700
Water Year 4 4.5 4.5 1 0.8 # 1200
Land Year 5 1 1 1 1 # 700
Water Year 5 4.5 4.5 1 0.8 # 1200
Strawberry 0 -1 1 # 0
Strawberry 1 -1 1 # 0
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Table 8.2. Disequilibrium Known Life Example Model Solution
Objective = 1224296      

Variables Value
Reduced

Cost Equation Slack
Shadow

Price

Wheat Year 1 506.2 0 Land Year 1 0 340.0
Strawberries Year 1 133.8 0 Water Year 1 316.76 0
Wheat Year 2 539.9 0 Land Year 2 0 283.1
Strawberries Year 2 16.3 0 Water Year 2 0 56.9
Wheat Year 3 423.4 0 Land Year 3 0 336.9
Strawberries Year 3 126.6 0 Water Year 3 0 3.1
Wheat Year 4 557.1 0 Land Year 4 0 279.8
Strawberries Year 4 0 0 Water Year 4 0 60.2
Wheat Year 5 573.4 0 Land Year 5 0 340.0
Strawberries Year5 0 0 Water Year 5 57.05 0
Term Straw -0 0 0 Strawberry 0 0 -160
Term Straw -1 0 -8 Strawberry 1 0 -118
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Table 8.3 Disequilibrium Unknown Life Sample Problem
Year 1 Year 2 Year 3 Year 4 Year 5 Terminal Conditions

Strawberries Strawberries Strawberries Strawberries Strawberries     Strawberries RHS

Rows Wheat 0 1 2 3 Wheat 0 1 2 3 Wheat 0 1 2 3 Wheat 0 1 2 3 Wheat 0 1 2 3 0 1 2

Max

Objective 340 -150 700 680 300 340 -150 700 680 300 340 -150 700 680 300 340 -150 700 680 300 340 -150 700 680 300 160 110 20

Land Year 1   1    1 1 1 1 #   700

Water Year 1   1    0.8 4.5 4.5 5.7 #   1200

Init Straw 0 1 #   50

Init Straw 1 1 #   10

Init Straw 2 1 #   0

Straw 0-1 Year 1   -1 1 #   0

Straw 1-2 Year 1 -1 1 #   0

Straw 2-3 Year 1 -1 1 #   0

Land Year 2 1 1 1 1 1 #   700

Water Year 2 1 0.8 4.5 4.5 5.7 #   1200

Straw 0-1 Year 2 -1 1 #   0

Straw 1-2 Year 2 -1 1 #   0

Straw 2-3 Year 2 -1 1 #   0

Land Year 3 1 1 1 1 1 #   700

Water Year 3 1 0.8 4.5 4.5 5.7 #   1200

Straw 0-1 Year 3 -1 1 #   0

Straw 1-2 Year 3 -1 1 #   0

Straw 2-3 Year 3 -1 1 #   0

Land Year 4 1 1 1 1 1 #   700

Water Year 4 1 0.8 4.5 4.5 5.7 #   1200

Straw 0-1 Year 4 -1 1 #   0

Straw 1-2 Year 4 -1 1 #   0

Straw 2-3 Year 4 -1 1 #   0

Land Year 5 1 1 1 1 1 #   700

Water Year 5 1 0.8 4.5 4.5 5.7 #   1200

Term Straw 0 -1 1 #   0

Term Straw 1 -1 1 #   0

Term Straw 2 -1 1 #   0
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Table 8.4.  Disequilibrium Unknown Life Example Model Solution
Objective = 1280757.0
Variable Value Reduced

Cost
Equation      Slack Shadow Price

Wheat year 1 547.1 0 Land Year 1 0 340
Straw 0 year old year 1 92.9 0 Water Year 1 308.57 0
Straw 1 year old year 1 50.0 0 Init Straw 0 0 490
Straw 2 year old year 1 10.0 0 Init Straw 1 0 340
Straw 3 year old year 1 0 -40 Init Straw 2 0 0
Wheat year 2 557.1 0 Straw 0-1 Year 1 0 -490
Straw 0 year old year 2 0 -8 Straw 1-2 Year 1 0 -130
Straw 1 year old year 2 92.9 0 Straw 2-3 Year 1 10 0
Straw 2 year old year 2 50.0 0 Land Year 2 0 280
Straw 3 year old year 2 0 -322 Water Year 2 0 60
Wheat year 3 464.3 0 Straw 0-1 Year 2 0 -470
Straw 0 year old year 3 142.9 0 Straw 1-2 Year 2 0 -340
Straw 1 year old year 3 0 0 Straw 2-3 Year 2 50 0
Straw 2 year old year 3 92.9 0 Land Year 3 0 340
Straw 3 year old year 3 0 -40 Water Year 3 203.57 0
Wheat year 4 557.1 0 Straw 0-1 Year 3 0 -490
Straw 0 year old year 4 0 0 Straw 1-2 Year 3 0 -110
Straw 1 year old year 4 142.9 0 Straw 2-3 Year 3 92.85

7
0

Straw 2 year old year 4 0 0 Land Year 4 0 274
Straw 3 year old year 4 0 -349 Water Year 4 0 65.7
Wheat year 5 557.1 0 Straw 0-1 Year 4 0 -470
Straw 0 year old year 5 0 -330 Straw 1-2 Year 4 0 -360
Straw 1 year old year 5 0 0 Straw 2-3 Year 4 0 0
Straw 2 year old year 5 142.9 0 Land Year 5 0 340
Straw 3 year old year 5 0 -40 Water Year 5 0 0
Term Straw 0 0 Term Straw 0 0 -160
Term Straw 1 0 Term Straw 1 0 -110
Term Straw 2 0 Term Straw 2 142.86 -20
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Table 8.5.  Equilibrium Known Life Example Formulation
Wheat Strawberries

Objective 340 1230
Land 1 3 # 700
Water 1 9.8 # 1200

Table 8.6.  Equilibrium Known Life Example Solution
Objective = 253441

Variables Value
Reduced

Cost Equation Slack
Shadow

Price
Wheat 479 0 Land 0 309
Strawberries 74 0 Water 0 31

Table 8.7.  Equilibrium Known Life Example Formulation with Average Activities
Wheat Strawberries

Objective 340 410
Land    1    1 #      700
Water    1 3.27 #    1200
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Table 8.8 Rotation Example in Equilibrium Known Life Context
Plant Corn Plant Soybeans  RHS

Plow after corn Plow after soybeans after corn after soybeans after corn after soybeans
Rows pl2 pl2 pl3 pl3 pl2 pl2 pl3 pl3 pl2 pl2 pl3 pl3 pl2 pl2 pl3 pl3

pd1 pd2 pd3 pd4 pd5 pd1 pd2 pd3 pd4 pd5 hr4 hr5 hr4 hr5 hr4 hr5 hr4 hr5 hr4 hr5 hr4 hr5 hr4 hr5 hr4 hr5

Objective 225
213

200
175

263
243

233
223

178
165

243
223

178
165

243
223

Max

Land 1 1 1 1 1 1 1 1 1 1 #  400

Labor pd1 .4 .3 #   80
Labor pd2 .4 .3 .2 .2 .2 .2 .2 .2 .2 .2 #   65
Labor pd3 .4 .3 .2 .2 .2 .2 .2 .2 .2 .2 #   75
Labor pd4 .4 .3 .4 .4 .4 .4 .3 .3 .3 .3 #  100
Labor pd5 .4 .3 .4 .4 .4 .4 .3 .3 .3 .3 #   80

plant after plow
corn pd2 -1 -1 -1 -1 1 1 1 1 #    0
corn pd3 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 #    0
soybeans pd2 -1 -1 -1 -1 1 1 1 1 #    0
soybeans pd3 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 #    0

plow after harvest
corn pd4 1 -1 -1 -1 -1 #    0
corn pd5 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 #    0
soyb pd4 1 -1 -1 -1 -1 #    0
soyb pd5 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 #    0
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Table 8.9.  Solution to Rotation Model 
Obj = 100777

Variable Value
Reduced

Cost Equation Slack
Shadow

Price
Plow After Corn Land 0 238
pd1 0 0 Labor pd1 80 0
pd2 87.5 0 Labor pd2 0 0
pd3 72.5 0 Labor pd3 16 0
pd4 0 -22 Labor pd4 0 56
pd5 0 0 Labor pd5 0 0
Plow After Soybeans Plant After Plow
pd1 0 0 corn pd2 128 0
pd2 0 0 corn pd3 0 238
pd3 0 0 soybeans pd2 0 0
pd4 0 -17 soybeans pd3 0 253
pd5 200 0 Plow After
Plant corn after corn corn pd4 200 0
pl2 hr4 0 -33 corn pd5 0 0
pl2 hr5 0 -26 soyb pd4 189 0
pl3 hr4 0 -58 soyb pd5 0 15
pl3 hr5 0 -63
Plant Corn After Soybeans
pl2 hr4 200 0
pl2 hr5 0 -11
pl3 hr4 0 -30
pl3 hr5 0 -31
Plant Soybeans After Corn
pl2 hr4 0 -70
pl2 hr5 0 -59
pl3 hr4 189 0
pl3 hr5 11 0
Plant Soybeans After
Soybeans
pl2 hr4 0 -70
pl2 hr5 0 -74
pl3 hr4 0 -5
pl3 hr5 0 -15
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Table 8.10.  Equilibrium Unknown Life Example Formulation
Strawberries RHS

Rows Wheat 1 2 3 4 MAX

Objective 340 -150 700 680 300
Land 1 1 1 1 1 # 700
Water 1 0.8 4.5 4.5 5.7 # 1200
Straw 1-2 -1 1 # 0
Straw 2-3 -1 1 # 0
Straw 3-4 -1 1 # 0

 

Table 8.11.  Equilibrium Unknown Life Example Solution
Objective             253441

Variables Value
Reduced

Cost Equation Slack
Shadow

Price
Wheat 479 0 Land 0 309
Strawberries 1 year old 74 0 Water 0 31
Strawberries 2 year old 74 0 Straw 1-2 0 483
Strawberries 3 year old 74 0 Straw 2-3 0 232
Strawberries 4 year old 0 185 Straw 3-4 74 0

Table 8.12.  Alternative Formulation of Equilibrium Unknown Life
Keep Strawberries RHS

Rows Wheat 1 2 3 4
MAX

Objective 340 -150 550 1230 1530
Land 1 1 2 3 4 # 700
Water 1 0.8 5.3 9.8 15.5 # 1200
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,i % '
j

Xji bj ' Yi

Min '
i
*,i*

s.t. ,i % '
j

Xji bj ' Yi for all i

,i
<
>

0 bj
<
>

0 for all i and j

CHAPTER IX:  LINEAR PROGRAMMING MODELING:
NONLINEARITIES AND APPROXIMATION

This chapter presents LP formulation techniques for representing nonlinear phenomena.  The formulations

fall into transformations and approximation classes.  Transformations deal with minimization of the sum of

absolute values; minimization of the largest absolute value; and maximization of a fraction.  Approximations

include grid point based formulations of problems with separable and multi-variable functions.  9.1 Transformations

9.1.1 Minimization of the Sum of Absolute Deviations

Suppose one wishes to minimize the sum of absolute deviations between a set of predictions and

observations, where the predictions involve endogenously determined variables.  Let the deviations be represented

by: 

where i identifies the ith observation, ,i gives the deviation, Yi an exogenously observed value, Xji the exogenous

data which go into forming the prediction of Yi, and bj the endogenous variable levels.  The term Yi minus the sum

of Xji bj gives the difference between the observed level Yi and its prediction given by (GXji bj).  

A LP constraint set is formed by moving the G Xjibj term to the left side of the equation. 

The basic problem of minimizing the summed absolute values of all i is: ,

The variables in this formulation are i and bj. The i are unrestricted in sign as are the bj's.  , ,

This problem is not a LP problem because of the nonlinear absolute value function.  However, it can be

transformed into a LP problem.  First, we substitute for i, writing it as the difference of two non-negative,

variables:

,i ' ,%i & ,&i

i can take on negative values if i
-> i

+; conversely, if i
+> i

-, positive values result.  The resultant problem , , , , ,
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,%i ( ,&i ' 0,

*,%i - ,&i * = *,%i * + *,&i * = ,%i + ,&i

whenever ,%i *,&i = 0

Min '
i

(,%i %,
&

i )

s.t. ,%i &,
&

i % '
j

Xji bj ' Yi for all i

,%i (,
&

i ' 0 for all i

,%i , ,&i $ 0 bj
<
>

0 for all i and j .

Min *,* ' ,% %,&

,% & ,& ' Y

,% , ,& $ 0

is

This problem is still nonlinear because of the absolute value term.  However the absolute value terms can be

simplified whenever either i
+ or i equals zero as the consequent absolute value reduces to zero plus the other, ,

term.  Algebraically, if the product of the deviation variables is zero, i.e.,

then the absolute value term can be written as the sum of the two variables

Imposing the restriction that one or the other variable is zero, the formulation becomes

This is an LP formulation except for the constraint on the product of i
+ and i

-.  However, this constraint can be, ,

dropped.  Consider a problem with only one observation Y without X and b.  Under this case the formulation

reduces to

Rearranging the first constraint we obtain

,% ' Y % ,&
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Min '
i

(,%i % ,&i )

s.t. ,%i & ,&i % '
j

Xji bj ' Yi for all i

,%i , ,&i $ 0 bj
<
>

0 for all i and j,

In turn, tabling alternative values for Y (i.e., consider Y=4, Y=-6), including possible values of ,  and the,% ,&

resultant objective function sum yields

Y = 4 Y = -6
-  +  + ,% ,& ,% ,& ,% ,& ,% ,&

4 0 4* 0 6 6*

16 12 28 14 20 34

Z + 4 Z 2Z + 4 Z Z + 6 2Z + 6

* These cases are the only ones in which  *  equals zero.,% ,&

In the Y=4 case,  has to equal +4.  The left most part of the table gives several alternatives for this.  The,% ,&

first is =4 and =0, leading to a sum ( + ) of 4.  The second alternative (16 and 12) gives an objective,% ,& ,% ,&

function sum of 28.  In general, for any choice for  = Z, the  value must equal Z+4, and the objective,& ,%

function value becomes 2Z+4.  Clearly, when 2Z+4 is minimized and Z is non-negative, the minimum occurs at

Z=0, implying  =0.  A similar conclusion can be reached for the negative Y case.  Thus, minimization will,&

automatically cause  to equal zero, and the nonlinear constraint is not necessary.  Consequently the final,%i ( ,&i

formulation becomes

which is a linear program.  This problem solves the original problem.  The nonlinear problem has been

transformed into an equivalent LP. 

9.1.1.1 Example

Suppose a linear equation is to be fit predicting raw orange price as a linear function of the quantity of juice

and fresh oranges sold given the following data: 

Price of Raw Oranges Quantity of Oranges Sold Quantity of Juice Sold

10 8 5

5 9 1

4 10 9

2 13 8

6 15 2

9 17 3
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Min '
i
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0 for all i

Min '
i

(,%i % ,&i )

s.t. ,%1 & ,&1 ' 10 & b0 & 8b1 & 5b2

,%2 & ,&2 ' 5 & b0 & 9b1 & 1b2

,%3 & ,&3 ' 4 & b0 & 10b1 & 9b2

,%4 & ,&4 ' 2 & b0 & 13b1 & 8b2

,%5 & ,&5 ' 6 & b0 & 15b1 & 2b2

,%6 & ,&6 ' 9 & b0 & 17b1 & 3b2

,%i , ,&i $ 0 b0 , b1 , b2
<
>

0 for all i

Assume the prediction equation is Yi = b1 Xi1 + b1 Xi2, where b0 is the intercept, b1 and b2 are the prediction

parameters on the quantity of oranges and juice sold, respectively.  Define Xi1 and Xi2 as the observations on the

quantity of oranges and juice sold, respectively; and Yi as the observed price.  Suppose the desired criteria for

equation fit is that the fitted data exhibit minimum sum of the absolute deviations between the raw orange price

and its prediction.  The formulation would be 

The equivalent LP formulation is

Moving the endogenous variables (i.e., the  and bj's) onto the left-hand side and substituting for the variables,'s

which are unrestricted in sign (b0,  b1, b2) yields the final formulation given in Table 9.1.  The GAMS formulation

for this problem is called ABSOLUTE.  The objective function minimizes the sum of the deviation variables

subject to constraints relating the deviation variables to the difference between the observed and forecast levels for

each observation.  The coefficients on the intercept are plus ones; the coefficients on the other parameters (b1, b2)

are the observed levels.  The right hand sides are the observed prices to be forecast. 

The resultant solution yields an objective function value of 11.277, and the solution is shown in Table 9.2. 

The predictive equation yielded by this problem reveals that the price of oranges is predicted by the equation

3.426 + (0.191 * the quantity of raw oranges) - (0.149 * the quantity of juice).  This equation goes exactly
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, $ Yi & '
j

Xji bj

, $ &(Yi & '
j

Xji bj)

through observations 2, 3, and 5 while nonzero deviations exist for observations 1, 4, and 6. The dual to this

problem requires that the shadow prices be between -1 and +1.  The dual variables equal these extreme limits

when the deviation variables are in the solution.  This is shown by the shadow prices on the observations 1, 4, and

6. 

9.1.1.2 Comments

The minimization of total absolute deviations formulation has been used in three settings:  the solution of

regression problems (Charnes, Cooper and Ferguson; Klein; Fisher (1961); Wagner (1959); Wilson); goal

programming problems (as covered in the multiple objective chapter), and risk analysis (as in the risk modeling

chapter).  The regression formulation is commonly used when non-normal errors are expected (see Wilson for

discussion).

9.1.2 Minimization of Largest Absolute Deviation

Models can involve minimization of the largest absolute deviation rather than the sum (i.e., the maximum

forecast error using the so-called Chebyschev criterion).  Such a formulation would be expressed as in the

equations Min Max
i
*,i*

s.t. ,i = Yi - '
j

Xji bj for all i

,i, bj
<
>

0 for all i and j

where the variable  is the deviation under the ith observation and bj is the jth parameter in the forecast equation. ,i

The other symbols are as defined in the previous section.  The problem formulation is straight forward.  Suppose

that we define a variable  (without a subscript) which will equal the largest deviation and introduce two,

equations for each observation (I): 

These equations require  to be greater than or equal to the deviation and the negative of the deviation for each,

observation.  Thus,  will be greater than or equal to the absolute deviation from each equation.  Taking a simple,

example without b variables, with observations on Y equaling -3, 2, and 7, then these equations become 
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Min ,

s.t. -, - '
j

Xji bj # -Yi for all i

-, + '
j

Xji bj # Yi for all i

, $ 0 bj
<
>

0 for all j

Observed Constraints

Yi , $ Yi , $ &Yi

-3 , $ &3 , $ 3

2 , $ 2 , $ &2

7 , $ 7 , $ &7

Clearly,  cannot be less than 7 (the largest absolute deviation in the model).  Since the objective function,

minimizes  subject to these two constraints for each observation, the model collectively minimizes the ,

maximum absolute value.  The composite linear program is: 

9.1.2.1 Example

Utilizing the data from the previous example with the restrictions that the intercept term b0 is unrestricted in

sign but that the parameter on b1 be non-positive while the parameter b2 is non-negative.  The resultant

formulation is 

Rows , b0 b1 b2

Objective 1          Minimize

1+ -1 -1 -8 -5 # -10

1- -1 1 8 5 # 10

2+ -1 -1 -9 -1 # -5

2-- -1 1 9 1 # 5

3+ -1 -1 -10 -9 # -4

3- -1 1 10 9 # 4

4+ -1 -1 -13 -8 # -2

4- -1 1 13 8 # 2

5+ -1 -1 -15 -2 # -6

5- -1 1 15 2 # 6

6+ -1 -1 -17 -3 # -9

6- -1 1 17 3 # 9

1 # 0

1 $ 0
where all variables are non-negative and the GAMS formulation is called LARGE.  This problem solution yields

an objective function value of 3.722 with a variable and constraint solution as shown in Table 9.3. 
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Max
C0 + '

j
Cj Xj

d0 + '
j

dj Xj

s.t. '
j

aij Xj # bi for all i

Xj $ 0 for all j

d0 + '
j

dj Xj > 0

y0 = d0 + '
j

dj Xj

&1

y &1
0 = d0 + '

j
dj Xj

d0 y0 + '
j

dj Xj y0 = 1

The solution shows the regression line of the price of oranges is equal to 7.167 - 0.111 times the quantity of

oranges.  The maximum absolute deviation is present at the first, fourth and sixth observations equalling 3.722. 

9.1.2.2 Comments

The above formulation solves the Chebyshev criterion problem as discussed in Wagner.  This model form

results in shadow price sum equaling 1 due to the duality constraint imposed by the form of , as observed in the,

solution.  Such a criterion has not been applied widely, but Wilson and Wagner give references.

9.1.3 Optimizing a Fraction

Charnes and Cooper (1962) present a LP formulation involving optimization of a fraction.  This formulation

allows problems maximizing such things as the average rate of return.  The problem is 

where the denominator is strictly positive

Note there are constants in both the numerator and denominator accounting for exogenous terms which are not a

function of the decision variables.  

Transformation into a linear program requires several manipulations and substitutions, resulting in an exact

transformation of the problem.  First, define a variable y0 which equals one over the denominator

or equivalently  

Multiplying both sides of this relationship by y0 yields

The new variable y0 is substituted into the above formulation, with the above relationship imposed.  The net result

is:
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Max C0 y0 + '
j

Cj yj

s.t. -bi y0 + '
j

aij yj # 0 for all i

d0 y0 + '
j

dj yj = 1

y0, yj $ 0 for all j

Max C0 y0 % '
j

Cj Xj y0

s.t. '
j

aij Xj y0 / y0 # bi for all i

d0 y0 % '
j

dj Xj y0 ' 1

y0 , Xj $ 0 .

Note that each aijXj term has been multiplied by y0/y0 which is simply 1.  This will be convenient later.  Now we

introduce a change of variables.  Let us define a new variable, yj equal to the old variable Xj times y0.

yj  =  Xj y0 

Substituting this into the formulation above yields

Max C0 y0 + '
j

Cj yj

s.t. '
j

aij yj / y0 # bi for all i

d0 y0 + '
j

dj yj = 1

y0 , yj $ 0 for all j
This formulation is not a LP problem; the term yj/y0 appears in the first constraint equation. However, given that

y0 (i.e. the reciprocal of the denominator) is strictly positive we can multiply both sides of the equation through by

it without altering the direction of inequality

'
j

aij yj # bi y0

In turn, rewriting the second equation yields the LP formulation

which is an exact transformation of the original fractional program.  Once this problem has been solved, the levels
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Max
1.8 X1 + 1.7 X2

10 + 4 X1 + 4.1 X2

s.t. 1.5 X1 + X2 # 6

3.0 X1 + 4 X2 # 20

X1, X2 $ 0

Max 1.8 y1 + 1.7 y2

s.t. -6 y0 + 1.5 y1 + y2 # 0

-20 y0 + 3.0 y1 + 4 y2 # 0

10 y0 + 4.0 y1 + 4.1 y2 = 1

y0 y1, y2, $ 0

of the original optimum decision variables are easily discovered by performing the reverse transformation that Xj

equals yj divided by y0

Xj  = yj / y0.

The LP form includes a new variable with coefficients in the matrix which are the negative of the right hand

sides times a new variable ( -bi y0).  A constraint is also added requiring the constant term in the denominator

times the new variable ( d0 y0) plus the denominator terms involving the transformed variables to equal 1.  The

transformed model uses the same aij's as the original.  Its  right hand sides are all 0's except the one in the new

constraint.  The objective function does not have a denominator term and the objective function altered to include

the numerator constant times the new variable y0.  Model selection yields the optimal y's (y0,y1,...,yn). 

Subsequently, then we transform to obtain X.

9.1.3.1 Example

Suppose that it is desirable to solve the following problem.

Then the transformed problem is

Once a solution to this problem is obtained, the values of the original variables are recovered using the formulas

X1 = y1 / y0

X2  = y2 / y0 

The GAMS model is set up in the file FRACTION and the solution is shown in Table 9.4.
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The solution shows that the reciprocal of the denominator equals .031513 and that the decision variables are

.042 and .126.  Transforming these variables to their original values by dividing them through by the denominator

reciprocal yields X1=1.333 and X2=4. Plugging back into the original problem, the numerator equals 9.2; the

denominator, 31.73, and their fraction 0.29 (the objective function value reported).  One may also recover the

shadow prices.  In this case since the rows are multiplied by one over the denominator, the original shadow prices

may be recovered by multiplying through by the denominator as shown in the scaling discussion in Chapter 18 . 

Thus the effective shadow price for constraint 1 is 10.85, and constraint 2 is 1.33.  Constraint 3 has no analogue

in the original problem, and thus, the shadow prices are not transformed. 

9.1.3.2 Comments

This is an exact transformation as long as the denominator remains strictly positive.  The formulation fails if

y0 equals zero in the optimal solution. 

Much research has been done on fractional programming.  The original development appears in Charnes and

Cooper (1962).  A historical perspective and literature review can be found in Schaible and Ibaraki.

9.2 Approximations

Approaches to nonlinear problems often utilize approximations.  Such approximations may be either

one-time or iterative.  Discussion of the one-time approximations constitutes the majority of the material below.  

9.2.1 Grid Point Approximations

Virtually all one-time approximations use grid points, representing nonlinear phenomena as a discrete series

of linearized steps.  Such approximations have been used where: a) costs increase with production; b) 

prices decrease as sales increase; and c) production yields decrease as input usage increases.  All these cases

involve decreasing returns to scale (increasing returns to scale are covered in the integer programming chapters). 

Approximations for decreasing returns cases use a set of discrete grid points assuming that:  production cost,

output prices, and/or quantities produced are constant between grid points, but change as we move along the grid.

9.2.1.2 Functions with Separable Variables

The most common grid point approximation is separable programming.  Separable programming deals with

problems in which the functions may be of any nonlinear form, but must be separable into functions of a single

variable.  For example in the two variable case the functions f(x,y) must be decomposable into h(x) + g(y).  

Separable programming is usually considered a nonlinear programming technique (Hadley, 1964); but is

commonly used in an LP setting.  The most commonly used form of separable programming arose originally with
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f(X) • F(X) = f(X̂k) +
f(X̂k%1) - f(X̂k)

X̂k%1 - X̂k

(X - X̂k)

X = 8k X̂k + 8k%1 X̂k%1

8k + 8k%1 = 1

8k , 8k%1 $ 0

F(X) • 8k f(X̂k) + 8k%1 f(X̂k%1)

Charnes and Lemke, and was extended by Miller.  The formulation yields an LP whenever the objective function

terms are concave and the feasible set is convex (Hadley, 1964, p. 124).  When these properties do not hold, more

general separable programming needs to be used.  

Separable programming relies on a set of grid points and constructs an approximation between these points. 

The approximation is setup so that the approximated value equals the value at the base point plus the slope

divided by the difference from the base point.  Suppose we wish to approximate the function at point X which

falls between approximating points  and .  This can be expressed algebraically by the formulaX̂k X̂k%1

In this case, if we write X as a convex combination of  and  X̂k X̂k%1

where the new variables 8k and 8k+1 are the amount of the kth and k+1st approximation points used. 

Substituting this relationship into the above equation for F(X) we get the equation

where the function value is approximated by a convex combination of the function evaluated at the two adjacent

grid points.  This can be represented by a LP problem.  Namely given the separable nonlinear problem
Max '

j
fj (Xj)

s.t. '
j

gij (Xj) # bi, for all i

Xj $ 0,

we may form the approximating problem 
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Max '
j
'
µ
8jµ fj (X̂jµ)

s.t. '
j
'
µ
8jµ gij (X̂jµ) # bi, for all i

'
µ
8jµ = 1, for all j

8jµ $ 0, for all j and µ

Max (4 - .25 X) X - (1 + .25 Z) Z

X - 3 Y # 0

2 Y - Z # 0

X, Y, Z $ 0

Obj 3.7581 % 782 % 9.7583 % 1284 % 13.7585 % 1586 & 1.25$1 & 3$2 & 5.25$3 & 8$4 & 11.25$5 & 15$6 max

Output 81 % 282 % 383 % 484 % 585 % 686 & 3Y # 0

Input 2Y & $1 & 2$2 & 3$3 & 4$4 & 5$5 & 6$6 # 0

Convex 8 81 % 82 % 83 % 84 % 85 % 86 ' 1

Convex $ $1 % $2 % $3 % $4 % $5 % $6 ' 1

Nonneg 81 , 82 , 83 , 84 , 85 , 86 , Y, $1 , $2 , $3 , $4 , $5 , $6 , $ 0

where  is the  approximating point for Xj and X̂jµ µ th

Xj = '
µ
8jµX̂jµ

This formulation involves a change of variables.  The variables 8jµ give the amount of the µ th grid point used

in the approximation of the jth variable.  The terms  and  give the values of the objective functionfj(X̂jµ) gij(X̂jµ)

and constraint terms evaluated at the various grid points.  The new constraints on the 8 variables cause a convex

combination of the grid points to be chosen for each variable approximated.  The functions must be properly

behaved, otherwise the nonzero 8's in the solution will not necessarily be adjacent; and the approximation will not

work properly (Hadley, 1964).  That is why users of the approximation should be careful to ensure that

diminishing returns to production are present whenever this approach is being used.

9.2.1.1.1 Example 1.

Suppose we approximate the problem.

To set this problem up, suppose we use values of X equal to 1,2,3,4,5,6 and the same values for Z. The separable

programming representation is
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Max 3X - 3Y

s.t. X - (20 + 2Y & .2Y 2) # 0

X, Y $ 0

Obj 3X - 081 - 382 - 683 - 984 - 1285 - 1586 max

x bal X - 2081 - 21.882 - 23.283 - 24.284 - 24.885 - 2586 # 0

convex 81 + 82 + 83 + 84 + 85 + 86 = 1

nonneg X, 81, 82, 83, 84, 85, 86 $ 0

Note that 82 stands for the amount of the gridpoint X=2 utilized having an objective value equal to the

nonlinear function of X evaluated at X=2.  The GAMS formulation is called SEPARABL and the resultant

solution is shown in Table 9.5.  The objective function value is 7.625.  The model sets 84=85= 0.5

amounting to 50% of gridpoint X4 and 50% of X5 or X=4.5.  The value of Y = 1.5.  Simultaneously $1 = 1

implying Z = 3. Now, let us examine the adequacy of the approximation.  The objective function

approximation for X has 12(.5) + 13.75(.5) = 12.875, while the true f(X) = 12.9375.  The Z approximation

has zero error in this case.  The modeler could either accept this as an adequate approximation or enter new

grid points in the neighborhood of this solution.

9.2.1.1.2 Example 2:  Separable Terms in the Constraints

The above example deals with the approximation of separable objective function terms which McCarl

and Onal found computationally unattractive.  On the other hand, separable programming can also

approximate constraint nonlinearities, which McCarl and Onal found attractive.  

Suppose we wish to approximate the following problem

Selecting a grid for Y of 0, 1, 2, 3, 4 and 5, the separable programming formulation becomes

The resultant GAMS model is in the file CONSEPAR and the solution is given in Table 9.6.  We  may



     6 Readers unfamiliar with concavity and convexity should look at the Non-Linear
Programming Theory chapter.
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Max CX - '
j

dj Yj

s.t. X - H(Y1,Y2, Y3, ...,Yn) = 0

Yj # bi for all j

X, Y $ 0

plug this solution back into the original problem to evaluate the adequacy of the approximation.  The

values of 8 imply that Y equals 3. However, optimization using calculus shows the optimum to be at Y

equals 2.5, giving a yield of 23.75 and profits of 63.75.  Thus, this demonstrates a 0.235 percent error of

approximation.  Again, one could go on to add more grid points, or accept the approximation error. 

9.2.1.2 Gridpoints and Gridpoint Refinements

The separable formulation uses gridpoints to approximate functions.  Readers may wonder how to

define such points.  Gridpoints are always defined in the context of the applied problem.  The gridpoints

should provide a reasonable approximation of the function in the domain of the answer, including points

both close to the expected answer as well as points depicting functional extremes (Geoffrion (1977)

discusses the importance of the extreme points).  Even spacing of the gridpoints is not required.  G derü

and Morris show minimum theoretical error occurs with equal spacing.  Thus, one could approximate a

curve at the points 10, 2, 1, .95, .50, .10, .02 and .01.  The gridpoint also may be redefined given a solution

where, for example, one might find a solution of X = 2.50, discover the approximation is inadequate at that

point, and then enter more gridpoints in the neighborhood of 2.5.  Gridpoint refinement schemes are

discussed in Bazaraa and Shetty.  Implementation of a gridpoint refinement scheme is discussed in

Kochenberger, Woolsey and McCarl.

 9.2.1.3 Gridpoint Approximation of Functions of Multiple Variables

Gridpoint approximation may also be applied to functions containing multiple variables.  In this case

a multi dimensional grid is defined.  This approach generally only works when one is approximating

functions that depict a concave objective function and a convex constraint set.6  The method involves

techniques similar to separable programming and was developed by Dantzig and Wolfe.  This method is

discussed in Duloy and Norton; Shapiro (1979b); Bradley, Hax and Magnanti; and Lasdon.  One of the

possible formulations on this scheme which can be used is 
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Max C X - '
j

dj Yj

s.t. X - '
u
"u H(Ŷju) = 0

'
u
"u Yju - Yj = 0 for all j

Yj # bj for all j

X, "u , Yj $ 0 for all u and j.

Max 4X - 20Y1 - 100Y2

s.t. X - 21Y 0.75
1 Y 0.25

2 = 0

Y1 # 50

X, Y1, Y2 $ 0.

where there are multiple inputs and one output (for simplicity).  The output X is a function of the levels of

the multiple inputs (Yj).  Also the function H(Y1...Yn) has to be such that this problem has a convex

constraint set. 

We will discuss two versions of this formulation.  The first version deals with cases where H is

homogeneous of degree one and the second where H is homogeneous of degree less than one. 

9.2.1.3.1 Homogeneous of Degree 1

The function H being homogeneous of degree 1 implies that 

H("Y) = "H(Y)

Suppose we choose a set of rays  which depict the way each Yj participates in each ray and define  theŶju

variable "u which is the amount of ray  which is used.  Then we know that Ŷju

H("uŶiu) = "uH(Ŷju)

i.e., the function " times the ray values equal " times the function evaluated at the base ray point.  The

generalized programming formulation then becomes 

The approximating model has the rays represented by a variable indicating how much of a particular

ray Yju combination is used.  They should be defined with unique ratios of the variables within  (i.e.,Ŷju

1:1, 1:4, 4:1, etc., as below).  

Example

This formulation is probably best illustrated by example.  Consider the problem 
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Max 4X - 20Y1 - 100Y2

s.t. X - 29.7"1 - 168"2 - 59.4"3 # 0

"1 + 8"2 + 4"3 - Y1 = 0

4"1 + 8"2 + "3 - Y2 = 0

Y1 # 50

X, "1, "2, "3, Y1, Y2 $ 0

Suppose we select a set of combinations for Y1 and Y2, given in Table 9.7, showing that when 1 unit 

of Y1 and 4 units of Y2 are used, X=29.7.  Similarly, when 8 units of Y1 and 8 units of Y2 are used, X=168. 

The resultant formulation is 

An isoquant graph of this situation is portrayed in Figure 9.1.                       

Note that the three lines in the graph stand for the combinations 4 to 1, 1 to 1 and 1 to 4.  The

connected line in the graph is the isoquant for output equals 168, and the linear segments show how the

production process is represented. 

The GAMS formulation of the problem is called HOMOGEN and the solution is given in Table 9.8. 

This solution implies input use in the ratio 4:1.  We may wish to put more rays in the neighborhood of 4:1

or we may be willing to accept the approximation error. 

9.2.1.3.2 Homogeneous of Degree Less Than One

Now we turn to the case where we do not have homogeneity of degree one.  In this case, the function

evaluated at " times the vector of inputs Y, is less than " times that functional value evaluated at one unit at

Y providing " is less than or equal to one. 

H("Y) < "H(Y).

Consider the multiplicative function

X = aY
b1

1 Y
b2

2 . . . Y
bn

n ' aB
j

x bj
j .

We may set up a vector representation

Yj = "u Yju .

Under this substitution the function becomes

X = a(B
j
Y

bj

ju ) "
'
j

bj

u .

But, the sum of the exponents on "u is less than one

'
j

bj < 1.
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Max CX - '
j

djYj

s.t. X - '
u
'
L

H(Yju"uL) 8uL = 0

'
u
'
L

(Yju"uL) 8uL - Yj = 0 for all j

'
u
'
L
8uL = 1

Yj # bj for all j

X, 8uL, Yj $ 0

Thus, as one moves " units along the ray the function only increases by a factor of " to the ' bj which

results in an increase less than " X.  This problem exhibits diminishing returns to scale because as "u is

increased, less and less output is produced per unit increase in "u.  This particular problem, however, may

be formulated as a linear problem.  This approach has been called the "column generation method" as

discussed in Shapiro (1979b).  Specifically, suppose we choose grid points Yju and a set of a priori

multipliers "uL.  The problem then becomes 

The variables are 8uL where u identifies the input combination and L the length along that input

combination.  The parameter "uL gives how far along the uth ray we move.  The sum of the 8 variables are

then equal to one.  This is a combination of the separable programming and homogeneity of degree one

formulations above.

Example

Consider the example problem Max 0.5X - 2Y1 - 2Y2

X - 21Y .5
1 Y .25

2 = 0

Y1 # 10

Y1, Y2 $ 0

where the exponents sum to 0.75 so the function is homogeneous of degree less than one.  If we then put in

three different approximation rays 1 to 1, 1 to 2 and 2 to 1 in these cases, the resultant values of X are 
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X = 21".75
1 , X = 29.7".75

2 , X = 25".75
3

We obtain a function that along the lines X is equal to some constant times "0.75.  We then develop a table

of approximations (Table 9.9).  The resultant formulation is in Table 9.10 and in the file NONHOMOG. 

Note, here we have four combinations for each ratio of inputs, each representing different multiples of "uL. 

The convexity constraint is needed to insure that the model uses no more than one unit of the first step and

rather is forced to go into the latter steps of the production process.  The solution of the problem is given in

Table 9.11 and shows that the 4th step of the second ray is used resulting in the value for the variables of

X=99.3, Y1= 10, Y2= 5 with the objective function equal to 19.65.

9.2.1.3.3 Comments

We get many classroom questions as to why we have presented the above generalized approximation

formulations.  There are two reasons.  First, they constitute an approximation that can be used when

representing a relationship between multiple inputs and outputs (i.e., see Onal et al.).  Such a case occurs in

agricultural models when approximating fertilizer response functions containing two or more fertilizer

inputs or when intercropping is modeled.  Approximations have also involved more complex production

functions, where the output is a function of multiple inputs.  Second, following Dorfman (1953), this can

be used as a conceptual model.  Often modelers include a number of activities for the production of a good

where the input combinations and outputs arise from experiments or observed behavior.  In this case, one is

representing the underlying production process without ever estimating it.  Such a procedure is utilized in

Erhabor and Job. 

A second question involves the manner in which grid points are chosen.  Again, as in the separable

programming case, this is done in accordance with the problem.  For example, when one knows common

levels of input use, one might construct several combinations of deviations from these numbers in small

increments.  Thus, when fertilizer and herbicide are used commonly in the ratio 50 lbs. fertilizer to 1 gallon

herbicide one might add 5 activities involving:    1) 1 gal. herbicide with 50 lbs. of fertilizer; 2) 1 gal.

herbicide with 47.5 lbs. of fertilizer; 3) 1 gal. herbicide with 45 lbs. of fertilizer; 4) 1 gal. herbicide with

52.5 lbs. of fertilizer and 5) 1 gal. herbicide with 55 lbs. of fertilizer.  In turn, the user should examine the

model solution and see if the solutions chosen use the most extreme ray for an input (e.g., the least amount

of herbicide possible per unit of fertilizer).  In such a case one should consider entering alternatives

expanding the space represented.  The representation is only satisfactory when the solution is interior to the

cone of approximation points used and not on its boundary (Shapiro and Geoffrion provide theoretical
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Max f(X0) + d
dX

f(X0) (X - X0)

s.t. gi(X) = gi(X0) +
d

dX
gi(X0) (X - X0) # bi

Lj # Xj # Gj

explorations of related topics).  

9.2.2 Iterative Approximations

In addition to the step approximation formulations above, there are a number of iterative

approximations which can be used.  We will not cover these in depth; they are largely numerical

techniques.  Those interested in alternative approaches should examine Zangwill's convex simplex method,

Dembo's geometric programming condensation method, or the methods reviewed in Himmelblau; Reklaitis

et al; or Bazaraa and Shetty.  

We will explain one technique for illustrative purposes.  The iterative approximation presented here

was developed by Griffith and Stewart and is based on the concept of a Taylor series expansion.  This

method solves the problem 

Max f(X)

g(X) # b

Lj # Xj # Gj

using a first order Taylor series expansion.  A first order Taylor series expansion assumes that a functional

value can be represented as a first order expansion of the function evaluated at a base point plus the

derivative of that base point times the difference of X from the base point.  The approximating problem

then is given by 

where given a base point X0 we approximate the value at any X using a LP formulation to find the

difference from X0 that the solution will move where all of the terms involving X0 are constants.  This is

done by substituting in a variable µ j such that 

µ j = Xj - X0j

to obtain the LP problem
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Max f(X0) % '
j

d
dXj

f(X0)µ j

'
j

d
dXj

g(X0)µ j # bi - gi(X0)

&Lim &

j # µ j # Lim %

j

Lim &

j ' min[$j, X0j - Lj]

Lim %

j ' min[$j, Gj - X0j]

where the limits are developed relative to an exogenous parameter $j

 Here the variables are given by

X k%1
0j = X k

0j+µ(

j

Then, given any initial choice of variables at the kth iteration, the variable at kth+1 iteration is equal to that

variable at the kth iteration plus the optimal change variable value .  The change variables are artificiallyµ(

j

constrained to be limited by some quantity $j.  It is desirable that this quantity becomes smaller as iterations

proceed. 

9.2.3 Other Approximations

We have covered only a few of the approximations which are possible in the area of nonlinear

programming.  There are also other approximations based on exotic transformations for various sorts of

problems; e.g., see Dembo; or McCarl and Tice.  Many approximations may be used given special problem

structures.  Their use depends on the ingenuity of the modeler.  What we have attempted to do above is give

some of the basic techniques and references. 
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Table 9.1. Minimization of Sum of Absolute Deviations Formulation

,1
+ ,1

- ,2
+ ,2

- ,3
+ ,3

- ,4
+ ,4

- ,5
+ ,5

- ,6
+ ,6

- b0 b1 b2

Obj 1 1 1 1 1 1 1 1 1 1 1 1 Min

1 1 -1 1 8 5 =10

2 1 -1 1 9 1 =5

3 1 -1 1 10 9 =4

4 1 -1 1 13 8 =2

5 1 -1 1 15 2 =6

6 1 -1 1 17 3 =9
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Table 9.2. Solution of Minimization of Absolute Deviation Sum Example

Objective function = 11.277

Variable Value Reduced Cost Equation Slack Shadow Price

,1
+ 5.787 0 Obs 1 0 1

,1
- 0 2.000 Obs 2 0 -0.660

,2
+ 0 1.66 Obs 3 0 0.191

,1
- 0 0.340 Obs 4 0 -1

,3
+ 0 0.809 Obs 5 0 -0.532

,3
- 0 1.191 Obs 6 0 1

,4
+ 0 2.000

,4
- 2.723 0

,5
+ 0 1.532

,5
- 0 0.468

,6
+ 2.766 0

,6
- 0 2.000

b0 3.426 0

b1 0.191 0

b2 -0.149 0
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Table 9.3. Solution of Largest Absolute Deviation Example

Variables Value Reduced Cost Equation Slack Shadow Price

, 3.722 0 1+ 0 -0.222

b0 7.167 0 1- 7.44 0.0

b1 -0.111 0 2+ 4.89 0.0

b2 0.000 2.056 2- 2.56 0.0

3+ 5.78 0.0

3- 1.67 0.0

4+ 7.44 0.0

4- 0 -0.5

5+ 3.22 0.0

5- 4.22 0.0

6+ 0 -0.278

6- 7.44 0.0

Table 9.4. Solution to the Example for Optimizing a Fraction

Objective function = 0.2899 

Variable Value Reduced Cost Equation Slack Shadow Price

y0 0.032 0 1 0 0.342

y1 0.042 0 2 0 0.042

y2 0.126 0 3 0 0.290
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Table 9.5. Solution to the Step Approximation Example

Objective function = 7.625

Variable Value Reduced Cost Equation Slack Shadow Price

81 0 -3.000 1 0 1.750

82 0 -1.500 2 0 2.625

83 0 -0.500 3 0 5.000

84 0.5 0 4 0 2.625

85 0.5 0

86 0 -0.500

Y 1.5 0

$1 0 -1.250

$2 0 -0.375

$3 1 0

$4 0 -0.125

$5 0 -0.750

$6 0 -1.875
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Table 9.6. Solution to the Constraint Step Approximation Problem

Objective function = 63.6

Variable Value Reduced Cost Equation Slack Shadow Price

X 23.2 0 1 0 3

81 0 -3.6 2 0 63.6

82 0 -1.2

83 1 0

84 0 0

85 0 -1.2

86 0 -3.6

Table 9.7. Set of Y1, Y2 Combinations for 
Homogeneous of Degree 1 Example

X Y1 Y2

29.7 1 4

168 8 8

59.4 4 1

Table 9.8. Solution to Example Problem for Homogeneous of Degree 1 

Objective function = 719.8

Variable Value Reduced Cost Equation Slack Shadow Price

X 742.5 0 1 0 4

"1 0 -315.6 2 0 34.4

"2 0 -403.2 3 0 100

"3 12.5 0

Y1 50 14.4

Y2 12.5 0
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Table 9.9. Approximations for the Homogenous of Degree Less Than One Example

X Y11 Y12 X Y12 Y22 X Y13 Y23

21 1 1 29.7 2 1 25.0 1 2

59.4 4 4 49.9 4 2 70.6 4 8

80.5 6 6 67.7 6 3 95.7 6 12

118.1 10 10 99.3 10 5 140.4 10 20

Table 9.10. Formulation of the Homogeneous Degree Less than One Example

Rows X 811 812 813 814 821 822 823 824 831 832 833 834 Y1 Y2 RHS

Obj 0.5 -2 -2 max

x bal 1 -21 -59.4 -80.5 -118.1 -29.7 -49.9 -67.7 -99.3 -25.0 -70.6 -95.7 -140.4 = 0

Y bal
1 4 6 10 2 4 6 10 1 4 6 10 -1 = 0

1 4 6 10 1 2 3 5 2 8 12 20 -1 = 0

convex 1 1 1 1 1 1 1 1 1 1 1 1 #  1

Y lim 1 # 10
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Table 9.11. Solution to the Homogenous of Degree Less Than One Example

Objective function = 19.651

Variable Value Reduced Cost Equation Slack Shadow Price

X 99.3 0 x bal 0 0.500

811 0 -5.506 Y1 bal 0 2.850

812 0 -0.856 Y2 bal 0 2.000

813 0 0.000 convex 0 11.156

814 0 -0.606 Y lim 0 0.85

821 0 -4.006

822 0 -1.581

823 0 -0.404

824 1 0.000

831 0 -5.519

832 0 -3.237

833 0 -4.384

834 0 -9.434

Y1 10 0.000

Y2 5 0.000
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Figure 9.1      Approximation of Homogeneous of Degree One Example
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Max CX

s.t. AX # b

X $ 0 .

3X1 % 4X2 # 7

CHAPTER X:  MODELING SUMMARY

Now that LP theory and basic modeling have been covered, a number of  additional considerations

involved with using models are covered, including variable and constraint types as well as LP assumptions. 

10.1 Types of Constraints and Variables in Linear Programming Models

In most text books the LP problem is vastly oversimplified when first defined.  For example, 

consider the problem 

Where, the X's are defined as alternative production processes while the constraints (AX # b) are referred

to as resource limitations.  However, the previous chapters show there may be many different types of

variables and constraints within such a formulation.  This section develops a characterization of the various

possible  types of variables and constraints which can be used. 

10.1.1 Types of Constraints

Possible constraint types include resource limitations, minimum requirements, supply-demand

balances, ratio controls, upper/lower bounds, accounting relations, deviation constraints, and

approximation or convexity constraints.

10.1.1.1 Resource Limitations

Resource limitations depict relationships between endogenous resource usage and exogenous 

resource endowments.  A resource limitation restricts endogenous resource use to be less than or 

equal to an exogenous resource endowment.  An example of a resource limitation constraint is 

This constraint requires the sum of resources used in producing X1, which uses 3 resource units per unit,

plus those used in producing X2, which uses 4 resource units per unit, to be no greater than an exogenous

resource endowment of 7 units.  Resource usage depends on the values of X1 and X2 determined by the

model and thus is an endogenous quantity.  This type of constraint appears in many of the formulations in

Chapter 5, including the resource allocation problem. 
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X1 % 2X2 $ 4

&X1 & 2X2 # &4

X1 & X2 # 0 .

2X1 & X2 # 3.

2X1 # X2 % 3

X1 & 4X2 # &2.

10.1.1.2 Minimum Requirements

Minimum requirement constraints require an endogenously determined quantity to be greater than or

equal to an exogenously specified value.  A simple illustration is 

In this case the endogenous sum of X1 plus two times X2 is constrained to be greater than or equal to the

exogenously imposed requirement of four.  One may also express this constraint in less-than-or-equal-to

form as  

The minimum requirement often specifies that the model must meet exogenous demand through the

endogenous supply of goods.  This kind of constraint is present in many different types of programming

models.  An example appears in the transportation model of Chapter 5. 

10.1.1.3 Supply and Demand Balance

The supply-demand balance requires that endogenous supply be balanced with endogenous demand. 

A typical example is 

X1 # X2

This equation requires the endogenous demand for a good (X1) to be less than or equal to the endogenous

supply of that good (X2).  After moving all the variables to the left hand side, the constraint becomes 

More generally, supply demand balances may involve exogenous quantities.  Consider the inequality

Here, the difference between endogenous demand (2X1) and supply (X2) is less than or equal to an 

exogenous supply of 3 units.  This inequality can also be expressed in the following form: 

which says that the endogenous demand (2X1) must be less than or equal to total supply, which consists of

endogenous supply (X2) plus exogenous supply (3).  A related situation occurs under the constraint

Here, the difference between endogenous supply and endogenous demand is less than or equal to minus 2. 

This can be rewritten as 

X1 % 2 # 4X2

which states that endogenous demand (X1) plus exogenous demand (2) is less than or equal to endogenous

supply (4X2).  In general, supply-demand balances are used to relate endogenous supply and demand to
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4X2 & X1 # 0

exogenous supply and  demand.  The general case is given by 

DemandEn + DemandEx # Supply En + SupplyEx  .

Here, the sum of demand over endogenous and exogenous sources (respectively denoted by the subscripts

En and Ex) must be less than or equal to the supply from endogenous and exogenous sources. 

Manipulating the endogenous variables to the left hand side and the exogenous items to the right hand side

gives

DemandEn - SupplyEn # SupplyEx - DemandEx .

Here endogenous demand minus endogenous supply is less than or equal to exogenous supply minus

exogenous demand.  

This constraint contains the resource limitation and minimum requirement constraints as special

cases.  The resource limitation constraint exhibits zero endogenous supply and exogenous demand.  The

minimum requirement constraint exhibits zero endogenous demand and exogenous supply. 

Supply demand balances are present in many of the examples of Chapter 7.  The assembly,

disassembly, assembly - disassembly, and the sequencing problems all possess such constraints. 

10.1.1.4 Ratio Control

Ratio control constraints require the ratio of certain endogenous variables to be no more than an

endogenous sum, possibly influenced by exogenous factors.  Specifically suppose that a number of units of

X1 have to be supplied with every unit of X2.  For example, a LP formulation of an automobile

manufacturer might require a constraint to insure that there are four tires for every car sold.  Such a

situation would be modeled by 

where X1 is the number of tires and X2 the number of cars sold.  In order for one unit of X2 to be sold, 4

units of X1 must be supplied. 

The general case is depicted by  

ENrat # p (wEN ENrat + ENother + EXother).

where the left hand side elements are denoted with the subscript "rat," and  the right hand side elements

with "other."  EN denotes endogenous variables and EX denotes exogenous constants.  The parameter wEN

is nonzero only when the endogenous variables (ENrat) are part of the right hand side.  The constraint

requires that the endogenous "rat" expression be less than or equal to p times the sum of the "rat" term or

variables plus the "other."  Manipulating this constraint so that all the endogenous variables are on the left

hand side gives 
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.75X1 & .25X2 # 0

(X1 % 3) # .25 (2X1 % 3X2 % 10)

.50X1 & .75X2 # &.5

X1 & 1/3X2 & 4/3X3 # 0

X1 # 4

X1 $ 2.

(1 - pwEN)ENrat - p ENother # p EXother 

This expression is rather abstract and is perhaps best seen by the example.  Suppose we wish the variable

X1 to be no more than 25 percent of X1 + X2. Thus 

X1 # .25 (X1 % X2)

Placing all the endogenous variables on the left hand side yields            

Consider another example which includes exogenous factors.  Suppose that 

this can be written as

Here we have a requirement between X1 and X2 and an exogenous constant appearing on the right hand

side.  Finally, if the endogenous variables do not appear on the right hand side (for example, where X1 is

less than or equal to one-third the sum of X2 + 4X3) then the inequality would be manipulated to state:

ENRat & pENoth # 0

within the example context yields

This is an example where the w's in the ratio control constraint are zero.

This particular constraint type is a special case of the supply/demand balances.  It is not used

explicitly in any of the general formulations, but would also be used in a feed problem formulation where

the quantity of feed to be produced was not exogenously given (i.e., on the right hand side) but rather was

an endogenous variable.

10.1.1.5 Bounds

Upper and lower bounds have important implications for the performance of  the simplex algorithm. 

Upper bounds are resource limitation constraints; however, they only involve a single variable.  Similarly,

lower bounds are minimum requirement constraints on a single variable.  Examples are

Such constraints are usually exploited by LP solvers so that they do not enter the basis inverse.

10.1.1.6 Accounting Relations
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'n
j'1

AijXj $ 0 or 'n
j'1

AijXj & S ' 0

'
j

gijxj % Devi ' Ti

Accounting relations are used to add endogenous sums for model solution summary purposes. These

relations are used for modeler convenience in summarizing a solution (i.e., adding up total labor utilized by

crop).  Accounting relations can be depicted as either 

In the first case the surplus variable would equal the sum of AX (assuming AX is always

non-negative).  The second form of the equation simply introduces an accounting variable which takes on

the value of the sum.  Accounting relations are discussed in the purposeful modeling section. 

10.1.1.7 Deviation Constraints

Deviation constraints are used to develop the endogenous deviation of a particular sum from a target

level.  The general format of these constraints is as follows: 

Here Ti is a target level and Devi is a deviation variable indicating the amount the endogenous sum 

(3 gijxj) deviates (as measured by the deviation variable Devi) from the target level (Ti).  The deviation

constraint concept is utilized in the nonlinear transformations involving absolute value, multi-objective

programming, and risk modeling.

10.1.1.8 Approximation or Convexity Constraints 

A convexity constraint requires the sum of a set of variables to be equal to or possibly less than or

equal to one.  These are commonly used in approximations such as those under the separable programming

section of the nonlinear approximations chapter. 

10.1.2 Types of Variables

There are many different types of variables.  Production, sales, purchase, transformation, slack,

surplus, artificial, step, deviation and accounting variables are discussed in this section.

10.1.2.1 Production Variables

Production variables depict the production of outputs from inputs.  Such a variable is represented by 

X2 in the LP problem
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(1) Max aX1 & dX3 & gX4 & iX5 & mX7 & nX8 % qX9

(2) s.t. X1 & bX2 # 0

(3) cX2 & X3 % X5 # 0

(4) eX2 & X5 # f

(5) hX2 & X4 # 0

(6) jX2 & X6 ' 0

(7) kX2 & X7 % X8 ' T

(8) &pX2 % X9 # 0

(9) rX2 # b

Xi $ 0

Note that X2 produces items which are transferred into the equations (2) and (8).  The X2 variable also uses

inputs from equations (3) and (5) and utilizes a fixed resource which is represented by (4).  Thus, X2

depicts a multi-factor/multi-product production process.  Production coefficients do not always explicitly

appear in the constraint equations; rather, production may simply yield revenue in the objective function as

in the resource allocation and sequencing problems.  Production activities may also use inputs which have

pre-specified costs, thus the objective function coefficients may involve revenue and/or cost terms.  The

purposeful modeling section provides such an example. 

10.1.2.2 Sales Variables

Sales variables reflect the sale of an item at an exogenously determined price.  For example, variable

X1 in the above tableau depicts the sale of an item at price a, where the item is drawn from the

supply-demand balance that relates X1 to the production activity X2 (equation  (2).  X9 is also a sales

variable.  Sales variables appear in numerous examples above.  For example, see the assembly-

disassembly and joint product formulations.

10.1.2.3 Purchase Variables

Purchase variables depict the purchase of items at exogenously specified prices with the items made

available for use within the model.  Examples of this type of variable are X3 and X4 above.  For example,

one unit of X3 yields one unit of supply to the supply-demand balance equation (3) and enters the objective

function with a coefficient of -d.  Purchase activities are illustrated in the assembly formulation.

10.1.2.4 Transformation Variables

Transformation variables transform the location, time availability, unit or form characteristics of an
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item (although other inputs may be required to do this).  Examples of such variables include transportation

variables which alter location, storage variables which alter time availability, unit transformation variables

that convert the units from, say tons to pounds, or variables which  transform a good from one form to

another, possibly with the addition of other inputs.  An example of this type of variable includes beef

slaughter, where pounds of beef on the hoof are converted into hanging carcass beef. 

The variable X5 in the LP example given by (1) - (9) is a transformation variable depicting

transformation at per unit cost I of the resources in constraint (3) into the resources in constraint (4). 

Transformation variables appear in the storage and transportation examples. 

10.1.2.5 Slack Variables

Slack variables represent the amount of excess resources (i.e., resources which are unused in

production).  Ordinarily, they have a zero objective function coefficient and a plus one entry in a single

constraint.  Slack variables are defined in association with less than or equal to constraints representing the

extent to which the endogenous quantity is less than the right hand side.  Slack variables do not play a large

role in model formulations (although deviation and accounting variables are forms of slack variables). 

However, slack variables can play an important role in solution interpretation.  Modelers should check

which resources are left unused (with non-zero slack) and question whether such a situation is reasonable. 

10.1.2.6 Surplus Variables

Surplus variables are analogous to slack variables; they have zero objective function coefficients and

a coefficient only in one particular row.  They represent the amount that the left hand side of a constraint is

greater than the right hand side.  Surplus variables do not ordinarily play a large role in applied modeling. 

However, they may be important in the interpretation of the solution of a model.  For example, the

magnitude of a surplus variable may indicate the extent to which over-production occurs above a minimum

requirement. 

10.1.2.7 Artificial Variables

Artificial variables are most often utilized to make an infeasible problem feasible, allowing the

violation of equality constraints or minimum requirements.  Artificial variables ordinarily have a large cost

in the objective function and a coefficient in the particular row with which they are associated.  However,

artificial variables can play a role in applied modeling.  For example, artificial variables can be used to

prohibit an infeasible solution from arising in solvers.  Artificial variables also play an important role in

discovering the causes of infeasibilities, as discussed in the chapter on debugging models.
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10.1.2.8 Step Variables

Linear programs may involve the approximation of nonlinear phenomena.  Step variables are often

used in such approximations.  One may, for example, utilize step variables to represent different portions of

an increasing cost function.  Step variables receive their name from their portrayal of nonlinear functions as

a series of piece-wise linear steps.  Step variables appear in the separable programming formulations.

10.1.2.9 Deviation Variables

Deviation variables tell the amount by which an endogenous sum deviates from a target value.  Such

variables are illustrated in the LP model given by (1)-(9) by X7 or X8.  For example, in equation (7), these

variables indicate the amount kX2 deviates from the target value T.  The variable X7 gives the amount that

the sum is over the target while the variable X8 gives the amount the sum is under the target.  These

variables are analogous to surplus and slack variables; however, they may have an objective function

coefficient which reflects costs or revenues associated from "missing" the target.  These variables will work

properly as long as the objective function is properly structured as  explained in the multi-objective

programming chapter.  Deviation variables are also an important part in the LP approaches to regression

(as used in the absolute value formulation) and in the MOTAD formulation. 

10.1.2.10 Accounting Variables

An accounting variable is typically used to indicate the value of endogenous sums so that the analyst

need not manually summarize the solution.  The variable X6 in equation (6) is an example of this type of

variable.  These variables are also prominently featured in the section on purposeful modeling.

10.2 "Violations" of the Algorithmic Assumptions

The algorithmic assumptions of LP hold for individual variables within a linear program but not

necessarily for the total process represented.  Thus, modeling techniques can be used to generate

formulations which, for practical purposes, invalidate the algorithmic assumptions.  Let us consider models

which nominally appear to violate each of the algorithmic assumptions. 

10.2.1 Nonproportional Example

It is possible to satisfy the algorithmic assumptions regarding proportionality while formulating

nonproportional problems.  For example, suppose a production process exhibits diminishing returns to

scale (i.e., doubling the level of inputs does not double the output).  This may be modeled as follows: 
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Max 10Y & Z1 & 8Z2

s.t. Y & 6X1 & 1.2X2 # 0

3X1 % 3X2 & Z1 # 0

4X1 % 4X2 & Z2 # 0

X1 # 4

X2 # 4

Y, X1, X2, Z1, Z2 $ 0

In this model, a single output Y is produced from two production processes depicted by X1 and X2 with X1

and X2 upper bounded at four.  The production processes utilize two inputs denoted by Z1 and Z2.  Variable

X1 uses three units of the first input and four units of the second input and produces six units of the output

Y.  Variable X2 uses the same mix of inputs, but produces 1.2 units of output which is one-fifth the amount

produced by X1.  When inputs are used in the combination 4 units of the second input to 3 of the first, then

for any combination between zero and 12 units of the first input (along with 16 units of the second), six

units of output are produced per 3Z1 and 4Z2 used in combination.  However, after using 12 units of Z1 and

16Z2, the production process X2 must be used yielding a marginal product of 1.2 units of production for the

inputs used in the same proportion.  In this example, doubling the level of input usage does not result in a

doubling of output, but rather in only a 20 percent increase. 

Are the algorithmic assumptions violated?  Yes and no.  They are not mathematically violated but

they are conceptually violated.  The assumptions hold for the individual activities, for example, going from

X1 = .5 to X1 = 1 would involve the doubling of the inputs, and a doubling of outputs.  However, because

of the upper bound constraint on X1, the solution X1 = 4 is feasible, the solution X1 = 8  is not. 

Consequently, the model must use X2 yielding less output per unit of input.   

In general, the proportionality assumption can be relaxed using multiple variables.  The joint product

section of chapter 7, as well as the separable programming and nonhomogeneous of degree one sections of

chapter 9 provide further examples.  Formal relaxation of this assumption is done through a number of

techniques including integer, quadratic, and nonlinear programming.  A reconciliation of LP modeling with

the concept of diminishing returns is presented in the separable programming sections. 
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Max 3Y

s.t. Y & 2X1 & 2X2 & 2X3 # 0

4X1 % 2X2 % X3 # r1

X1 % 2X2 % 4X3 # r2

Y, X1, X2, X3 $ 0 .

10.2.2 Non-Additive Example

Models may also be constructed which appear to violate the additivity assumption.  Suppose a

production process involves two inputs which can be substituted in production.  This may be modeled as 

follows: 

Note this formulation depicts the production of Y using production processes X1, X2, or X3.  Each process

produces 2 units of Y; however, inputs are used in different proportions.  X1 uses four units of input 1 and

one unit of input 2; X2 utilizes equal combinations of the two inputs, while X3 uses one unit of input 1 with

four units of input 2.  The formulation is constrained by input availability where the quantity inputs

available are designated as r1 and r2. 

Now let us illustrate the nonadditive nature of this formulation.  Suppose equal amounts of the inputs

are available (r1 = r2), then it would be optimal to produce in a pattern utilizing the inputs in equal

proportions.  Note that by producing X1 and X3 in equal amounts, the inputs would be used in equal

proportion, i.e., setting both variables to one would produce 1.6 units of output while utilizing 2 units of 

inputs of r1 and r2.  Thus, 1.6 units of output are attained when using  0.4 units of each variable.  However,

when activity 2 is utilized at least two units of output are produced when using two units of each input. 

Total input usage is the same in both cases, however, more production arises out of the second production

process then by adding the output of the first and third process.  Thus, we get more out of using the inputs

together, f(X + Y), than we do separately, f(X) + f(Y). 

Does this violate the algorithmic assumptions?  Within the model the production processes are 

strictly additive.  Combination of any group of X's leads to an additive output effect.  However, by utilizing

different variables, a production process may be represented which is not strictly additive.   Thus, one can

usually handle nonadditive cases between variables by including "better" variables which are more

productive (i.e., X2 above).  Nevertheless, the additivity assumption always holds for the individual
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Max &3Y % .3(5X1) % .7(4X2)

s.t. &Y % X1 # 0

X1 # 2

&Y % X2 # 0

X2 # 3

Y, X1, X2 $ 0.

variables.  It may not hold for the model through the combination of variables.  This assumption is formally

relaxed by the models covered in the nonlinear, price endogenous and risk chapters. 

10.2.3 Uncertainty Examples

The certainty assumption may also be relaxed.  Suppose we model a production process involving, a

cost of $3 in period 1 but that, in the second time period we are uncertain about how much of the product

will be produced (e.g., harvested).  Suppose that one of two uncertain events can occur in the second time

period:  no more than 2 units of the product may be sold for a price of $5.00 with a probability of .3 or no

more than 3 units of product could be sold at a price of $4 with a probability of .7.  This problem may be

formulated as a classical so-called two-stage optimization problem (Dantzig, 1955).  The formulation is 

In this formulation a certain cost of $3 is incurred when using variable Y.  In turn, the production of Y

permits sale under the two probabilistic events.  The amounts sold are denoted X1 or X2 depending upon the

event.  Resources cannot be shifted between X1 and X2 (i.e., they are two mutually exclusive states of

nature), thus, there are independent limits on the sale of X1 and X2.  However, Y precedes both.  The

objective function reflects the maximization of expected profits which are the expected revenue from sales

less the cost of Y. 

Thus, this formulation explicitly includes uncertainty.  But, is the certainty assumption violated? 

Again, this formulation simultaneously satisfies and violates the algorithmic assumptions of LP.  We have

incorporated uncertainty within the formulation, but each variable contains certain coefficients.  However,

the overall model represents production under uncertainty.  The uncertainty problem has been expressed in

a problem where the model is certain of the uncertainty.  Additional certainty assumption relaxations are

discussed in the risk chapter.  The specific example above is a sequential uncertainty, discrete stochastic or

two-stage stochastic programming with recourse problem. 
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10.2.4 Noncontinuous Example

The continuity assumption when violated involves decision variables which are integer valued by

nature (i.e., the number of cows, for instance).  This maybe relaxed by rounding when in the optimal

solution 

the integer variables have very large values.  A problem of this type is as follows: 

The solution without the requirement that X1 and X2 be integer is X1 = 4,666 2/3 and X2 = 5,333 1/3.

The model user might be willing to round this solution interpreting the solution as producing 4,667 of the

first product and 5,333 of the second.  This would clearly not be the optimal solution but might be practical

and "close enough."  Note, however, that the answer 4,667 and 5,333 slightly violates the second

constraint.  Nevertheless, decision makers might be willing to adopt this solution.  In a practical problem

this answer might even be interpreted as 4,700 and 5,300. 

The continuity assumption is not practically relaxed other than by rounding large solution values or

by solving an integer programming problem. 
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CHAPTER XI:  MULTI-OBJECTIVE PROGRAMMING

Optimization of a single objective oversimplifies the pertinent objective function in some potential

mathematical programming application situations.  Arguments can also be made following Simon that

optimization is not as appropriate as statisficing.  These two statements introduce the general topic of

multiobjective programming.  Multiobjective programming formally permits formulations where:  a)

solutions are generated which are as consistent as possible with target levels of goals; b) solutions are

identified which represent maximum utility across multiple objectives; or c) solution sets are developed

which contain all nondominated solutions.  Multiple objectives can involve such considerations as leisure,

decreasing marginal utility of income, risk avoidance, preferences for hired labor, and satisfaction of

desirable, but not obligatory, constraints. 

A discussion of this area requires some definitions. An objective is a measure that one is concerned

about when making a choice among the decision variables (something to be maximized, minimized or

satisfied like leisure, risk, profits, etc.).  A goal implies that a particular goal target value has been chosen

for an objective.    

We will use "multiple objective programming" to refer to any mathematical program involving more

than one objective regardless of whether there are goal target levels involved.  Note, the literature contains

conflicting definitions (see Blake and McCarl; Ignizio [1978,1983]; Romero [1989, 1991]).  For example:

a) goal programming has been used to refer to multiple objective problems with target levels; b)

multiobjective programming has been used to refer to only the class of problems with weighted or

unweighted multiple objectives; c) vector maximization has been used to refer to problems in which a

vector of multiple objectives are to be optimized; and d) risk programming has been used to refer to

multiobjective problems in which the objectives involve income and risk. 

Multiobjective programming involves recognition that the decision maker is responding to multiple

objectives.  Generally, objectives are conflicting, so that not all objectives can simultaneously arrive at their

optimal levels.  An assumed utility function is used to choose appropriate solutions. Several fundamentally

different utility function forms have been used in multiobjective models.  These may be divided into three

classes: lexicographic, multi-attribute utility and unknown utility. 

The lexicographic utility function specification assumes the decision maker has a strictly ordered

preemptive preference system among objectives with fixed target levels.  For example, a lexicographic
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'
j

grj Xj for all r

system could have its first priority goal as income of not less than $10,000; the second priority as leisure of

no less than 20 hours a week; the third as income of no less than $12,000, etc.  This formulation is typical

of "goal programming models." (Charnes and  Cooper (1961); Lee).  The various goals are dealt with in

strict sequential order - higher goals before lower order goals.  Once a goal has been dealt with (meeting or

failing to meet the target level), its satisfaction remains fixed and the next lower order goal is considered.

Consideration of the lower level goals does not alter the satisfaction of higher level goals and cannot

damage the higher level goals with respect to target level attainment. 

Multi-attribute utility approaches allow tradeoffs between objectives in the attainment of maximum

utility.  The most common form involves maximization of the sum of linearly weighted objectives. This type of

formulation has been used by Candler and Boeljhe; and Barnett, Blake and McCarl.  

The third utility approach involves an unknown utility function assumption.  Here the entire Pareto

efficient (nondominated) solution set is generated so that every solution is reported wherein one of the multiple

objectives is as satisfied as it possibly can be without making some other objective worse off (Steur, Geoffrion

(1968)). 

11.1 Formulations

All of the above utility functions can be expressed in terms of the following problem.  Assume there are

multiple objectives which are given by 

GX

where there are J decision variables (X) and R objectives.  Thus, the matrix G is of dimension R by J while

X is J by 1.  These objectives can also be expressed in summation notation as

When target levels are added, the objectives become

GX $ T

The general goal programming problem, then, is as follows:

Select X so that we
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optimize or achieve GX

s.t. AX # b

Possibly subject to GX $ T

X $ 0

'
j

g1j Xj $ T1

Here the normal LP objective function is replaced by a more general function which permits use of different

utility function forms (it is difficult to write the Pareto utility function in this form).  The problem involves

selection of the X's.  The selection is driven by either optimization of some weighted tradeoff of objectives

or through lexicographic achievement of various goal target levels.  The specific formulations used for each

of the above utility function specifications are given below. 

11.1.1 Lexicographic Utility - Target Values

Perhaps the first application of multiobjective programming was the Charnes and Cooper goal

programming formulation.  The formulation is:  Select X so that
AX # b

X $ 0
and so that the goals are handled in the following priority order:

then

'
j

g2j Xj $ T2

on through to

'
j

gRjXj $ TR

for the Rth and last goal.

The lexicographic multiple objective formulation is not precisely a LP problem.  It has many

structural characteristics in common with a LP problem; however, a conventional objective function is not

defined, nor can a single LP formulation reflect imposition of the sequential ordering of the goals.  Rather,

an iterative procedure is needed (Lee).  Essentially, the approach is to solve problems for each of the goals

sequentially.  When considering the ith goal solve the problem
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Min wi

s.t. wr % glr $ Tr for all r

glr & '
j

grj Xj ' 0 for all r

'
j

amjXj # bm for all m

wr # w (

r for all r < i

wr # 4 for all r $ i

wr , Xj $ 0 for all j and r

glr unrestricted for all r
The new variable wr gives the amount that the goal level ( ) is less than the target value (Tr), while glr'grjXj

is the current level of goal r.  When i = 1 the problem minimizes the shortfall from the first goal target

level, subject to the LP constraints.  One of two solution situations will then occur.  Either the optimum

value of w1 (denoted w*
1) equals 0, indicating full satisfaction of the first goal, or w*

1 … 0, indicating the

goal cannot be fully satisfied.  Subsequently, a second problem is solved.  This problem is virtually

identical to the first, except w2 is minimized and a constraint is appended indicating that w1 cannot be any

worse than the optimum value obtained at the end of the solution of the first stage (w1
*).  This requires: 1)

if goal 1 was met before, then goal 1 will continue to be met (i.e., w1 must be less than or equal to zero); or

2) if goal 1 was not met, then the deviation from goal 1 will not get bigger than the minimum deviation

obtained at the previous iteration.  Thus, the prior objective is constrained to be no worse off than it was

before.  This problem, in effect, explores alternative optimums where we hold the prior objectives at their

optimum values, then try to optimize the satisfaction of the subsequent objectives.

This procedure is executed for all R goals where different deviation variables are minimized at each

stage and a constraint is added holding all previous deviations to maximum values prohibiting the earlier

objectives from becoming worse off.  Lee presents a more comprehensive discussion of the procedure while

the example below gives an empirical application.

11.1.2 Utility Tradeoff Model

The second utility function type involves tradeoffs between various objectives.  Such problems can be

formulated as conventional linear programs.  There have been two alternative formulations of this problem. 

They differ in their assumptions about target levels.  The first formulation (appearing for example in

Candler and Boeljhe) does not take into account target levels, maximizing the weighted sum of the
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Max '
r

crqr

&'
j

grj Xj % glr ' 0 for all r

& glr % Nrqr ' 0 for all r

'
j

amjXj # bm for all m

Xj , qr $ 0 for all j and r

glr unrestricted for all r

Max '
r

c %

r q %

r % '
r

c &

r q &

r

s.t. '
j

grj Xj & glr ' 0 for all r

glr & Tr q %

r % Tr q &

r ' Tr for all r

'
j

amjXj # bm for all m

Xj , q %

r , q &

r $ 0 for all j and r

glr unrestricted for all r

quantities of each objective.  This is

where cr is the weight which expresses the importance of the rth objective in the context of the decision

maker's total utility and Nr is a normalizing factor which converts the goal values so they are valued

somewhere around one..  The cr coefficients would be in utility units per percent deviation from full

satisfaction at the normalizing factor for the rth objective achieved; glr is the amount of rth objective in the

optimal solution and qr is the proportional satisfaction amount of rth objective relative to the normalizing

factor.

The objective function, maximizes multi-dimensional utility summed across all objectives.  Each

objective is weighted.  The second equation sums the level of each objective into the variable glr.  The third

expresses satisfaction in terms of the normalizing factor.  The fourth represents resource availability

limitations, the fifth expresses nonnegativity constraints and the sixth allow the goal level to be positive or

negative (note the normalizing factor must be of the appropriate sign). 

The second weighted tradeoff formulation embodies goal target levels.  The formulation is
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where Tr is the goal target value for objective r, cr
+ is the weight attached to overachieving objective r

relative to its target, cr
- is the weight attached to underachieving objective r relative to its target, glr is the

level of the rth goal attained, qr
+ is the proportion that the target for objective r is overachieved, and qr

- is

the proportion that the target for objective r is underachieved.

This is again a linear program.  The formulation is adapted from Lee and is used in Barnett, et al.

(1982).

11.1.3 Unknown Utility Function

The other approach to multiobjective programming involves an unknown utility function assumption. 

Instead, the entire nondominated set of alternatives is generated.  The formulation for this approach is

exactly like the first one under the weighted tradeoff section above except that all possible weights are

utilized in the problem.  This particular approach has been studied extensively, (see, for example, the

bibliographies in Steuer; and Ignizio, 1983) but does not appear to be very empirically useful. 

11.2 Examples

A common example is used to demonstrate the above formulations.  However, we will omit coverage

of the unknown utility function model as its solutions would be rather extensive and its use has been

limited.

The example builds upon the chair example used in the resource allocation section of the linear

programming chapter.  Suppose that the firm is interested in profit, idle labor, and idle lathe time in

formulating its goals.  Thus, the firm values leisure and slack lathe time as well as profits.  

11.2.1  Lexicographic Formulation

The lexicographic formulation will be based on four different goals.  The first goal is that the profit

be greater than $9,000, the second that idle labor be greater than or equal to 30 hours.  The third is that idle

lathe time be greater than or equal to 25 hours and the fourth, that profit be greater than or equal to $9,500. 

The formulation of this problem with the deviation variables included is given in Table 11.1.

The approach in solving this problem is as above.  First, the deviation from the $9,000 profit target

level will be minimized.  This results in a deviation of zero.  Subsequently, when minimizing the deviation

from the idle labor goal, a constraint is entered allowing zero deviation from a profit level of $9,000.  Then

we precede to consider idle lathe time holding the profits and idle labor goal achievement constant.  

The GAMS implementation is given in Table 11.2 and file LEXICO.  We have introduced profit

accounting in line 67 through 69.  Also, we have introduced slack variables accounting for idle resources
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(lines 71-73).  The four goals are modeled in lines 75 through 79 where the idle large and small lathe time

is added and set equal to the goal level in line 79.  In turn, line 80 relates the goal levels to their associated

targets.  Namely, the goal achievement level plus a deviation variable to make up the shortfall is set greater

than or equal to the target.  The constraints defined in line 82 then restrict the goal shortfall to be less than

or equal to an acceptable deviation level.  

The lexicographic approach is implemented in lines 85 through 96.  The initial allowable deviations

are set to a large number in line 30.  The loop from lines 86 through 95 sets up the problem for each goal

changing the objective function weights then solves.  Subsequently, the maximum allowed deviation for

future iterations is set equal to the shortfall.  Report writing statements (lines 92-94) summarize the

solution.

The solutions are presented in Table 11.3.  Four solutions are involved, each arising when the goals

are individually considered.  In the first solution, the $9,000 profit goal is easily attained while the labor

and lathe time goals fall short with 4.024 units of idle labor and 17.073 units of idle lathe time.  This plan

has 12.195 units of functional normal chairs being produced and 108.337 units of fancy normal chairs.

In turn, when the idle labor problem is setup with the profit deviation restricted (w1 # 0), the solution

exhibits profits of $9,482 full attainment of the idle labor goal but the lathe goal is now 20.641 units short

and we are $18.421 short of the $9,500 profit goal.  This is achieved with production of 115.296 fancy

chairs and 3.289 fancy chairs with maximum large lathe use.

Now turning to the idle lathe time problem, we constrain w1 # 0 and w2 # 0 then solve.  Here we fully

attain the $9,000 profit and idle labor goals but fall 4.337 units short of the idle lathe time goal.  Profit is

now $9,000.  This plan is achieved by producing 15.152 units of functional normal chairs and 99.811 units

of fancy normal chairs.

Finally, turning our attention to the last goal we find that we can not make any progress on it and 

have a solution which is equivalent to the solution in the step before. 

The above results show the action of a lexicographic solution.  Namely, the $9,000 profit goal was

satisfied and held satisfied throughout the process while the $9,500 profit was not considered until the last

step and the $9,500 profit goal was only pursued when the other goals had been held at their satisfaction

levels and as a consequence no progress could be made.

11.2.2  Weighted Tradeoff - No Targets

One version of the weighted tradeoff formulation does not contain targets.  We will follow the
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theoretical formulation but will also include weights and normalizing factors.  The normalizing factors are

used so the goal magnitudes are approximately equal.  Namely, we divide the profit goal through by

10,500, the labor goal by the labor resource availability and the total lathe goal by the lathe resource

availability.  This then will convert all of these goal numbers that range over 0 to 1 and allow relative

weights to be used.  In turn, the weight for profit equals one, while the weight for idle labor and lathe time

both equal 0.4.  The resultant formulation is in Table 11.4 and the GAMS instructions in Table 11.5 (file

WEIGHT).  Notice in the GAMS formulation the weight and normalization data are defined in lines 23-27,

while the goal setup is essentially the same as in the previous example.  The main variant is that the goal

levels are normalized in lines 67-69 and the objective function is the sum of the goal weights times the goal

levels (line 57).

The resultant solution to this problem is that 2.44 functional normal chairs are made while 112.2

fancy normal chairs are made and 6.829 fancy chairs with maximum use of the large lathe.  The profit goal

is achieved at a .92 level of the 10,500 normalization level ($9,674) while the labor goal is achieved at a

0.217 level leaving 27.06 hours of labor idle.  The idle lathe time variable equals 0. 

11.2.3  Weighted Objective and Targets

Finally, let us consider the unified target levels and weighted tradeoff formulation.  Here we will use

the same target levels as in the lexicographic model, but introduce weights where we value profit at a

weight of one if it is more than the first goal and at -10 units if it is less than that.  Idle labor and lathe time

are weighted at 0.1 if they are greater than their target level and -0.4 if less.  Finally, the profit in excess of

$9,500 is valued at .9 and less than that at -1.  The goals are normalized by multiplying the deviation

variables by the target value.  This formulation is portrayed in Table 11.6 with the GAMS instructions in

Table 11.7 (see file WTTAR).  Notice in this formulation both positive and negative deviations are defined

and the objective function both reflects shortfalls and excesses.  The solution shows profit equals $9,000,

idle labor 25.08 units, and idle lathe time 25 units.  This makes for a labor shortfall of .164 units and a

profit shortfall of .05.

11.3 Choice Among Formulations

An important question given the alternative formulations is:  which one should be used for a problem? 

There are several general considerations involved in choosing among these formulations.

The first consideration is solver availability.  Traditionally, the undominated approach requires a

specially adapted solver.  Such adaptations have been implemented (Steuer) although they are not routinely



copyright Bruce A. McCarl and Thomas H. Spreen 11-9

available for more than small problems.  In addition, the undominated set approach can be quite expensive

computationally (Steuer). Thus, this criteria favors the weighted tradeoff or goal formulations where one

could use standard algorithms. 

Second, one needs to consider the required amount of decision maker contact, particularly if the

model is being used for predictive purposes.  The undominated solution alternative would not be

satisfactory in a limited contact setting as it requires active choice of the "best" strategy by the decision

maker.  This would be particularly troubling in many predictive exercises as the methods would generate a

large number of answers, any of which could be the solution depending on decision maker choice.  

Third, the treatment of goal target levels is difficult in comparative static exercises.  It is difficult to: 

1) specify goal target levels and 2) conclude that the goal target levels do not depend upon the resource

base.  Certainly, an income goal is easier to satisfy if the resource base is augmented.  Thus, the

lexicographic utility function formulations are not scale neutral.  Many LP models are built to do

comparative static studies, such as what would happen if larger equipment were available, more land area,

labor, etc.  This causes difficulties in using comparative statics with the weighted tradeoff model using

fixed goal target levels or the lexicographic model.

Fourth, weights are difficult to discover.  A complex questioning or calculation procedure is required

(we review procedures for establishing weights below).  Further, the use of constant weights over the entire

domain of goal levels may be questionable.  Procedures for including diminishing marginal utility would

involve quadratic or separable programs as covered in other chapters.

All things considered, we prefer the weighted tradeoff model due to its consistency with our

perceptions that individuals are willing to establish tradeoffs between objectives on the margin and that

most models will be used for comparative static analysis. 

11.4 Developing Utility Functions

Conceptually, multiobjective programming problems look attractive.  However, assuming one knows

the objectives, it is difficult to specify the utility structure.  Clearly, this is not a problem with the

undominated solution procedure as there are no weights.  On the other hand, one puts all the alternative

solutions in the decision maker's lap, which could involve thousands of solutions.  Here we address how to

find the utility function for the other formulations.  

The easiest system to use is the lexicographic system, where one has to establish goal targets and the

preemptive order.  Targets such as the minimum amount of debt service plus consumption or the desired
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length of a vacation can be used.  However, one must be careful in using these targets in comparative static

analysis, as the relative ability to satisfy the targets changes with alterations in the resource base.  Also,

one must ask whether tradeoffs are in order.

Weights are more difficult and are the subject of the bulk of the discussion herein.  The first way of

specifying weights is to take decision makers' past actions and then through a grid search over alternative

weights, choose weights so as to minimize deviations of the model solution from observed actions.  An

example is given by Brink and McCarl for a risk analysis problem.  We know of no formal attempt to do

this in other than a risk analysis framework.  The advantage here is that one obtains weights which are

somehow consistent with revealed preferences.  However, in a LP problem  there is a range of weights

which will generate the same solution.  It is therefore possible that the proper set of weights is somewhere

within the range, but that the wrong set of weights is chosen.  In turn, this set of weights could lead to

dramatically different behavior in a comparative static study.  

A third procedure involves survey techniques.  Here decision makers are asked questions about the

relative importance of objectives and then through a scaling procedure a set of objective weights is

obtained.  This was done by Barnett, Blake and McCarl; Smith and Capstick; and Harman, et al.  Two

difficulties arise with this procedure.  First, there is no assurance that the surveys generate results which

mimic actions in actual situations.  Second, it is difficult to translate the results into the proper specification

of the programming model objective. 

The fourth procedure we discuss was proposed by Candler and Boehlje and applies to the weighted

tradeoff models.  The procedure involves interaction with the decision maker and is based on revealed

preference.  To begin the process, modelers choose an initial set of weights and present the answers to the

decision maker.  In turn, the decision maker expresses preference for a change in the objective satisfaction

levels (i.e., the decision maker could argue that there was insufficient income and excessive risk).  The

modeler would then alter the weights on those objectives and rerun the model.  The process would continue

until the decision maker was satisfied.  This approach has the advantage of obtaining goal weights

consistent with the decision maker's preferences and the potential disadvantage of obtaining the proper

output with the wrong set of goal weights, leading to improper solutions when one is doing further analysis.

Finally, we must comment that there is no real way to abstractly set up a multiple objective model. 

The weights for the multiple objectives clearly require interaction with the decision maker.

11.5 Shadow Prices
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wr ('
j

grjXj)

s.t. '
j

akj Xj # bk for all k

Xj $ 0 for all j

Max '
j
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r

wr grj)Xj

s.t. '
j

akj Xj # bk for all k

Xj $ 0 for all j

Cj ' ('
r

wr grj)

Much discussion has been devoted in previous chapters to shadow prices but little here.  In this

section we explore the meaning of shadow prices in a weighted multiple objective problem and derive

meaningful shadow prices.

The shadow prices for a weighted multiobjective problem nominally give the marginal change in the

weighted utility of a marginal right hand side change.  The weighted utility is a multi-dimensional utility

measure constructed as the sum of the individual objectives times their weights.  However, one must ask

how useful it is to know the expected change in this multi-dimensional utility function.  This ordinarily

would probably not be terribly useful as decision makers will be more interested in knowing what happens

to the specific objectives.  Mathematically, the effect on the specific objectives may be derived as follows. 

The first weighted multiple objective function with the normalization factors set to one and the equality

constraints substituted out becomes:

Rearranging, we obtain

Note that each variable Xj has an objective function coefficient which is the sum of the weights times its

relative goal contributions.  This can be collapsed using 

or, in matrix terms,

C = WG

We now turn our attention to shadow prices, given by

U = CB B-1

The CB terms within the multiobjective programming model are given by the multiplication of goal

weights times the goal levels involved with the basic variables
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CB ' WGB ' w1 w2 ... wr

g b
11 ......g b

1M

g b
21 ......g b

2M

......

g b
R1 ...... g b

RM

Max
10X1 % X2

&7X1 % X2

s.t. X1 & X2 # 5

X1 % X2 # 10

X1 , X2 $ 0

Max 1(10X % X2) % 1(&7X1 % X2) ' 3X1 % 2X2

s.t. X1 & X2 # 5

X1 % X2 # 10

X1 , X2 $ 0

B '
1 &1

1 1
B &1 '

.5 .5

&.5 .5

where the superscript b on the g terms refer to the coefficients associated with the basic variable in the 

various objectives. 

The shadow price term can be rewritten as

U = CB B-1 = W GB B-1

Here, the term GB B-1 gives an unweighted set of shadow prices, each column of GB B-1 shows how each

objective function is affected by right hand side changes.  Practically, these shadow prices could be

obtained analytically from small problems and from larger problems by employing the solver starting from

the optimal solution which can do a pricing pass but does not optimize (doing zero iterations). 

11.5.1 Example

Suppose we were to maximize the following multiple goal objective problem

and we are willing to assume that the weights are each 1.  The problem with the composite objective 

function then becomes

Solving this problem (see file SHADOW) we find that our solution consists X1=7.5 and X2=2.5. equals

2.5.  The basis matrix and its inverse are

The composite shadow prices are
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CB B &1 ' 3 2
.5 .5

&.5 .5
' .5 2.5

WGBB &1 ' 1 1
10 1

&7 1

.5 .5

&.5 .5
' 1 1

4.5 5.5

&4 &3

However, if we break this down we get

where the last matrix gives the shadow prices in terms of individual objectives.  Thus, the change of one

unit in the right hand side will increase the first objective by 4.5 while decreasing the second objective by 4. 

These shadow prices are more meaningful than the weighted shadow prices as they tell the implications of

resource changes for each objective.  Note that the weighted problem shadow prices are simply the

individual weights times the shadow prices of this problem.

Preckel et al. proposed an alternative where they estimate relevant shadow prices by dividing through

the by shadow prices on the individual objective accounting rows.  However, this does not work as well as

the theory above, as the shadow prices will be strictly proportional across the goals which need not happen

in the general case (i.e. in the example above).
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. Table 11.1. Tableau for Lexicographic Example

Original Decision Variables

Pr
of

it Idle Resources Goal Levels Goal Deviations

RHS
X1 X2 X3 X4 X5 X6

Lrg
Lathe

Sml
Lathe

Carver Labor
Profit
9000  

Idle
Labor

Idle
Lathe

Profit
9500

Prof
9000 

Idle
Labor 

Idle
Lathe

Profit
9500

Objective 1 Min

Profit O
ri

gi
na

l P
ro

bl
em

 E
qu

at
io

ns

67 66 66.3 80 78.5 78.4 -1 = 0

Small Lathe 0.8 1.3 0.2 1.2 1.7 0.5 1 = 140

Large Lathe 0.5 0.2 1.3 0.7 0.3 1.5 1 = 90

Carver 0.4 0.4 0.4 1.0 1.0 1.0 1 = 120

Labor 1.0 1.05 1.1 0.8 0.82 0.84 1 = 125

Profit 9000G
oa

l L
ev

el
 I

de
nt

iti
e

1 -1 = 0

Idle Labor 1 -1 = 0

Idle Lathe 1 1 -1 = 0

Profit 9500 1 -1 = 0

Profit 9000G
oa

l S
at

is
fa

ct
io

n

1 1 $ 9000

Idle Labor 1 1 $ 30

Idle Lathe 1 1 $ 25

Profit 9500 1 1 $ 950

ProfitL
ex

ic
og

ra
ph

ic
 S

at
is

fa
ct

io
n

1 # 0

Idle 1 # 999

Idle 1 # 999

Profit 1 # 999
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Table 11.2. GAMS Formulation of Lexicographic Example
   5   SET            GOALS         GOALS IN THE ORDER THEY ARE TO BE MET
   6                                   /PROFIT1,LABOR,LATHETIME,PROFIT2/
   7                  PROCESS       TYPES OF PRODUCTION PROCESSES
   8                                   /FUNCTNORM , FUNCTMXSML , FUNCTMXLRG
   9                                   ,FANCYNORM , FANCYMXSML , FANCYMXLRG/
  10                  RESOURCE      TYPES OF RESOURCES
  11                                   /SMLLATHE,LRGLATHE,CARVER,LABOR/
  13     ALIAS(GOALS,GOAL) ;
  15   PARAMETER PRICE(PROCESS)       PRODUCT PRICES BY PROCESS
  16                     /FUNCTNORM  82, FUNCTMXSML  82, FUNCTMXLRG  82
  17                     ,FANCYNORM 105, FANCYMXSML 105, FANCYMXLRG 105/
  18             PRODCOST(PROCESS)    COST BY PROCESS
  19                     /FUNCTNORM  15, FUNCTMXSML  16  , FUNCTMXLRG  15.7
  20                     ,FANCYNORM  25, FANCYMXSML  26.5, FANCYMXLRG  26.6/
  21             RESORAVAIL(RESOURCE) RESOURCE AVAILABLITY
  22                     /SMLLATHE 140, LRGLATHE  90,
  23                      CARVER   120, LABOR    125/
  24             TARGET(GOALS)       GOAL TARGET LEVELS
  25                                   /PROFIT1  9000,LABOR  30,LATHETIME 25
  26                                    ,PROFIT2 9500/
  27              DEV(GOALS)   MAXIMUM DEVIATION BY GOAL
  28              WEIGHTS(GOALS)      WEIGHTS BY GOAL  ;
  30     DEV(GOALS)=999999;
  31     WEIGHTS(GOALS)=0.00001;
  33   TABLE RESOURUSE(RESOURCE,PROCESS) RESOURCE USAGE
  35                 FUNCTNORM   FUNCTMXSML  FUNCTMXLRG
  36  SMLLATHE          0.80       1.30        0.20
  37  LRGLATHE          0.50       0.20        1.30
  38  CARVER            0.40       0.40        0.40
  39  LABOR             1.00       1.05        1.10
  40   +             FANCYNORM   FANCYMXSML  FANCYMXLRG
  41  SMLLATHE          1.20       1.70        0.50
  42  LRGLATHE          0.70       0.30        1.50
  43  CARVER            1.00       1.00        1.00
  44  LABOR             0.80       0.82        0.84;
  46   POSITIVE VARIABLES
  47            PRODUCTION(PROCESS) ITEMS PRODUCED BY PROCESS
  48            IDLE(RESOURCE)     SLACK VARIABLES FOR RESOURCES
  49            GOALLEVEL(GOALS)    GOAL LEVELS
  50            PROFIT              TOTALPROFIT
  51            SHORTFALL(GOALS)    GOAL SHORTFALLS;
  52   VARIABLES
  53            GOALOBJ             GOAL OBJECTIVE;
  54   EQUATIONS
  55            OBJT                  OBJECTIVE FUNCTION
  56            PROFITACCT            PROFIT ACCOUNTING
  57            AVAILABLE(RESOURCE)   RESOURCES AVAILABLE
  58            IDLLABGOAL           IDLE LABOR GOAL
  59            PROFITGL1            PROFIT1 GOAL
  60            PROFITGL2            PROFIT2 GOAL
  61            LATHEGOAL             IDLE LATHE GOAL
  62            TARGS(GOALS)          GOAL TARGETS
  63            MAXSHORT(GOALS)       SHORTFALL LIMITS;
  64  
  65    OBJT.. GOALOBJ =E= SUM(GOALS,WEIGHTS(GOALS)*SHORTFALL(GOALS)) ;
  66  
  67   PROFITACCT..   PROFIT =E=
  68               SUM(PROCESS,(PRICE(PROCESS)-PRODCOST(PROCESS))
  69                             * PRODUCTION(PROCESS)) ;
  70  
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  71    AVAILABLE(RESOURCE)..
  72        SUM(PROCESS,RESOURUSE(RESOURCE,PROCESS)*PRODUCTION(PROCESS))
  73                      +IDLE(RESOURCE)   =E= RESORAVAIL(RESOURCE);
  74  
  75    IDLLABGOAL..    IDLE("LABOR") =E= GOALLEVEL("LABOR") ;

Table 11.2. GAMS Formulation of Lexicographic Example (Continued)
  76    PROFITGL1..    PROFIT        =E= GOALLEVEL("PROFIT1");
  77    PROFITGL2..    PROFIT        =E= GOALLEVEL("PROFIT2");
  78    LATHEGOAL..     IDLE("LRGLATHE")+IDLE("SMLLATHE")
  79                             =E= GOALLEVEL("LATHETIME");
  80    TARGS(GOALS).. GOALLEVEL(GOALS) + SHORTFALL(GOALS) =G= TARGET(GOALS) ;
  81  
  82    MAXSHORT(GOALS)..  SHORTFALL(GOALS) =L= DEV(GOALS);
  83  
  84   MODEL RESALLOC /ALL/;
  85   PARAMETER   GOALDATA(GOAL,*,*)
  86   LOOP(GOAL,
  87        WEIGHTS(GOAL)=1.
  88  
  89       SOLVE RESALLOC USING LP MINIMIZING GOALOBJ;
  90        DEV(GOAL)=SHORTFALL.L(GOAL);
  91        WEIGHTS(GOAL)=0.00001;
  92        GOALDATA(GOAL,GOALS,"ATTAIN")=GOALLEVEL.L(GOALS) ;
  93        GOALDATA(GOAL,GOALS,"SHORT")=SHORTFALL.L(GOALS) ;
  94       GOALDATA(GOAL,PROCESS,"XLEVEL")=PRODUCTION.L(PROCESS);
  95      );
  96     DISPLAY GOALDATA;
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Table 11.3. Solution to Lexicographic Example

 
Goal Being    Solution                    Goal          Goal          Goal     
Production
  Pursued       Item         Idle      Attainment       Level      Shortfall       Level

PROFIT1      PROFIT1         GOAL       9500.000        9500            0
            .LABOR           GOAL         25.976          30          4.024
            .LATHETIME       GOAL          7.927          25         17.073
            .PROFIT2         GOAL       9500.000        9500            0
            .FUNCTNORM       PROD                                                     
12.195
            .FANCYNORM       PROD                                                    
108.537

LABOR       .PROFIT1         GOAL       9481.579        9500            0
            .LABOR           GOAL         30.000          30            0
            .LATHETIME       GOAL          4.359          25         20.641
            .PROFIT2         GOAL       9481.579        9500         18.421
            .FANCYNORM       PROD                                                    
115.296
            .FANCYMXLRG      PROD                                                      
3.289

LATHETIME   .PROFIT1         GOAL       9000.000        9500            0 
            .LABOR           GOAL         30.000          30            0
            .LATHETIME       GOAL         20.663          25          4.337
            .PROFIT2         GOAL       9000.000        9500        500.000
            .FUNCTNORM       PROD                                                     
15.152
            .FANCYNORM       PROD                                                     
99.811

PROFIT2     .PROFIT1         GOAL       9000.000        9500            0
            .LABOR           GOAL         30.000          30            0
            .LATHETIME       GOAL         20.663          25          4.337
            .PROFIT2         GOAL       9000.000        9500        500.000
            .FUNCTNORM       PROD                                                     
15.152
            .FANCYNORM       PROD                                                     
99.811
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. Table 11.4. Tableau for Weighted Tradeoff Example

Original Decision Variables

Pr
of

it Idle Resources Goal Levels Goal Deviations

RHS
X1 X2 X3 X4 X5 X6

Lrg
Lathe

Sml
Lathe

Carver Labor
Profit

  
Idle

Labor
Idle

Lathe

Profit
 

Idle
Labor 

Idle
Lathe

Objective 1 Min

Profit O
ri

gi
na

l P
ro

bl
em

 E
qu

at
io

ns

67 66 66.3 80 78.5 78.4 -1 = 0

Small Lathe 0.8 1.3 0.2 1.2 1.7 0.5 1 = 140

Large Lathe 0.5 0.2 1.3 0.7 0.3 1.5 1 = 90

Carver 0.4 0.4 0.4 1.0 1.0 1.0 1 = 120

Labor 1.0 1.05 1.1 0.8 0.82 0.84 1 = 125

Profit G
oa

l I
de

nt
ity

1 -1 = 0

Idle Labor 1 -1 = 0

Idle Lathe 1 1 -1 = 0

G
oa

l L
ev

el

Profit 9000 -1 10500 = 0

Idle Labor -1 125 = 0

Idle Lathe -1 230 = 0
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Table 11.5.  GAMS Setup for Weighted Objective Example

   4  
   5   SET            GOALS            /PROFIT,LABOR,LATHETIME/
   6                  PROCESS       TYPES OF PRODUCTION PROCESSES
   7                                   /FUNCTNORM , FUNCTMXSML , FUNCTMXLRG
   8                                   ,FANCYNORM , FANCYMXSML , FANCYMXLRG/
   9                  RESOURCE      TYPES OF RESOURCES
  10                                   /SMLLATHE,LRGLATHE,CARVER,LABOR/
  11  
  12   PARAMETER PRICE(PROCESS)       PRODUCT PRICES BY PROCESS
  13                     /FUNCTNORM  82, FUNCTMXSML  82, FUNCTMXLRG  82
  14                     ,FANCYNORM 105, FANCYMXSML 105, FANCYMXLRG 105/
  15             PRODCOST(PROCESS)    COST BY PROCESS
  16                     /FUNCTNORM  15, FUNCTMXSML  16  , FUNCTMXLRG  15.7
  17                     ,FANCYNORM  25, FANCYMXSML  26.5, FANCYMXLRG  26.6/
  18             RESORAVAIL(RESOURCE) RESOURCE AVAILABLITY
  19                     /SMLLATHE 140, LRGLATHE  90,
  20                      CARVER   120, LABOR    125/
  21             WEIGHTS(GOALS)       WEIGHT FOR GOALS
  22                                 /PROFIT  1,LABOR  0.4,LATHETIME 0.4/
  23             MAGNITUDE(GOALS)       MAGNITUDE FOR GOALS
  24                                 /PROFIT  10500/;
  25             MAGNITUDE("LATHETIME")=RESORAVAIL("SMLLATHE")+RESORAVAIL("LRGL
ATHE");
  26             MAGNITUDE("LABOR")=RESORAVAIL("LABOR");
  27  
  28  
  29   TABLE RESOURUSE(RESOURCE,PROCESS) RESOURCE USAGE
  30  
  31                 FUNCTNORM   FUNCTMXSML  FUNCTMXLRG
  32  SMLLATHE          0.80       1.30        0.20
  33  LRGLATHE          0.50       0.20        1.30
  34  CARVER            0.40       0.40        0.40
  35  LABOR             1.00       1.05        1.10
  36   +             FANCYNORM   FANCYMXSML  FANCYMXLRG
  37  SMLLATHE          1.20       1.70        0.50
  38  LRGLATHE          0.70       0.30        1.50
  39  CARVER            1.00       1.00        1.00
  40  LABOR             0.80       0.82        0.84;
  41  
  42   POSITIVE VARIABLES
  43            PRODUCTION(PROCESS) ITEMS PRODUCED BY PROCESS
  44            IDLE(RESOURCE)     SLACK VARIABLES FOR RESOURCES
  45            GOALLEVEL(GOALS)    GOAL LEVELS
  46            PROFIT              TOTALPROFIT;
  47   VARIABLES
  48            GOALOBJ             GOAL OBJECTIVE;
  49   EQUATIONS
  50            OBJT                  OBJECTIVE FUNCTION
  51            PROFITACCT            PROFIT ACCOUNTING
  52            AVAILABLE(RESOURCE)   RESOURCES AVAILABLE
  53            IDLLABGOAL           IDLE LABOR GOAL
  54            PROFITGOAL            PROFIT GOAL
  55            LATHEGOAL             IDLE LATHE GOAL;
  56  
  57    OBJT.. GOALOBJ =E= SUM(GOALS,WEIGHTS(GOALS)*GOALLEVEL(GOALS)) ;
  58  
  59   PROFITACCT..   PROFIT =E=
  60               SUM(PROCESS,(PRICE(PROCESS)-PRODCOST(PROCESS))
  61                             * PRODUCTION(PROCESS)) ;
  62  



copyright Bruce A. McCarl and Thomas H. Spreen 11-21

  63    AVAILABLE(RESOURCE)..
  64        SUM(PROCESS,RESOURUSE(RESOURCE,PROCESS)*PRODUCTION(PROCESS))
  65                      +IDLE(RESOURCE)   =E= RESORAVAIL(RESOURCE);
  66  
  67    IDLLABGOAL..    IDLE("LABOR") =E= GOALLEVEL("LABOR")*MAGNITUDE("LABOR");
  68    PROFITGOAL..    PROFIT        =E=
GOALLEVEL("PROFIT")*MAGNITUDE("PROFIT");
  69    LATHEGOAL..     IDLE("LRGLATHE")+IDLE("SMLLATHE")
  70                             =E= GOALLEVEL("LATHETIME")*MAGNITUDE("LATHETIM
E");
  71   MODEL RESALLOC /ALL/;
  72   SOLVE RESALLOC USING LP MAXIMIZING GOALOBJ;
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. Table 11.6. Tableau for Weighted Tradeoff with Targets Example

Original Decision Variables

Pr
of

it Idle Resources Goal Levels Goal Deviations

RHS
X1 X2 X3 X4 X5 X6

Small
Lathe

Large
Lathe

Carv Labor
Profit
9000  

Idle
Labor

Idle
Lathe

Profit
9500

Profit
9000

+

Profit
9000

-

Idle
Labor

+

Idle
Labor

-

Idle
Lathe

+

Idle
Lathe

-

Profit
9500

+

Profit
9500

-

Objective 1 -10 .1 -.4 .1 -.4 9 -1 Max

 O
ri

gi
na

l P
ro

bl
em

 E
qu

at
io

ns

Profit 67 66 66.3 80 78.5 78.4 -1 = 0

Small Lathe 0.8 1.3 0.2 1.2 1.7 0.5 1 = 140

Large Lathe 0.5 0.2 1.3 0.7 0.3 1.5 1 = 90

Carver 0.4 0.4 0.4 1.0 1.0 1.0 1 = 120

Labor 1.0 1.05 1.1 0.8 0.82 0.84 1 = 125

G
oa

l L
ev

el
 I

de
nt

ity

Profit 9000 1 -1 = 0

Idle Labor 1 -1 = 0

Idle Lathe 1 1 -1 = 0

Profit 9500 1 -1 = 0

G
oa

l S
at

is
fa

ct
io

n

Profit 9000 1 -9000 9000 = 9000

Idle Labor 1 -30 30 = 30

Idle Lathe 1 -25 25 = 25

Profit 9500 1 -9500 9500 = 9500
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Table 11.7. GAMS Setup for Weighted Objective with Target Example
   4  
   5   SET            GOALS         GOALS IN THE ORDER THEY ARE TO BE MET
   6                                   /PROFIT1,LABOR,LATHETIME,PROFIT2/
   7                  PROCESS       TYPES OF PRODUCTION PROCESSES
   8                                   /FUNCTNORM , FUNCTMXSML , FUNCTMXLRG
   9                                   ,FANCYNORM , FANCYMXSML , FANCYMXLRG/
  10                  RESOURCE      TYPES OF RESOURCES
  11                                   /SMLLATHE,LRGLATHE,CARVER,LABOR/
  12                  DIR           GOAL DEVIATION DIRECTION  /MORETHAN,
LESSTHAN/
  13  
  14     ALIAS(GOALS,GOAL) ;
  15  
  16   PARAMETER PRICE(PROCESS)       PRODUCT PRICES BY PROCESS
  17                     /FUNCTNORM  82, FUNCTMXSML  82, FUNCTMXLRG  82
  18                     ,FANCYNORM 105, FANCYMXSML 105, FANCYMXLRG 105/
  19             PRODCOST(PROCESS)    COST BY PROCESS
  20                     /FUNCTNORM  15, FUNCTMXSML  16  , FUNCTMXLRG  15.7
  21                     ,FANCYNORM  25, FANCYMXSML  26.5, FANCYMXLRG  26.6/
  22             RESORAVAIL(RESOURCE) RESOURCE AVAILABLITY
  23                     /SMLLATHE 140, LRGLATHE  90,
  24                      CARVER   120, LABOR    125/
  25             TARGET(GOALS)       GOAL TARGET LEVELS
  26                                   /PROFIT1  9000,LABOR  30,LATHETIME 25
  27                                    ,PROFIT2 9500/
  28             MAGNITUDE(GOALS)       MAGNITUDE FOR GOALS;
  29             MAGNITUDE(GOALS)=TARGET(GOALS);
  30  
  31     TABLE            WEIGHTS(GOALS,dir)      WEIGHTS BY GOAL
  32  
  33                            MORETHAN   LESSTHAN
  34                 PROFIT1       1         -10
  35                 LABOR        0.1         -0.4
  36                 LATHETIME    0.1         -0.4
  37                 PROFIT2       .9         -1.       ;
  38  
  39   TABLE RESOURUSE(RESOURCE,PROCESS) RESOURCE USAGE
  40  
  41                 FUNCTNORM   FUNCTMXSML  FUNCTMXLRG
  42  SMLLATHE          0.80       1.30        0.20
  43  LRGLATHE          0.50       0.20        1.30
  44  CARVER            0.40       0.40        0.40
  45  LABOR             1.00       1.05        1.10
  46   +             FANCYNORM   FANCYMXSML  FANCYMXLRG
  47  SMLLATHE          1.20       1.70        0.50
  48  LRGLATHE          0.70       0.30        1.50
  49  CARVER            1.00       1.00        1.00
  50  LABOR             0.80       0.82        0.84;
  51  
  52   POSITIVE VARIABLES
  53            PRODUCTION(PROCESS) ITEMS PRODUCED BY PROCESS
  54            IDLE(RESOURCE)     SLACK VARIABLES FOR RESOURCES
  55            GOALLEVEL(GOALS)    GOAL LEVELS
  56            PROFIT              TOTALPROFIT
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  57            SHORTFALL(GOALS)    GOAL SHORTFALLS
  58            EXCESS(GOALS)       GOAL EXCESSES;
  59   VARIABLES
  60            GOALOBJ             GOAL OBJECTIVE;
  61   EQUATIONS
  62            OBJT                  OBJECTIVE FUNCTION
  63            PROFITACCT            PROFIT ACCOUNTING
  64            AVAILABLE(RESOURCE)   RESOURCES AVAILABLE
  65            IDLLABGOAL           IDLE LABOR GOAL
  66            PROFITGL1            PROFIT1 GOAL
  67            PROFITGL2            PROFIT2 GOAL

Table 11.7. GAMS Setup for Weighted Objective with Target Example (Continued)

  68            LATHEGOAL             IDLE LATHE GOAL
  69            TARGS(GOALS)          GOAL TARGETS  ;
  70  
  71    OBJT.. GOALOBJ =E= SUM(GOALS,WEIGHTS(GOALS,"LESSTHAN")*SHORTFALL(GOALS)
  72                                +WEIGHTS(GOALS,"MORETHAN")*EXCESS(GOALS)) ;
  73  
  74   PROFITACCT..   PROFIT =E=
  75               SUM(PROCESS,(PRICE(PROCESS)-PRODCOST(PROCESS))
  76                             * PRODUCTION(PROCESS)) ;
  77  
  78    AVAILABLE(RESOURCE)..
  79        SUM(PROCESS,RESOURUSE(RESOURCE,PROCESS)*PRODUCTION(PROCESS))
  80                      +IDLE(RESOURCE)   =E= RESORAVAIL(RESOURCE);
  81  
  82    PROFITGL1..    PROFIT        =E= GOALLEVEL("PROFIT1");
  83    IDLLABGOAL..    IDLE("LABOR") =E= GOALLEVEL("LABOR");
  84    LATHEGOAL..     IDLE("LRGLATHE")+IDLE("SMLLATHE")
  85                             =E= GOALLEVEL("LATHETIME");
  86    PROFITGL2..    PROFIT        =E= GOALLEVEL("PROFIT2");
  87  
  88    TARGS(GOALS)..
  89         GOALLEVEL(GOALS) + MAGNITUDE(GOALS)*( SHORTFALL(GOALS) -EXCESS(GOALS))
  90                             =E= TARGET(GOALS) ;
  91  
  92  
  93   MODEL RESALLOC /ALL/;
  94  
  95   SOLVE RESALLOC USING LP MAXIMIZING GOALOBJ;
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CHAPTER XII:  NONLINEAR OPTIMIZATION CONDITIONS

    
The previous material deals largely with linear optimization problems.  We now turn our attention

to continuous, certain, nonlinear optimization problems. The problems amenable to analysis using the

methods in this chapter relax the LP additivity and proportionality assumptions. 

 The nonlinear optimization problem is important in a number of settings.  This chapter will lay the

ground work for several later chapters where price endogenous and risk problems are formulated as

nonlinear optimization problems.  Optimality conditions for the problems will be treated  followed by

brief discussion of solution principles.

12.1 Optimality Conditions

This section is devoted to the characterization of optimality conditions for nonlinear programming

problems.  These characterizations depend upon both first order conditions for identification of

stationary points and second order conditions for discovery of the nature of the stationary points found. 

Consideration of types of optimum involves the topics of concavity and convexity.  Thus, concavity and

convexity are discussed.  The presentation will not be extremely rigorous.  Those interested in more

rigorous treatments should consult books like Hadley, or Bazaraa and Shetty.

Nonlinear optimization problems may be constrained or unconstrained.  Optimality conditions for

unconstrained problems are ordinarily developed in calculus classes and will be briefly reviewed. 

Lagrangian multiplier and Kuhn Tucker based approaches are used to treat constrained problems and

will be discussed here.

12.1.1 Unconstrained Optimization

Unconstrained optimization is a topic in calculus classes.  Such problems may contain one or N

variables.  

12.1.1.1 Univariate 

Problems with a single variable are called univariate.  The univariate optimum for Y = f(X)

occurs at points where the first derivative of f(X) with respect to X (f '(X)) equals zero.  However,

points which have zero first derivatives do not necessarily constitute a minimum or maximum.   The

second derivative is used to discover character of a point.   Points at which a relative minimum occurs
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Lf(XE)j '
Mf(XE)
MXj

H(XE)ij '
M2f(XE)
MXiMXj

have a positive second derivative at that point while relative maximum occurs at points with a negative

second derivative.  Zero second derivatives are inconclusive.

It is important to distinguish between local and global optima.  A local optimum arises when one

finds a point whose value in the case of a maximum exceeds that of all surrounding points but may not

exceed that of distant points. The second derivative indicates the shape of functions and is useful in

indicating whether the optimum is local or global.  The second derivative is the rate of change in the

first derivative.  If the second derivative is always negative (positive) that implies that any maximum

(minimum) found is a global result. Consider a maximization problem with a negative second derivative

for which f '(X*)=0.  This means the first derivative was > 0 for X < X* and was < 0 for X > X*.  The

function can never rise when moving away from X*  because of the sign of the second derivative.  An

everywhere positive second derivative indicates a global minimum will be found if f '( X*)=0,  while a

negative indicates a global maximum. 

12.1.1.2 Multivariate functions

The univariate optimization results have multivariate analogues.  In the multivariate case, partial

derivatives are used, and a set of simultaneous conditions is established.  The first and second

derivatives are again key to the optimization process, excepting now that a vector of first derivatives

and a matrix of second derivatives is involved.

There are several terms to review.  First, the gradient vector, Lxf(XE), is the vector of first order

partial derivatives of a multivariate function with respect to each of the variables evaluated at the point

XE.

where Mf(XE)/MXj stands for the partial derivative of f(X) with respect to Xj  evaluated at XE, and XE

depicts X1E,X2E,...,XnE.  The second derivatives constitute the Hessian matrix,

The Hessian matrix, evaluated at XE, is an NxN symmetric matrix of second derivatives of the function

with respect to each variable pair. 

The multivariate analogue of the first derivative test is that an XE must be found so that all terms
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of the gradient vector simultaneously equal zero.  The multivariate version of the second derivative test

involves examination of the Hessian matrix at XE.  If that matrix is positive definite then the point XE is

a local minimum, whereas if the Hessian matrix is negative definite then the point is a local maximum. 

If the Hessian matrix is neither positive nor negative definite, then no conclusion can be made about

whether this point is a maximum or minimum and one must conclude it is an inflection or saddle point.  

12.1.2 Global Optima-Concavity and Convexity

The characterization of minimum and maximum points whether global or local is related to the

concavity and convexity of functions.   A univariate concave function has a negative second derivative

everywhere and guarantees global maximum.  A univariate convex function has a positive derivative

everywhere yielding a global minimum.  The multivariate analogues exhibit the proper definiteness of

the Hessian matrix at all X points.  

It is obviously desirable when dealing with optimization problems that global optimum be found. 

Thus, maximization problems are frequently assumed to be concave while minimization problems are

assumed to be convex.  Functions may also be locally concave or convex when the second derivative or

Hessian only satisfies the sign convention in a region.  Optimization problems over such functions can

only yield local optimum. 

Concavity of functions has been defined in another fashion.  Concave functions exhibit the

property that, given any two points X1 and X2 in the domain of the function, a line joining those points

always lies below the function.  Mathematically, this is expressed as 

Note that 8f(X1) + (1-8)f(X2) is a line between f(X1) and f(X2) and that concavity requires this line to

fall below the true function (f(8X1 + (1-8)X2)) everywhere below this function. 

 Similarly,  a line associated with two points on a convex function must lie above the true function 
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L(X,8)'f(X)& '
i
8i(gi(X)&bi)

f(8X1% (1&8)X2 ) # 8f( X1 )% ( 1&8)f( X2 )

0 # 8 # 1

Concavity and convexity occur locally or globally.  A function is globally concave if the

conditions hold for all X or is locally concave or convex if the functions satisfy the conditions in some

neighborhood.  

The optimality conditions may be restated in terms of concavity and  convexity.  Namely, a

multivariate function for which a stationary point XE has been discovered has:  a) a local maximum at

XE if the function is locally concave, b) a global maximum if the function is concave throughout the

domain under consideration, c) a local minimum at XE if the function is locally convex, d) a global

minimum at XE if the function is strictly convex, and e) a saddle point if the function is neither concave

nor convex.  At the stationary point, concavity and convexity for these conditions may be evaluated

either using the two formulas above or using the positive or negative definiteness properties of the

Hessian.  

12.1.3 Constrained Optimization

The second major type of optimization problem is the constrained optimization problem.  Two

types of constrained problems will be considered:  those subject to equality constraints without sign

restricted variables and those subject to inequality constraints and/or sign restrictions on the variables. 

The optimality conditions for equality constrained optimization problems involve the Lagrangian and

associated optimality conditions.  The solution of problems with inequality constraints and/or variable

sign restrictions relies on Kuhn-Tucker theory.  

12.1.3.1 Equality Constraints - The Lagrangian 

Consider the problem

Maximize f(X)

s.t. gi(X) = bi for all I

where f (X) and gi (X) are functions of N variables and there are M equality constraints on the problem. 

Optimization conditions for this problem were developed in the eighteenth century by Lagrange.  The

Lagrangian approach involves first forming the function, 
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'
Mf(XE)
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8Ei

Mgi(XE)
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' &( gi(XE) & bi ) ' 0 for all i.

Max '
j

cjXj

s.t. '
j

aijXj ' bi for all i

ML
MXj

' cj & '
i
8iaij ' 0 for all j

ML
M8i

' &('
j

aijXj & bi) ' 0 for all i

where a new set of variables (8i) are entered.  These variables are called Lagrange multipliers.  In turn

the problem is treated as if it were unconstrained with the gradient set to zero and the Hessian examined. 

The gradient is formed by differentiating the Lagrangian function L(X,8) with respect to both X and 8. 

These resultant conditions are

In words, the first condition requires that at XE the gradient vector of  f (X) minus the sum of 8E times

the gradient vector of each constraint must equal zero .  The second condition says that at XE the

original constraints must be satisfied with strict equality.  The first order condition yields a system of

N+M equations which must be simultaneously satisfied.  In this case, the derivatives of the objective

function are not ordinarily driven to zero.  Rather, the objective gradient vector is equated to the

Lagrange multipliers times the gradients of the constraints.

These conditions are analogous to the optimality conditions of an LP consider a LP problem with

N variables and M binding constraints. The first order conditions using the Lagrangian would be 

Clearly, this set of conditions is analogous to the optimality conditions on the LP problem when one

eliminates the possibility of zero variables and nonbinding constraints.  Further, the Lagrange

multipliers are analogous to dual variables or shadow prices, as we will show below.   

Use of the Lagrangian is probably again best illustrated by example.  Given the problem

Minimize X2
1 + X2

2

s.t. X1 + X2  =  10
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ML
MX1

' 2X1 & 8 ' 0

ML
2X2

' 2X2 & 8 ' 0

ML
M8

' & (X1%X2&10) ' 0

H(X,8) '

0
Mgi(X)

MXj

Mgi(X)

MXj

M2f(X)
MXiXj

the Lagrangian function is 

L(X,8)  =  X2
1 + X2

2 - 8(X1 + X2 - 10)

Forming the Lagrange multiplier conditions leads to

In turn, utilizing the first two conditions, we may solve for X1E and  X2E in terms of 8E and getting

X1E  =  X2E  =  8E/2

Then plugging this into the third equation leads to the conclusion that

8E  = 10; X1E = X2E = 5

This is then a stationary point for this problem and, in this case, is a relative minimum.  We will

discuss the second order conditions below.  

12.1.3.1.1 Second Order Conditions - Constraint Qualifications:  Convexity and Concavity

The Lagrangian conditions develop conditions for a stationary point, but yield no insights as to its

nature.  One then needs to investigate whether the stationary point is, in fact, a maximum or a minimum. 

In addition, the functions must be continuous with the derivatives defined and there are constraint

qualifications which insure that the constraints are satisfactorily behaved.  

Distinguishing whether a global or local optimum has been found, again, involves use of second 

order conditions.  In this case, second order conditions arise through a "bordered" Hessian.  The

bordered Hessian is 

 For original variables and m<n constraints, the stationary point is a minimum if starting with the

principal minor of order 2m + 1 the last n-m principal minor determinants follow the sign (-1)m.  As

similarly, if those principal minor determinants alternate in sign, starting with (-1)m+1, then the stationary
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H(XE, 8E) '

0 1 1

1 2 0

1 0 2

J '
Mgi(X

()

MXj i j

point is a maximum Mann originally developed this condition while Silberberg and Taha (1992)

elaborate on it. 

For the example above the bordered Hessian is 

Here, there are two variables and one constraint thus n - m = 2 - 1 =  1, and we need to examine

only one determinant.  This determinant is positive, thus XE is a minimum.

An additional set of qualifications on the problem have also arisen in the mathematical 

programming literature.  Here, the qualification involves relationship of the constraints to the 

objective function.  It is expressed using the Jacobian matrix (J) which is defined with the elements

This Jacobian matrix gives row vectors of the partial derivatives of each of the constraints with respect

to the X variables.  The condition for existence of λ is that the rank of this Jacobian matrix, evaluated at

the optimum point, must equal the rank of the Jacobian matrix which has been augmented with a row

giving the gradient vector of the objective function.  This condition insures that the objective function

can be written as a linear combination of the gradients of the constraints.  Note that this condition does

not imply that the Jacobian of the constraints has to be of full row rank.  However, when the Jacobian of

the constraints is not of full row rank, this introduces an indeterminacy in the Lagrange multipliers and

is equivalent to the degenerate case in LP.  Both Hadley and Pfaffenberger and Walker treat such cases

in more detail. 

The sufficient conditions for the Lagrangian also can be guaranteed by specifying:  a) that the

above rank condition holds which insures that the constraints bind the objective function, b) that the

objective function is concave, and c) that the constraint set is convex.  A convex constraint set occurs
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when given any two feasible points all points in between are feasible.  

12.1.3.1.2 Interpretation of Lagrange Multipliers

Hadley (1964) presents a useful derivation of the interpretation of Lagrange multipliers.  We will

follow this below.  Assume Z is the optimal objective value, and X* the optimal solution for the decision

variables.  Suppose now we wish to derive an expression for the rate at which the optimal objective

function value changes when we change the right hand side.  Then, by the chain rule, we obtain

If we also choose to differentiate the constraints with respect to bi , we get

where *ik is the so-called Kronecker delta and equals

If we now take the equality relationship between the Kronecker * and the derivatives of the

constraints with respect to X*
j we may rewrite this as

Multiplying this through by 8k, we get

Since the above term equals zero, we may freely sum over it and still obtain zero.  If we add this term to

the expression above we obtain 

Grouping terms yields 
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MZ
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' 8i

Maximixe f(X)

s.t. g(X) # b

X$0

The parenthetic part of this expression is equal to zero via the Lagrangian conditions.  Thus, the

sum over j always equals zero.  The left hand side 8k times *1k will be zero for all terms except where I

equals k.  Consequently, the sum equals 8i, and we obtain the conclusion 

or that the partial derivative of the objective function at optimality with respect to the ith right hand side

is equal to 8i.  Thus, the 8i's are analogous to shadow prices from ordinary LP.  However, these are

derivatives and are not generally constant over ranges of right hand side values as is true in LP.  Rather,

they are instantaneous projections of how the objective function would change given an infinitesimal

change in the right hand side.  

12.1.3.2 Inequality Constraints - Kuhn Tucker Theory

Kuhn and Tucker, in 1951, developed optimality conditions for problems which contain inequality

constraints and/or sign restricted variables.  These conditions deal with the problem 

The Kuhn-Tucker conditions state that if the following six conditions are satisfied then the solution 
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3) X ( $ 0

4) g(X ( ) # b

5) 8(( g(X ( )&b) ' 0

6) 8( $ 0

X*,8* would be a candidate for optimality. 

The conditions may be interpreted economically.  The first condition requires that the first

derivative of the objective function minus 8* times the first derivative of the constraints be less than or

equal to zero at optimality.  If one interprets the objective function as profit and the Lagrange

multipliers as the cost of resources, and the constraint derivatives as the marginal resource

requirements, then this condition requires that the marginal profit contribution of any product be less

than or equal to the marginal cost of producing this product. 

The second condition requires that the difference between the marginal profit and marginal cost

times the X variable equals zero.  The third condition requires nonnegative production.  The second

condition, taken together with the first and the third, requires that either the good be produced at a

nonzero level and that marginal profit equals marginal cost, or the good not be produced and marginal

profit be less than or equal to marginal cost (strictly less than in nondegenerate cases).  

The fourth condition, in turn, requires that the original problem constraints be satisfied.  The fifth

condition requires that the Lagrange multiplier variables times the slack in the constraints equals zero,

and the sixth condition that the Lagrange multipliers be nonnegative.  The fourth and sixth conditions

taken together, in conjunction with the fifth condition, require that either the constraint be binding and

the Lagrange multiplier be nonzero (zero in degenerate cases), or that the Lagrange multiplier be zero

and the constraint be nonbinding.  Conditions 2 and 5 are analogous to the complementary slackness

conditions in LP.  

These conditions guarantee a global optimum, if the objective function is concave, the constraints

g (X) #  b form a convex set, and one of several constraint qualifications occur.  The simplest of these

constraint qualifications require that the constraints form a convex set and a feasible interior point can
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Maximize CX & 1/2X )QX
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X $ 0

be found (the Slater condition).  Another constraint qualification requires that the rank condition of the

Jacobian be satisfied.  There are other forms of constraint qualifications as reviewed in Bazaraa and

Shetty; Gould and Tolle;  and Peterson. 

12.1.3.2.1 Example 1

Consider the LP problem

The Kuhn-Tucker conditions of this problem are

These Kuhn-Tucker conditions are equivalent to the optimality conditions of the LP problem and show

that the Kuhn-Tucker theory is simply a superset of LP theory and LP duality theory as the 8's in the

Kuhn-Tucker problem are equivalent to the LP dual variables. 

12.1.3.2.2 Example 2

The Kuhn-Tucker theory has also been applied to quadratic programming problems.  A 

quadratic problem is

and its Kuhn-Tucker conditions are
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4) AX ) # b

5) 8((AX ) & b) ' 0
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These Kuhn-Tucker conditions are close to a linear system of equations.  If one disregards

equations (2) and (5) the system is linear.  These Kuhn-Tucker conditions have provided the basic

equations that specialized quadratic programming algorithms (e.g. Wolfe) attempt to solve. 

12.1.4 Usage of Optimality Conditions

Optimality conditions have been used in mathematical programming for three purposes.  The first

and least used purpose is to solve numerical problems.  Not many modelers check second derivatives or

attempt to solve such things as the Kuhn-Tucker conditions directly.  Rather, the more common usages

of the optimality conditions are to characterize optimal solutions analytically, as is very commonly done

in economics, or to provide the conditions that an algorithm attempts to achieve as in the Wolfe

algorithm in quadratic programming.

12.2 Notes on Solution of Nonlinear Programming Models 

Three general approaches have been used to solve nonlinear models.  Problems have been

approximated by a linear model and the resulting model solved via the simplex method as in the 

approximations chapter.  Second, special problem structures (most notably those with a quadratic

objective function and linear constraints) have been solved with customized algorithms.   Third,  general

nonlinear programming algorithms such as MINOS within GAMS have been used.  

A popular way of solving nonlinear programming problems is the "gradient" method (Lasdon and

Waren, Waren and Lasdon).   One of the popular gradient algorithms was developed by Murtaugh and

Saunders (1987) and implemented in MINOS (which is the common GAMS nonlinear solver).  

That method  solves the problem 
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Min F(X) = f(XN) + CXL

         s.t. AX  # b

                X $ 0.

where f(X) is a twice-differentiable convex function. Their approach involves an X vector which

contains variables which only have linear terms, XL,  and variables with nonlinear objective terms, XN.

MINOS first finds a feasible solution to the problem. The usual method employed in LP is to

designate basic variables and non-basic variables which are set equal to zero.  However, the optimal

solution to a nonlinear problem is rarely basic. But Murtaugh and Saunders (1987) note that if the

number of nonlinear variables is small, the optimal solution will be "nearly basic"; i.e., the optimal

solution will lie near a basic solution. Thus, they maintain the traditional basic variables as well as

superbasic and traditional non-basic variables.  The superbasic variables have nonzero values with their

levels determined by the first order conditions on those variables.  

Given a current solution to the problem, X0, MINOS seeks to improve the objective function

value.  The algorithm uses the gradient to determine the direction of change, thus GAMS automatically

takes derivatives and passes them to MINOS.  The algorithm proceeds until the reduced gradient of the

objective function, in the space determined by the active constraints, is zero.  MINOS can also solve

problems with nonlinear constraints.  See Gill, Murry and Wright for discussion.

12.3 Expressing Nonlinear Programs in Conjunction with GAMS 

The solution of nonlinear programming problems in GAMS is a simple extension of the solution

of linear programming problems in GAMS.  One ordinarily has to do two things.  First, one specifies

the model using nonlinear expressions, and second the solve statement is altered so a nonlinear solver is

used.  In addition, it is desirable to specify an initial starting point and that the problem be well scaled.

An example quadratic programming problem is as follows:
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Max 6Qd & 0.15Q 2
d & Qs & 0.1Q 2

s

Qd & Qs # 0

Qd, Qs # 0

This problem is explained in the Price Endogenous modeling chapter and is only presented here for

illustrative purposes.  The GAMS formulation is listed in Table 12.1 and is called TABLE12.1 on the

associated disk.  The solution to this model as presented in Table 12.2 reveals shadow prices as well as

optimal variable values and reduced costs.  The SOLVE statement (line 34) uses the phrase "USING

NLP" which signifies using nonlinear programming.  Obviously users must have a license to a nonlinear

programming algorithm such as MINOS to do this.  Also, the objective function is specified as a

nonlinear model in lines 26-28.  

Finally a caution is also in order.  Modelers should avoid nonlinear terms in equations to the

extent possible (excepting in the equation expressing a nonlinear objective function).  It is much more

difficult for nonlinear solvers, like MINOS, to deal with nonlinear constraints.
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Table 12.1.  GAMS Formulation of Nonlinear Programming Example

   2  
   4   OPTION LIMCOL = 0;
   5   OPTION LIMROW = 0;
   6  
   7   SETS       CURVEPARM  CURVE PARAMETERS  /INTERCEPT,SLOPE/
   8              CURVES     TYPES OF CURVES   /DEMAND,SUPPLY/
   9  
  10   TABLE      DATA(CURVES,CURVEPARM) SUPPLY DEMAND DATA
  11  
  12                     INTERCEPT    SLOPE
  13    DEMAND               6        -0.30
  14    SUPPLY               1         0.20
  15  
  16   PARAMETERS  SIGN(CURVES)  SIGN ON CURVES IN OBJECTIVE FUNCTION
  17                            /SUPPLY -1,  DEMAND 1/
  18  
  19   POSITIVE VARIABLES    QUANTITY(CURVES) ACTIVITY LEVEL
  20  
  21   VARIABLES             OBJ                 NUMBER TO BE MAXIMIZED
  22  
  23   EQUATIONS             OBJJ                OBJECTIVE FUNCTION
  24                         BALANCE             COMMODITY BALANCE;
  25  
  26   OBJJ..   OBJ =E= SUM(CURVES, SIGN(CURVES)*
  27                          (DATA(CURVES,"INTERCEPT")*QUANTITY(CURVES)
  28                          +0.5*DATA(CURVES,"SLOPE")*QUANTITY(CURVES)**2)) ;
  29  
  30   BALANCE..    SUM(CURVES, SIGN(CURVES)*QUANTITY(CURVES)) =L= 0 ;
  31  
  32   MODEL PRICEEND /ALL/ ;
  33  
  34   SOLVE PRICEEND USING NLP MAXIMIZING OBJ ;
  35  

Table 12.2. Solution to Nonlinear Example Model

Variables Value Reduced Cost Equation Level Shadow Price

Qd 10 0 Objective function 25 -

Qs 10 0 Constraint 0 3
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Ps ' as % bs Qs ,

Pd ' Ps

or

ad & bd Qd ' as % bs Qs

and

Qd ' Qs

ad & bd Qd # P (

CHAPTER XIII:  PRICE ENDOGENOUS MODELING

A common economic application of nonlinear programming involves price endogenous models.  In

the standard LP model, input and output prices or quantities are assumed fixed and exogenous.  Price

endogenous models are used in situations where this assumption is felt to be untenable.  Such problems

can involve modeling an industry or sector such that the level of output or purchases of inputs is

expected to influence equilibrium prices.  

Pd ' ad & bd Qd .

The approach to formulating such problems was motivated by Samuelson, who suggested solving

optimization problems whose first-order conditions constituted a system of equations characterizing an

equilibrium.  Suppose we follow this approach by first defining a system of equations, then posing the

related optimization problem.  Let an inverse demand equation be defined where Pd is price of the

product, ad is the intercept, bd is the slope, and Qd is the quantity demanded.   Similarly, suppose we

have an inverse supply equation

where the terms are defined analogously.  An equilibrium solution would have price and quantity

equated and would occur at the simultaneous solution of the equations

One should also recognize some possible peculiarities of the equilibrium, namely it is possible that the

markets could clear at zero quantity, in which case the supply price might be greater than or equal to the

demand price. 

Thus, we can write the condition that the equilibrium price (P*) is greater than or equal to the demand

price
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as % bs Qs $ P (

(ad & bd Qd & P () Qd ' 0

(as % bs Qs & P () Qs ' 0

Qs $ Qd

(&Qs % Qd)P
( ' 0

Qd , Qs , P ( $ 0.

Max ad Qd & 1/2 bd Q 2
d & as Qs & 1/2 bs Q 2

s

s.t. Qd & Qs # 0

Qd , Qs $ 0

Simultaneously, the market price may be less than the supply price,

One can also argue that these two relations should only be inequalities when the quantity supplied or

demanded equals zero.  Namely, when the price of demand is less than the equilibrium price, then zero

quantity should be demanded.  Similarly, when the price of supply is greater than the equilibrium price,

then zero quantity should be supplied.  Simultaneously, when a non-zero quantity is supplied or

demanded, then the equilibrium price should equal the supply or demand price.  This relationship can be

expressed through complementary slackness like relations where

One should also recognize that the quantity supplied must be greater than or equal to the quantity

demanded 

but, if the quantity supplied is strictly greater than the quantity demanded, then the equilibrium price

should be zero.  Mathematically this relationship is

Finally, we state nonnegativity conditions for price and quantities, 

The above equations are similar to the Kuhn-Tucker conditions.  In particular, if P* is taken to be

a dual variable, then the above equation system is equivalent to the Kuhn-Tucker conditions of the

following optimization model

where P* is the dual variable associated with the first constraint.  Optimizing this model solves our
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Pd ' 6 & .3Qd

Ps ' 1 % .2Qs

Max 6Qd & 0.15Q 2
d & Qs & 0.1Q 2

s

Qd & Qs # 0

Qd, Qs $ 0

equilibrium problem.  

This is a quadratic programming problem.  The formulation was originally motivated by Enke;

and Samuelson.  Later it was fully developed by Takayama and Judge (1973).  The general form

maximizes the integral of the area underneath the demand curve minus the integral underneath the

supply curve (Figure 13.1), subject to a supply-demand balance.  The resultant objective function value

is commonly called consumers' plus producers' surplus.

The graphical representation allows one to develop a practical interpretation of the shadow price. 

Consider what happens if the Qd - Qs # 0 constraint is altered so that the right hand side is one (Qd - Qs

# 1).  In this case demand is allowed to be one unit greater than supply.  Assuming the one unit is small

relative to total quantity then we get an area increment that is approximately the height of the

equilibrium price and one unit wide (Figure 13.2).  The resultant objective function then is the original

value plus an area equaling the equilibrium price.  Thus, the change in the objective function when

increasing the right hand side (the shadow price) can be interpreted as the equilibrium price.  This also

equals the Lagrange multiplier introduced when applying Kuhn-Tucker theory.

Example

Suppose we have 

Then the formulation is 

The GAMS formulation of this model is in Table 13.1 and file PRICEND.  Note that there are

two important changes in this setup compared to an LP.  The first is that the objective function equation

contains the nonlinear squared terms.  The second is that in the SOLVE statement we indicate that the

problem is a nonlinear programming problem by saying SOLVE USING NLP.  The solution to the

model is given in Table 13.2.  It indicates that the quantity supplied and demanded equal 10, that the

price is 3 (equaling the shadow price on the commodity balance row), and that consumers' plus
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pdi ' fi (Qdi)

psi ' si(Qsi)

Wi( Q (

si ,Q (

di ) ' m
Q (

di

o

pdi dQdi & m
Q (

si

o

psi dQsi.

producers' surplus equals 25.

The above example is a simple case where we have a single supply and single demand curve.

Clearly, no one would solve this problem using nonlinear programming, as it could be easily solved by

hand.  However, the problem does illustrate the formulation of price endogenous models.

13.1 Spatial Equilibrium

A common price endogenous model application involves the spatial equilibrium problem.  This

problem is an extension of the transportation problem relaxing the assumption of fixed supply and

demand.  The problem is motivated as follows.  Production and/or consumption usually occurs in

spatially separated regions, each of which have supply and demand relations.  In a solution, if the

regional prices differ by more than the interregional cost of transporting goods, then trade will occur and

the price difference will be driven down to the transport cost.  Modeling of this situation addresses the

questions of who will produce and consume what quantities and what level of trade will occur.  

Takayama and Judge (1973) developed the spatial equilibrium model to deal with such situations. 

Suppose that in region i the demand for the good of interest is given by 

where pdi is the demand price in region i while Qdi is the quantity demanded.  Simultaneously suppose

the supply function for region i is

where psi is the supply price in region i, and Qsi the quantity supplied.  A "quasi-welfare function" for

each region can be defined as the area between the supply and demand curves, 

The total welfare function across all regions is the sum of the welfare functions in each region less total

transport costs.  Suppose Tij represents the amount of good shipped from i to j at cost cij.  Then the net

welfare is 
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& Qsi % '
j

Tij # 0 for all i

Qdi, Qsi, Tij $ 0 for all i and j

ML
MQdi

' pdi & 8di # 0 (
ML
MQdi

)Qdi ' 0 Qdi $ 0

ML
MQsi

' & psi % nsi # 0 (
ML
MQsi

)Qsi ' 0 Qsi $ 0

ML
MTij

' & cij % 8dj & nsi # 0 (
ML
MTij

)Tij ' 0 Tij $ 0

In turn we may form an optimization problem with the NW expression as the objective function plus the

constraints from the transportation model.  These constraints involve a demand balance requiring that

incoming shipments to a region be greater than or equal to regional demand,

and a supply balance requiring that outgoing shipments do not exceed regional supply

The resultant problem becomes 

This problem yields an equilibrium solution as long as the demand curves are downward sloping and the

supply curves are upward sloping.  The nature of the solution and the equilibrium can best be revealed

by investigating relevant parts of the Kuhn-Tucker Conditions.  

These conditions imply that the shadow price in region i on the first constraint set (8di), assuming Qdi is

positive, equals the demand price while the second shadow price  equals the supply price if Qsi isQsi

positive.  The transportation activities insure that the demand price in a region must be less than the
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Qs1 & T12 & T13 ' T11.

Qs1 $ T11 % T12 % T13

psi ' ai % bi Qsi , and pdi ' ei & fi Qdi

Max '
i

(eiQdi & 1/2 fi Q 2
di & aiQsi & 1/2 bi Q 2

si ) & '
i
'
j

cij Tij

supply prices in all other regions plus transport costs. 

The solution to this problem yields the level of supply by region (Qsi), the level of consumption by

region (Qdi), and the level of trade between regions (Ti,j i…j) as well as the level of internal consumption

(Tii).  Price in each region is found in the dual variables.  

The relationships between the equilibrium prices can take on one of several cases.  Namely:  a) if

region i fills some of its own demand (i.e. Tii > 0), then the domestic supply and demand prices are

equal; b) if region i exports to region j, (Tij > 0), then the demand price in region j equals the supply

price in region i plus transport cost; c) if region j does not export to region i, then generally Pdj < Psi + C

ij  indicates trade is not desirable since the price differential will not support the transport cost.

In this problem, the variable Tii represents the quantity produced in region i and consumed in that

region.  For example, suppose there are 3 regions, then total supply in region 1 is denoted by Qs1.  Total

exports to region 2 and region 3 are T12+ T13.  The amount produced in region 1 and not exported, thus

locally consumed, is

In inequality form, the balance is  

The spatial equilibrium literature commonly deals with a special case of this problem namely the

case where the supply and demand functions are both linear, i.e.,

In this case the objective function is quadratic and becomes:

Example

Suppose we have three entities (US, Europe, Japan) trading a single homogeneous commodity. 

Suppose supply curves are present only in the US and Europe and the parameters of these curves are  
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ps,U ' 25 % Qs,U

ps,E ' 35 % Qs,E

pd,U ' 150 & Qd,U

pd,E ' 155 & Qd,E

pd,J ' 160 & Qd,J

while the demand curves are

and internal transport is free.  Also suppose transport between the US and Europe costs 3 in either

direction, 

while it costs 4 between the US and Japan and 5 between Europe and Japan.  The formulation of this

problem is
Max 150Qd,U & 1/2Q 2

d,U % 155Qd,E & 1/2Q 2
d,E % 160Qd,J & 1/2Q 2

d,J

& 25Qs,U & 1/2Q 2
s,U & 35Qs,E & 1/2Q 2

s,E

& 0 TU,U & 3 TU,E & 4 TU,J & 3 TE,U & 0 TE,E & 5 TE,J

& 4 TJ,U & 5 TJ,Es.t. Qd,J & TU,U & TE,U

Qd,E & TU,E & TE ,E

Qd,J & TU ,J & TE ,J

& Qs ,U % TU,U % TU,E % TU ,J

& Qs ,E % TE ,U % TE ,E % TE ,J

Qd,U , QdE , QdJ , Qs ,U , Qs ,E , TU ,U , TU ,E , TU ,J , TE ,U , TE ,E , TE ,J

The solution to this problem yields an objective function value of 9193.6.  The optimal values of

the variables are shown in Table 13.3.

This solution indicates consumption of 45.4 units in the U.S., and 51.4 in both Europe and Japan,

while 79.6 units are supplied in the US and 68.6 in Europe.  The U.S. and Europe both get all of their

consumption quantities from domestic production while the U.S. exports 34.2 units to Japan and Europe

exports 17.2.  The equilibrium prices appear in the shadow price column.  The price in the U.S. is 104.6

while the European price is 103.6.  Note the Japanese price is 108.6 which is higher than the price in the

other two regions by the transport cost.  These prices may also be recovered by plugging the equilibrium

quantities into the demand and supply curves. 

The utility of this model may be demonstrated by performing some slight extensions.  Suppose we

use the model to examine the costs and effects of trade barriers and their cost.  Specifically consider
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model solution a) without any trade, b) with the U.S. imposing a quota of 2 units, and c) with the U.S.

imposing a 1 unit export tax while Europe imposes a 1 unit export subsidy.  Modeling these items

involves the addition of a constraint which limits exports from a region to zero, the quota or an infinite

amount depending on the scenario and the alteration of the inter-country transport costs to reflect the

subsidy/tax.  The GAMS file SPATEQ shows the implementation of these features.  Table 13.4

presents a summary of the case solutions.  Note that the expected results occur.  Without trade domestic

consumers in the U.S. and Europe receive cheaper prices and consume more, but Japanese consumers

receive nothing.  Simultaneously U.S. and European producers supply less and receive lower prices. 

Under the U.S. quota, a trade realignment occurs.  This also happens under the tax and subsidy

scenario.  One may also interpret the objective function in terms of welfare and could decompose it to

reveal the welfare positions of the consumers and producers by country.  All in all, this example

illustrates the potential usefulness of the spatial equilibrium, price endogenous structure.

13.2 Multi-Market Case

The price endogenous model may also be extended to multiple markets and products.  Suppose

one wishes to construct a model with multiple sources of supply and demand.   For a single homogenous

commodity let us illustrate this with an example. 

Suppose we have two sources of wheat supply (domestic and import) and three sources of demand

(wheat for making bread, wheat for making cereal, and wheat for export).  Define Qd and Qi as the

quantities supplied by domestic and import sources, respectively, with Psd and Psi as the corresponding

prices.  Further, define Xb, Xc and Xe as the quantities of bread, cereal and exported wheat demanded,

with Pdb, Pdc and Pde the accompanying prices.  Let the supply and demand curves be dependent on own

price only with the supply curves:

domestic supply: Psd ' 2.0 % 0.003 Qd.

import supply: Psi ' 3.1 % 0.0001 Qi.

and the demand curves:

bread demand: Pdb ' 0.75 & 0.0004 Xb,

cereal demand: Pdc ' 0.80 & 0.0003 Xc,

export demand: Pde ' 3.40 & 0.0001 Xe.
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Also suppose that one bushel (bu.) of wheat yields 5 units of bread, 6 units cereal or 1 exported bushel. 

A problem which depicts this situation is 

Max (0.75 & 1/2( .0004Xb)Xb % (0.80 & 1/2( .0003Xc)Xc % (3.4 & 1/2( .0001Xe)Xe& (2.0 % 1/2( .003Qd)Qd & (3.1 % 1/2( .0001Qi)Qi

s.t. 1/5Xb % 1/6Xc % Xe& Qd & Qi # 0

X, Q $ 0

Readers may verify that at the optimal solution the Kuhn-Tucker conditions equate the price of wheat in

the supply and demand markets as well as the quantity forming an overall equilibrium.  The solution of

this example arises from the file MARKETS and is given in Table 13.5.  Now the question is, "What

does the objective function represent?"  

   (0.75 & 1/2( .0004Xb)Xb

The term is the area under the price curve for bread.  Similarly, the other expressions are the integrals

under the other curves.  Thus, we have the integrals under the demand curves less the integrals under the

supply curves leading us to a measure of the areas between the curves.  The area between demand and

supply functions is a measure of producers' plus consumers' surplus.  Alternatively, this may be viewed

as a technical behavioral objective whose purpose is to equate prices in markets. 

This example again illustrates how price endogenous models can be constructed to account for

multiple markets.  Again, the nonlinear part of the model takes into account the price responsiveness in

the demand and supply curves.  This model has an explicit supply curve for the product wheat,

composed of the aggregate of the two supply curves, as well as a demand curve which is the aggregate

of demand for wheat in the production of three products. 

13.3 Implicit Supply - Multiple Factors/Products

The above models involve explicit supply curves and production using a single input.  However,

one can depict multiple products, factors and production processes.  Such models have exogenous factor

supply 

and product demand curves, but implicit factor demand and product supply.  A model of such a case is
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Max '
h m

Zh

0

Pdh ( Zh ) dZh & '
i m

X i

0

Psi ( Xi ) dXi

s.t. Zh & '
$
'
k

Ch$kQ$k # 0 for all h

& Xi % '
$
'
k

ai$kQ$k # 0 for all i

'
k

bj$kQ$k # Yj$ for all j and $

Zh, Xi, Q$k $ 0 for all i, h, k and $.

This problem assumes that a number of different types of firms ($) are being modeled.  Each firm has a

finite set of production processes (k) which depict particular ways of combining fixed factors (j) with

purchased factors (i) to produce commodities (h).  The symbols in the formulation are:  Pdh(Zh) is the

inverse demand function for the hth commodity; Z h is the quantity of commodity h that is consumed; Psi

(Xi) is the inverse supply curve for the ith purchased input; Xi is the quantity of the ith factor supplied;

Q$k is the level of production process k undertaken by firm $; Ch$k  is the yield of output h from

production process k;  bj$k is the quantity of the jth owned fixed factor used in producing Q$k; ai$k is the

amount of the ith purchased factor used in producing Q$k and Yj$ is the endowment of the jth owned factor

available to firm $.

An investigation of the Kuhn-Tucker conditions would show that the shadow price on the first and

second rows are respectively the demand and supply prices.  The conditions for the Q variable indicates

that production levels are set so the marginal value of the commodities produced is less than or equal to

the marginal costs of the owned and fixed factors for each Q$k

The model formulation assumes that:  1) the supply and demand equations are integrable (we will

return to this assumption later, but for now we assume path independent integrals); and, 2) product

demand and factor supply functions are truly exogenous to the model (i.e., there is no income effect).

    The integral of the product demand and factor supply functions makes the objective function equal

consumers' plus producers' surplus or net social benefit.  The solution of the model generates

equilibrium price and quantity for each output, and purchased input, along with the imputed values for

the owned factors of production.

The model formulation assumes that the sector is composed of many micro-units, none of which

can individually influence output or factor prices.  Each micro-unit supplies output at the point where

marginal cost equals product price, and utilizes purchased inputs at the point where the marginal value

product of each purchased input equals its market price.  Thus, the sectoral supply of output schedule 

corresponds to an aggregate marginal cost schedule, and the sectoral derived demand schedule for

purchased inputs corresponds to the aggregate marginal value product schedule.  Hence, the model does
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bS '
)P
)Q

, '

)Q
)P
Q
P

.

not take product supply or factor demand schedules as input, rather these schedules are derived

internally based upon production possibilities, output demand and purchased input supply.  

The competitive behavior simulating properties of this formulation provide a powerful tool for

policy makers.  Excepting centrally planned economies, the government cannot dictate production

patterns consistent with its objectives.  This formulation recognizes the difference and possible conflict

between government and producer objectives (see Candler, Fortuny, and McCarl for elaboration).  The

model allows policy analysts to specify changes designed to meet some government objective, then

simulate sectoral response to the policy change.  The model does not assume participants respond to

government "wants"; each producer optimally adjusts so as to maximize profits.  Producer adjustment is

endogenous to the model.  

Example

Suppose we make some modifications to the block diagonal problem in Chapter 7 adding 

product demand and labor supply curves.  Namely let us simplify the problem by only allowing sales

from the first plant dropping the sales activities from the other plants.  We will also specify linear

product demand and

 labor supply curves.  The curves are passed through a known price quantity point which has a

particular elasticity at that point.  Namely given the elasticity (,), and known price quantity point (P, Q)

then the slope (b) is found as follows.  We know that slope equals

while the elasticity is

This implies that
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bS '
)P
)Q

'
P
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and then if 

P = a + bQ

the intercept is

a = P - bQ.

In setting up the model, the assumed price, quantity and elasticity by commodity as well as the 

computed intercept and slope are given below

Product Sale

Commodity Price Quantity Elasticity Computed
Intercept (a)

Computed
Slope (b)

Functional Chairs 82 20 -0.5 247 -8.2

Functional Tables 200 10 -0.3 867 -66.7

Functional Sets 600 30 -0.2 3600 -100

Fancy Chairs 105 5 -0.6 280 -35

Fancy Tables 300 10 -1.2 550 -25

Fancy Sets 1100 20 -0.8 2475 -68.8

Labor Supply

Plant Price Quantity Elasticity Computed
Intercept (a)

Computed
Slope (b)

Plant1 20 175 1 0 .114

Plant2 20 125 1 0 .160

Plant3 20 210 1 0 .095

The resultant model is given in Table 13.6 where the objective function terms for the demand variables

marked with "w" equal

a * Q + ½ b * Q2
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where Q depicts the quantity of the variable.  The intercept and slope are as in the above table. 

Similarly, those supply terms marked with "-Z"", equal

-(α* Q + ½  β∗ Q2)

where the intercept and slope are from the labor supply table above.

The solution to this problem is given in Table 13.7 (see file ACTANAL).

Note the balances give the market prices of chairs and tables while the plant level labor balances

give the labor prices.  The overall objective function value again equals consumers' plus producers'

surplus. 

13.4 Aggregation  

An important sector modeling topic involves aggregation.  Namely, the implicit supply model

assumes that there are submodels present for each firm in the sector.  This is usually not practical. 

Such models typically deal with the aggregate response across groups of firms.  Two approaches have

been proposed for the formation of such an aggregate representation.  The first involves derivation of

conditions under which a set of models can each represent more than one entity.  Such conditions

require that the problems have identical constraint matrices, proportional right hand sides and objective

functions (Day, 1969).  The second approach involves a reformulation of the programming model.  We

will deal further with this reformulation here.  

The reformulation approach is based upon Dantzig and Wolfe decomposition and suggestions in

McCarl.   Dantzig and Wolfe based their scheme on the property that the solution to a subproblem or

group of subproblems will occur at the extreme points of the subproblem(s).  Thus, one can reformulate

the problem 

so that it contains the extreme point solutions from the subproblems.  Formally this can be expressed as

follows.  Given the problem
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suppose we group the firms $ into subsets rm($) where rm depicts the mth aggregate firm grouping.  In

turn, 

suppose we have a set of s feasible solutions Q$k and add up their aggregate levels of production and

input usage such that 

This in turn can be used in the aggregate problem: 

This model differs in two major ways from those above.  First, the firm response variables  have data

requirements not in terms of individual production possibilities, but rather in terms of total production
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and consumption of the sector wide outputs and inputs accumulated across the firms in each group.  In

addition, rather than using individual resource constraints we now require a convex combination of the

total output/input vectors.  This will be feasible in the subproblems since any combination of two

feasible subproblem solutions is feasible.  Implicitly these solutions contain all the firm level resource

restrictions and production possibilities coded within them.

The candidate solution vectors (i.e., the values of Xi
ms,Zh

ms) must be developed.  These can be

generated either by formally solving the linear programming subproblems for different prices or by

selecting a historical set of observed feasible mixes or firms.  This is discussed further in Onal and

McCarl (1989, 1991).

Example

Suppose we have a problem with four production subproblems falling into two states where the

first 

two firms are in state 1 and the second two are in state 2.  Further suppose the firms each produce two

goods and use miscellaneous inputs, labor and land.  Suppose the land constraint is firm specific, the

labor 

constraint is state specific and the miscellaneous inputs constraint is national.  Suppose the supply and

demand curves are in Table 13.8 and the rest of the data are as given in the tableau (Table 13.9). 

Aggregation is introduced into this problem by considering using two state level models.  Suppose over

time we have observed state crop mixes as in Table 13.10.  We may then reformulate the model and,

rather than include all the firms and resource constraints, we simply put in the total input and output use

for the observed solutions (Table 13.11).  The resultant national solutions before (see file BEFORAGG)

and after (see file AFTERAGG) the aggregation process are given in Table 13.12a and 13.12b.  Notice

that there is not a great deal of difference in these optimum solutions.  

This example is indicative of a general approach to such problems.  Namely, if we were trying to

represent all of the farms in a sector and could obtain production and input usages by state, we could

modify the model to force a convex combination of historically observed activity.  This is done in the
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P ' G & HZ

R ' E % FX

MPdr /MQdh ' MPdh /MQdr for all r … h

MPsr /MQsh ' MPsh /MQsr for all r … h

sector models used by McCarl (1982b); Hamilton, McCarl and Adams; and Chang et al.   

13.5 A Digression on the Assumptions

To formulate the above models or any other multi-product or multi-input model, one must assume

integrability of product demand and purchased input supply functions as well as partial equilibrium.  In

this section, we will discuss these assumptions and suggest ways of relaxing them.  Integrability

requires that the Jacobians of the product demand equations and purchased input supply functions be

symmetric (Hurwicz and Uzawa).  The system of product demand functions is  

and the system of purchased input supply functions is

The Jacobians of the demand and supply equations are H and F, respectively.  Symmetry of H and F

implies that cross price effects across all commodity pairs are equal; i.e.,

In the case of supply functions, classical production theory assumptions yield the symmetry conditions. 

The Slutsky decomposition reveals that for the demand functions, the cross price derivatives consist of a

symmetric substitution effect and an income effect.  The integrability assumption requires the income
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effect to be identical across all pairs of commodities or to be zero.  

Some authors argue that there need be no concern regarding symmetry.  Since the objective

function is a quadratic form.  Then, given any square matrix, H, a quadratic form is the scaler quantity

that results when H is pre- and post- multiplied by a conformable vector, 

where v is the value of the quadratic form.  Mathematically, if we replace H with the symmetric matrix

B 

One can easily show that 

Thus, if H is not symmetric, it can be replaced by B, and the value of the objective function remains

unchanged.  But, when the first order conditions are formed, the derivatives are altered.  In particular if

one integrates the above demand curve, we get

which would not give the demand price.  Thus marginal cost and product price are no longer

equilibrated.  

Models can be formed which can handle asymmetry.  Price and quantity variables can be included

in the primal model (Plessner and Heady).  Thus, both price and quantity equilibrium conditions are

imposed on the primal problem, as contrasted with the above specification in which only quantity

equilibrium conditions are imposed on the primal, and price equilibrium conditions are found in the

dual.  Another approach is linear complementarity programming (Takayama and Judge; Stoecker; or

Polito).  In this case, the objective function no longer represents consumers' plus producers' surplus. 

For further discussion, see Takayama and Judge or Martin.  

The partial equilibrium assumption arises because the formulation does not incorporate the

income generated by the sector as a simultaneous shifter of demand for products included in the model. 
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Max P1X & P2Q

s.t. X & Q # 0

X, Q $ 0

P1 ' a & bX

P2 ' c % dQ

If the entity modeled is small relative to the entire economy, this should not be a problem.  If a major

proportion of consumers included in the model are also producers, then the model inadequately

describes the linkages in the economy.  A formulation which does not require the partial equilibrium

assumption was developed by Yaron, who specified a lagged relationship in which aggregate consumer

demand in the current period is a function of income in the previous period.  Norton and Scandizzo have

relaxed this assumption in a simultaneous fashion in which demand is specified as a function of current

consumer income.  Integrability is a consequence as an income shifter is explicitly introduced, leaving

only the symmetric substitution terms.  

For further discussion of empirical specification of price endogenous models, see the review

papers by McCarl and Spreen or Norton and Schiefer. 

13.6 Imperfect Competition

So far, we have basically dealt with price endogeneity starting from Samuelson's approach,

casting a set of first-order conditions and discovering the QP that would yield such a set.  Another

approach, however, can be taken.  Suppose one begins with a classic LP problem involving two goods

and a single constraint; i.e.,  

However, rather than P1 and P2 being fixed, suppose that we assume that they are functionally

dependent upon quantity as given by
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Max aX & bX 2 & cQ & dQ 2

s.t. X & Q # 0

X, Q $ 0

a & 2bX & 8 ' 0

&(c % 2dQ) % 8 ' 0

[I] Monopolist&Monopsonist

Max X(a & bX) & Q(C % dQ)

X & Q # 0

[II] Monopolist&Supply Competitor

Max X(a & bX) & Q(C % 1/2dQ)

X & Q # 0

[III] Demand Competitior&Monopsonist

Max X(a & 1/2bX) & Q(C % dQ)

X & Q # 0

[IV] Competitor in Both Markets

Max X(a & 1/2bX) & Q(C % 1/2dQ)

X & Q # 0

Now suppose one simply substitutes for P1 and P2 in the objective function.  This yields the problem

Note the absence of the ½'s in the objective function.  If one applies Kuhn-Tucker conditions to this

problem, the conditions on the X variables, assuming they take on non-zero levels, are 

The solution to this set of equations implies that the dual variable (8) is equated to something with

twice the slope of the demand curve.  Readers familiar with the imperfect competition literature will

recognize this as an equation of marginal revenue with marginal cost.  Such actions are only consistent

with the behavior of perfectly discriminating monopolists - monopsonists.  This indicates a couple of

things about the approach to price equilibrating models: if one is not careful and does not put the

integrals in, one simulates imperfect competition. In fact, there are four cases involving the integrals

(½'s in the quadratic case).  Given the supply and demand relationships, one may model as follows

The solutions to these problems are graphed in Figure 13.3.  Using the wheat problem, the numerical
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n % 1
2n

solutions shown in Table 13.13 are determined under the four alternative behavioral assumptions.  This

shows that one can obtain alternative forms of competition by selectively omitting or including integrals.

Nelson and McCarl provide a more general discussion of the topic of imperfect competition under

the quadratic case.  They show that in each of the demand and supply curves, if the term 

is substituted for the ½, then one obtains a simulation of the effect of n firms discriminating against the

demand or supply curves to this parameter is supplied.  This particular term reduces to ½ when n

approaches 4, and 1 when n=1.  Thus, it covers both the monopolistic and perfectly competitive cases. 

But also, for example, when n=2, the equation says to use a 3/4 to reflect two firms acting under

imperfect competition against a particular supply curve.  Readers should be careful in using this

formulation, as it indicates how one discriminates against the entity which the particular supply or

demand curve depicts, not how that entity discriminates against others.  Nelson and McCarl present a

more careful discussion on handling other forms of imperfect competition.  

13.7 Conclusion

In the preceding sections, price endogenous models have been developed for spatial equilibrium,

multi-market, multi-product, multi-factor models, aggregate, and imperfect competition.  It should be

clear that these models may be combined with our earlier formulations.  For example, Spreen et al.

integrated a multi-product industry formulation with a disequilibrium known life type formulation in a

study of the livestock sector in Guyana.

These types of models have been used in many studies, as listed in the review book by Judge and

Takayama, the review papers by McCarl and Spreen, Martin, and Norton and Schiefer. 
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Table 13.1.  GAMS Formulation of Simple Price Endogenous Example

   2  
   4   OPTION LIMCOL = 0;
   5   OPTION LIMROW = 0;
   6  
   7   SETS       CURVEPARM  CURVE PARAMETERS  /INTERCEPT,SLOPE/
   8              CURVES     TYPES OF CURVES   /DEMAND,SUPPLY/
   9  
  10   TABLE      DATA(CURVES,CURVEPARM) SUPPLY DEMAND DATA
  11  
  12                     INTERCEPT    SLOPE
  13    DEMAND               6        -0.30
  14    SUPPLY               1         0.20
  15  
  16   PARAMETERS  SIGN(CURVES)  SIGN ON CURVES IN OBJECTIVE FUNCTION
  17                            /SUPPLY -1,  DEMAND 1/
  18  
  19   POSITIVE VARIABLES    QUANTITY(CURVES) ACTIVITY LEVEL
  20  
  21   VARIABLES             OBJ                 NUMBER TO BE MAXIMIZED
  22  
  23   EQUATIONS             OBJJ                OBJECTIVE FUNCTION
  24                         BALANCE             COMMODITY BALANCE;
  25  
  26   OBJJ..   OBJ =E= SUM(CURVES, SIGN(CURVES)*
  27                          (DATA(CURVES,"INTERCEPT")*QUANTITY(CURVES)
  28                          +0.5*DATA(CURVES,"SLOPE")*QUANTITY(CURVES)**2)) ;
  29  
  30   BALANCE..    SUM(CURVES, SIGN(CURVES)*QUANTITY(CURVES)) =L= 0 ;
  31  
  32   MODEL PRICEEND /ALL/ ;
  33  
  34   SOLVE PRICEEND USING NLP MAXIMIZING OBJ ;
  35  
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Table 13.2. Solution to Simple Price Endogenous Model

Variables Level Reduced Cost Equation Slack Shadow Price

Qd 10 0 Objective function 0 -1

Qs 10 0 Commodity Balance 0 3

Table 13.3. Solution to Spatial Equilibrium Model

Objective function = 9193.6

Variables Value Reduced Cost Equation Level Shadow
Price

Supply Supply Balance

U.S. 79.6 0 U.S. 0 104.6

Europe 68.6 0 Europe 0 103.6

Demand Demand Balance

U.S. 45.4 0 U.S. 0 104.6

Europe 51.4 0 Europe 0 103.6

Japan 51.4 0 Japan 0 108.6

Shipments

U.S. to U.S. 45.4 0

U.S. to Europe 0 -4

U.S. to Japan 34.2 0

Europe to U.S. 0 -2

Europe to Europe 51.4 0

Europe to Japan 17.2 0
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Table 13.4. Solutions to Alternative Configurations of Spatial Equilibrium Model

Undistorted No Trade Scenario Quota Tax/Subsidy

Objective 9193.6 7506.3 8761.6 9178.6

U.S. Demand 45.4 62.5 61.5 46.4

U.S. Supply 79.6 62.5 63.5 78.6

U.S. Price 104.6 87.5 88.5 103.6

Europe Demand 51.4 60 40.7 50.4

Europe Supply 68.6 60 79.3 69.6

Europe Price 103.6 95 114.3 104.6

Japan Demand 51.4 0 40.7 51.4

Japan Price 108.6 160 119.3 108.6

Table 13.5. Solution to the Wheat Multiple Market Example

X b 255.44

X c 867.15

Xe 1608.72

Q d 413.04

Qi 1391.29

Pdb 0.648

Pdc 0.540

Pde 3.239

Psd 3.239

Psi 3.239

Shadow Price 3.239
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Table 13.6. Formulation of the Implicit Supply Example

PLANT 1                   PLANT 2 PLANT 3

   Sell

   Sets  

FC    FY

    Make

    Table

 FC       FY

Sell  

Table 

FC 

Sell 

Chair 

FC FY 

Transp

ort

Chair

Make

Functional 

Chairs 

Make Fancy

Chairs 

Norm MxSm MxLg

Labor

Supply

Transp

ort

Table 

Transport

Chair 

FC      FY

Make 

Table

FC     FY

Make

Functional

 Chairs

Make Fancy 

Chairs

Norm MxSm MxLg

Labor Supply SHS

Objective W   W     W   W W   W     -Z -5         -5 -15       -16      -16 -25      -25      -26 -Z -7 -7         -7 -80       - -15      -16      -16.5 -25      -25.7      -26.6 -Z min

P

L

A

N

T

1

Table      1   -1  1 -1 #       0

Invent   1    -1  1 -1 #       0

Chair     4 1   -1 -1 #       0

Invent 6                    1 -1  -1 #       0

Labor    3 5 -1 #      0

Top  1 1 #     50

P  L 

A

N

T

2

Chair    1 -1         -1          -1 #       0

Invent  1 -1        -1         -1 #       0

Small 0.8       1.3      0.2 1.2        1.7      0.5 #   140

Large 0.5       0.2      1.3 0.7      0.3      1.5 #     90

Chair 0.4       0.4      0.4  1          1          1 #   120

Labor 1       1.05        1.1 0.8      0.82     0.84 -1 #      0

P

L

A

N

T

3

Table   1 -1 #       0

Invent 1 -1 #       0

Chair   1 -1         -1         -1 #       0

Invent 1 -1      -1      -1 #       0

Small 0.8      1.3      0.2 1.2     1.7     0.5 #   130

Large 0.5       0.2      1.3 0.7     0.3     1.5 #   100

Chair 0.4      0.4      0.4 1       1       1 #   110

Labor 3          5 1       1.05       1.1 0.80    0.82     0.84 -1 #      0

Top 1          1 #    40
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     Table 13.7.  Solution of the Implicit Supply Example

Rows Slack
Shadow

Price
Columns 

Variable Names
Level Reduced

Cost

Objective 95779.1
PLANT 1

Sell FC Set 30.9 0

PLANT 1
Table FC 0 165.1 Sell FY Set 23.0 0

Table FY 0 228.5 Sell FC Tables 10.5 0

Chair FC 0 85.6 Sell FY Tables 12.9 0

Chair FY 0 110.8 Sell FC Chairs 19.6 0

Labor 0 21.7 Sell FY Chairs 4.8 0

Top Capacity 0 20.0 Make Table FC 30.1 0

PLANT 2 Chair FC 0 80.6 Make Table FY 20.0 0

Inventory FY 0 105.8 Hire Labor 189.9 0

Small Lathe 0 35.6
PLANT 2

Transport FC
Chair

105.0 0

Large Lathe 0 28.0 Transport FY
Chair

48.9 0

Carver 29.02 0 Make Table FC 0 -69.3

Labor 0 23.1 Make Table FY 0 -115.5

Make FC Chair N 105.1 0

S 0 -11.6

PLANT

3

Table FC 0 145.1 L 0 -4.8

Inventory FY 0 208.5 Make FY Chair N 44.9 0

Chair FC 0 78.6 S 0 -7.76

Inventory FY 0 103.8 L 4.0 0

Small Lathe 0 35.1 Hire Labor 144.4 0

Large Lathe 0 27.6
PLANT 3

Transport FC
Table

11.4 0

Carver 0.80 0 Transport FY
Table

15.9 0

Labor 0 21.7 Transport FC
Chair 

38.2 0

Top Capacity 12.69 0 Transport FY
Chair

93.9 0

Make FC Table 11.4 0

Make FY Table 15.9 0

Make FC Chair N 38.2 0

S 0 -11.3

L 0 -4.7

Make FY Chair N 75.0 0

S 0 -7.6

L 19.0 0

Hire Labor 227.9 0
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Table 13.8. Demand and Supply Parameters for Aggregation Example

Price Quantity Elasticity

Product Demands

Cotton 225 3326 -1.5

Corn   2.10 1087 -1.1

Hired Labor Supply 

State 1 5 78.7 0.5

State 2 4.5 68.1 1.2
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Table 13.9. Before Aggregation Formulation of Aggregation Example 

Farm Produce Misc

Sales Hired Labor Hired Labor Farm 1 Farm 2 Farm 3 Farm 4 Inputs

corn cotton State 1 State 2 Farm 1 Farm 2 Farm 3 Farm 4 corn cotton corn cotton corn cotton corn cotton

Obj. Func. a a -b -b -1

Misc Inputs 80 303 95 278 110 437 70 300 -1 = 0

Labor State 1 -1 1 1 # 0

Labor State 2 -1 1 1 # 0

Farm Labor Farm 1 -1 10.4 14.5 # 15.5

Farm Labor Farm 2 -1 12.9 17.5 # 13.1

Farm Labor Farm 3 -1 12.2 24.5 # 11.5

Farm Labor Farm 4 -1 9.6 14 # 11.3

Product Corn 1 -120 -180 -150 -150 # 0

Balance Cotton 1 -2.2 -2.6 -3.1 -2.5 # 0

Land Available Farm 1 1 1 # 6

Land Available Farm 2 1 1 # 4

Land Available Farm 3 1 1 # 5

Land Available Farm 4 1 1 # 3
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Table 13.10. Crop Mix Data for use in Aggregation Example

Mix 1 Mix 2

Region Farm Corn Cotton Corn Cotton

State 1 Farm1 .3 .7 .5 .5

Farm 2 .1 .9 .3 .7

State 2 Farm1 .6 .4 .75 .25

Farm 2 .55 .45 .6 .4

Table 13.11.  Aggregation Example after Aggregation
 

Crop Mixes

Sales Hired Labor State1 State 2 Misc

corn cotton State 1 State 2 Mix 1 Mix 2 Mix 1 Mix 2 Inputs

Obj. Func. a a -b -b -1

Misc Inputs 2455 2041 1725 1445 -1 = 0

Labor State 1 -1 119.2 110.6 # 0

Labor State 2 -1 97.6 87.7 # 0

Product Corn 1 -288 -576 -9.6 -6.9 # 0

Balance Cotton 1 -18.6 -13.9 -698 -833 # 0

Convexity State1 1 1 # 1

Convexity State2 1 1 # 1
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Table 13.12. Solutions of Aggregation Example
A Before Aggregation

Rows Slack Shadow Price Variable Level Reduced Cost

Objt 7777.4

Misc Inputs 0 -1.000 Sales Cotton 31.6 0

Sales Corn 967.4 0

State Labor State 1 0 2.318

State Labor State 2 0 4.288 Hired Labor State 1 57.6 0

 Hired Labor State 2 64.3 0

Farm Labor 1 0 1.16

Farm Labor 2 0 1.16 Hire Labor Farm 1. State 1 35.8 0

Farm Labor 3 0 2.14 Hire Labor Farm 2. State 2 21.8 0

Farm Labor 4 0 2.14 Hire Labor Farm 3. State 3 55.5 0

Hire Labor Farm 4. State 4 8.8 0

Cotton 0 232.6

Corn 0 2.31 Corn.    Farm 1 0 -6.2

Cotton. Farm 1 6.0 0

Land Farm 1 0 191.4 Corn.    Farm 2 2.9 0

Land Farm 2 0 305.9 Cotton. Farm 2 1.1 0

Land Farm 3 0 230.8 Corn.    Farm 3 0 -20.4

Land Farm 4 0 255.9 Cotton. Farm 3 5.0 0

Corn.    Farm 4 3.0 0

Cotton. Farm 4 0 -5.0

Misc Inputs 4799 0

B After Aggregation

Rows Slack Shadow Price Variable Level Reduced Cost

Obj. Func. 7052.2 Sales Corn 28.2 0

Cost 0 1 Sales Cotton 985.5 0

Labor State 1 0 10.1 Hire Labor State 1 119.2 0

Labor State 2 0 6.1 Hire Labor State 2 97.5 0

Product Bal. Corn 0 247.9 Crop State 1 Mix 1 1 0

Product Bal. Cotton 0 2.28 Crop State 1 Mix 2 0 -12.9

Convex State 1 1 1603.4 Crop State 2 Mix 1 1 0

Convex State 2 1 1641.5 Crop State 2 Mix 2 0 -21.6

Cost 4180 0
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Table 13.13. Alternative Solutions to Wheat Multiple Markets
Example under Varying Competitive Assumptions 

I II III IV

X b 127.718 142.335 226.067 255.46

X c 433.579 449.821 834.526 867.16

X e 804.357 1096.705 1021.340 1608.71

Q d 206.521 393.533 216.311 413.04

Qi 695.642 806.589 989.330 1391.29

Pdb 0.699 0.693 0.660 0.649

Pdc 0.669 0.665 0.550 0.540

Pde 3.3196 3.29033 3.2979 3.239

Psd 2.6196 3.18066 2.6489 3.239

Psi 3.6196 3.18066 3.1999 3.239

Shadow Price 3.2391 3.18066 3.2979 3.239
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Figure 13.3 Graph of Imperfect Competition Solutions

 



     7 The risk modeling problem is a form of the multiple objective programming problem so that there
are parallels between the material here and that in the multi-objective chapter.

     8 It should be noted that risk and uncertainty are used interchangeably. Any time we discuss risk or
uncertainty we assume that the probability distribution is known.
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CHAPTER XIV:  RISK MODELING

Risk is often cited as a factor which influences decisions.  This chapter reviews methods for

incorporating risk and risk reactions into mathematical programming models.7  

Mathematical programming risk models depict the risk inherent in model parameters.  Risk

considerations are usually incorporated assuming that the parameter probability distribution (i.e., the risk)

is known with certainty.8  Usually, the task becomes one of adequately representing these distributions as

well as the decision makers response to parameter risk. 

The question arises:  Why model risk, why not just solve the model under all combinations of the

risky parameters and use the resultant plans?  Such an approach is tempting, yet suffers from problems of

dimensionality and certainty.  The dimensionality problem is manifest in the number of possible plans; (i.e.,

five possible values for each of three parameters would lead to 35 = 243 possible parameter specifications). 

Often, there are more possible states of nature than can practically be enumerated.  Furthermore, these enu-

merated plans suffer from a certainty problem.  Every LP parameter is assumed known with perfect

knowledge.  Consequently, solutions reflect "certain" knowledge of the parameter values imposed.  Thus,

when one solves many models one gets many plans and the question remains which plan should be used.

Usually, it is desirable to generate a robust solution which yields satisfactory results across the

distribution of parameter values.  The risk modeling techniques discussed below are designed to yield such

a plan.  The "optimal" plan for a risk model generally does not place the decision maker in the best 

possible position for all (or maybe even any) possible events, but rather establishes a robust position across

the set of possible events.

14.1 Decision Making and Recourse

Many different programming formulations have been posed for risk problems.  An important

assumption involves the potential decision maker reaction to information.  The most fundamental

distinction is between cases where: 

1) all decisions must be made now with the uncertain outcomes resolved later, after all
random draws from the distribution have been taken, and 

2) some decisions are made now, then later some uncertainties are resolved followed by other
decisions yet later.  

These two settings are illustrated as follows.  In the first case, all decisions are made then events



copyright Bruce A. McCarl and Thomas H. Spreen 14-2

occur and outcomes are realized.  This is akin to a situation where one invests now and then discovers the

returns to the investment at year end without any intermediate buying or selling decisions.  In the second

case, one makes some decisions now, gets some information and makes subsequent decisions.  Thus, one

might invest at the beginning of the year, but could sell and buy during the year depending on changes in

stock prices. 

The main distinction is that under the first situation decisions are made before any uncertainty is

resolved and no decisions are made after any of the uncertainty is resolved.  In the second situation,

decisions are made sequentially with some decisions made conditional upon outcomes that were subject to a

probability distribution at the beginning of the time period.

These two frameworks lead to two very different types of risk programming models.  The first type of

model is most common and is generally called a stochastic programming model.  The second type of model

was originally developed by Dantzig in the early 50's and falls into the class of stochastic programming

with recourse models.  These approaches are discussed separately, although many 

stochastic programming techniques can be used when dealing with stochastic programming with recourse

problems.

14.2 An Aside:  Discounting Coefficients

Before discussing formal modeling approaches, first let us consider a common, simple approach to

risk used in virtually all "risk free" linear programming studies.  Suppose a parameter is distributed

according to some probability distribution, then a naive risk specification would simply use the mean. 

However, one could also use conservative price estimates (i.e., a price that one feels will be exceeded 80%

of the time). 

This reveals a common approach to risk.  Namely, data for LP models are virtually never certain. 

Conservative estimates are frequently used, in turn producing conservative plans (see McCarl et al., for an

example of treatment of time available).  Objective function revenue coefficients may be deflated while cost

coefficients are inflated.  Technical coefficients and right hand sides may be treated similarly.  The main

difficulty with a conservative estimate based approach is the resultant probability of the solution. 

Conservative estimates for all parameters can imply an extremely unlikely event and an overly conservative

choice of the decision variables.

14.3 Stochastic Programming without Recourse 

Stochastic programming techniques generally treat risk in the objective function coefficients,

technical coefficients or right hand sides separately or collectively.  

14.3.1 Objective Function Coefficient Risk



     9 One could also use the divisor N-1 when working with a sample.
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Z ' c1 X1 % c2 X2

Z ' c1 X1 % c2 X2

F2
Z ' s11 X 2

1 % s22 X 2
2 % 2 s21 X1 X2.

(CX , X )SX)

C ' c1 c2 S '

s11 s12

s21 s22

.

Several objective function coefficient risk models have been posed.  This section reviews these.  First,

however, some statistical background on distributions of linear sums is necessary. 

Given a linear objective function 

where X1, X2 are decision variables and c1 , c2 are uncertain parameters distributed with means and   c̄1 c̄2

as well as variances s11 , s22, and covariance s12; then Z is distributed with mean

and variance

In matrix terms the mean and variance of Z are

where in the two by two case

Defining terms

sii is the variance of the objective function coefficient of Xi, which is calculated using the formula sik =
3 (cik- )2/N where cik is the kth observation on the objective value of Xi and N is the number ofc̄iobservations.9 

sij for i =\  j is the covariance of the objective function coefficients between Xi and Xj, calculated by the
formula sij = 3 (cik- )(cjk- )/N.  Note sij = sji.c̄i c̄j

is the mean value of the objective function coefficient associated with Xi, calculated by c̄i 3 cik/N. (Assuming an equally likely probability of occurrence.) c̄i '

14.3.1.1 Mean-Variance Analysis

The above expressions define the mean and variance of a LP objective function with risky c

parameters.  Markowitz exploited this in the original mean-variance portfolio choice formulation. 

The portfolio choice problem involves development of an "optimal" investment strategy.  The

variables indicate the amount of funds invested in each risky investment subject to a total funds constraint. 

Markowitz motivated the formulation by observing that investors only place a portion, not all, of their

funds in the highest-yielding investment.  This, he argued, indicated that a LP formulation is inappropriate

since such an LP would reflect investment of all funds in the highest yielding alternative (since there is a

single constraint).  This divergence between observed and modeled behavior led Markowitz to include a
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Max '
j

cjXj & M '
j
'
k
sjkXjXk

s.t. '
j

Xj ' 1

Xj $ 0 for all j

Max CX & M X )SX

s.t. AX # b

X $ 0

Max [ 4.70 7.60 8.30 5.80 ]

X1

X2

X3

X4

&M [X1 X2 X3 X4]

%3.21 & 3.52 % 6.99 %0.04

&3.52 % 5.84 &13.68 %0.12

%6.99 &13.68 %61.81 &1.64

%0.04 % 0.12 & 1.64 %0.36

X1

X2

X3

X4

variance term resulting in the so-called expected value variance (E-V) model.

Freund (1956) developed a related model, apparently independently, which has become the most

commonly used E-V model.  The portfolio context of his formulation is

Here the objective function maximizes expected income ( ) less a "risk aversion coefficient" ( )c̄X M

times the variance of total income (X'SX).  The model assumes that decision makers will trade expected in-

come for reduced variance. 

In this context Markowitz discussed the E-V efficient frontier which is the locus of points exhibiting

minimum variance for a given expected income, and/or maximum expected income for a given variance of

income (Figure 14.1 gives the frontier for the example below).  Such points are efficient for a decision

maker with positive preference for income, negative preference for variance and indifference to other

factors.

The E-V problem can handle problem contexts broader than the portfolio example.  A general 

formulation in the resource allocation context is 

where is average returns from producing X and S gives the associated variance-covariance matrix.C̄

14.3.1.1.1 Example

Assume an investor wishes to develop a stock portfolio given the stock annual returns information

shown in Table 14.1, 500 dollars to invest and prices of stock one $22.00, stock two $30.00, stock three

$28.00 and stock four $26.00. 

 The first stage in model application is to compute average returns and the variance-covariance

matrix of total net returns.  The mean returns and variance - covariance matrix are shown in Table 14.2.  In

turn the objective function is 
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Max 4.70 X1 % 7.60 X2 % 8.30 X3 % 5.80 X4

& M

% 3.21 X 2
1 & 3.52 X1X2 % 6.99 X1X3 % 0.04 X1X4

& 3.52 X2X1 % 5.84 X 2
2 & 13.68 X2X3 % 0.12 X2X4

% 6.99 X3X1 & 13.68 X3X2 % 61.81 X 2
3 & 1.64 X3X4

% 0.04 X4X1 % 0.12 X4X2 & 1.64 X4X3 % 0.36 X 4
2

22X1 % 30X2 % 28X3 % 26X4 # 500

or, in scaler notation

This objective function is maximized subject to a constraint on investable funds: 

and non-negativity conditions on the variables.

Empirically, this problem is solved for various M values as implemented in the GAMS instructions in

Table 14.3 or in the EVPORTFO file.  The solutions, at selected values of M, are shown in Table 14.4,

while Figure 14.1 gives the efficient frontier. 

The model yields the profit maximizing solution (X1=X2=X4=0,X3=17.86) for low risk aversion

parameters (M < 0.0005).  As the risk aversion parameter increases, then X2 comes into the solution.  The

simultaneous use of X2 and X3 coupled with their negative covariance reduces the variance of total returns. 

This pattern continues as M increases.  For example, when M equals 0.012 expected returns have fallen by

$17 or 11%, while the standard deviation of total returns has fallen by $117 or 80%.  For yet higher values

of the risk aversion parameter, investment in X1 increases, then later X4 is added.   

Three other aspects of these results are worth noting.  First, the shadow price on investable capital

continually decreases as the risk aversion parameter ( M ) increases.  This reflects an increasing risk

discount as risk aversion increases.  Second, solutions are reported only for selected values of M.  However,

any change in M leads to a different solution and an infinite number of alternative M's are possible; e.g., all

solutions between M values of 0.0005 and 0.0075 are convex combinations of those two solutions.  Third,

when M becomes sufficiently large, the model does not use all its resources.  In this particular case, when M

exceeds 2.5, not all funds are invested. 

14.3.1.1.2 Markowitz's E-V Formulation

Markowitz's original formulation of the E-V problem minimized variance subject to a given level of

expected income as in the multi-objective programming lexicographic formulation.  

Algebraically, this model is 
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Min X )SX

s.t. CX ' 8

AX # b

X $ 0

Max CX & M X )SX

s.t. AX # b

X $ 0

‹(X,µ) ' C̄X & MX )SX & µ(AX&b)

where 8 is parameterized over the relevant part of the range of possible expected incomes i.e. from the

lowest acceptable to the LP maximum. 

14.3.1.1.3 Formulation Choice

Markowitz's (1959) and Freund's (1956) formulations yield identical efficient frontiers; however, we

favor Freund's (1956) formulation (a weighted multi-objective tradeoff model) due to a perceived

incompatibility of the Markowitz formulation with model use as argued in the multi-objective chapter. 

Briefly, models are usually formulated for comparative statics analysis of a related series of problems. 

This type of analysis involves changes in the S, , A and b parameters.  In such an analysis, we feel it isC̄

not desirable to give alternative efficient frontiers; rather, we feel it is desirable to give specific plans (i.e.,

X variable values) for the S, , A and b settings.  Using the above E-V models one would first need toC̄

select either a numerical value for M or one for 8.  A value of M so adopted is largely a function of the

decision makers' preference between income and risk (see Freund (1956) or Bussey for theoretical 

development of this point).  The value of 8 adopted will be a function of both the risk-income tradeoff 
and the values of , S, A, and b.  Thus, the attainability of a given choice 8 would change with C̄
alterations in these parameters.  On the other hand, M expresses a "pure" measure of the risk-tradeoff and is

more likely to be relevant for different parameter values.  Thus, we prefer the Freund (1956) formulation. 

14.3.1.1.4 Characteristics of E-V Model Optimal Solutions

Properties of optimal E-V solutions may be examined via the Kuhn-Tucker conditions.  Given 

the problem

Its Lagrangian function is 

and the Kuhn-Tucker conditions are 



     10 Normality probably validates a larger class of utility functions but only the exponential case has
been worked out.
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M‹/MX ' C&2NX )S&µA # 0

(M‹/MX)X ' (C&2NX )S&µA)X ' 0

X $ 0

M‹/Mµ ' & (AX&b) $ 0

µ (M‹/Mµ ) ' µ( AX&b) ' 0

µ $ 0

where µ is the vector of dual variables (Lagrangian multipliers) associated with the primal constraint

AX#b. 

A cursory examination of these conditions indicates two things.  First, the solution permits more

variables to be nonzero than would a LP basic solution.  This occurs since variables can be nonzero to

satisfy the n potential conditions  = 0 and the m conditions where AX = b or .  Thus, theM‹/MX µ'0

solution can have more nonzero variables than constraints.  Second, the  equation relates resourceM‹/MX

cost ( ) with marginal revenue ( ) and a marginal cost of bearing risk (-2 M X'S).  Consequently, theµ C̄

optimal shadow prices are risk adjusted as are the optimal decision variable values.

14.3.1.1.5 E-V Model Use - Theoretical Concerns

Use of the E-V model has been theoretically controversial.  Expected utility theory (von Neumann

and Morgenstern) provides the principal theoretical basis for choice under uncertainty.  Debate has raged,

virtually since the introduction of E-V analysis, on the conditions under which an E-V model makes choices

equivalent to expected utility maximization.  Today the general agreement is that maximizing the E-V

problem is equivalent to maximizing expected utility when one of two conditions hold: 1) the underlying

income distribution is normal - which requires a normal distribution of the cj and the utility function is

exponential (Freund, 1956; Bussey)10, and 2) the underlying distributions satisfy Meyer's location and scale

restrictions.  In addition, Tsiang (1972, 1974) has shown that E-V analysis provides an acceptable

approximation of the expected utility choices when the risk taken is small relative to total initial wealth. 

The E-V frontier has also been argued to be appropriate under quadratic utility (Tobin).  There have also

been empirical studies (Levy and Markowitz; Kroll, et al.; and Reid and Tew) wherein the closeness of E-V

to expected utility maximizing choices has been shown.  

14.3.1.1.6 Specification of the Risk Aversion Parameter

E-V models need numerical risk aversion parameters (M).  A number of approaches have been used

for parameter specification.  First, one may avoid specifying a value and derive the efficient frontier.  This



     11 The approach was suggested in Markowitz (1959, p. 187).
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Dk'*
j

ckj Xj &
j

c̄j Xj *

involves solving for many possible risk aversion parameters.  Second, one may derive the efficient frontier

and present it to a decision maker who picks an acceptable point (ideally, where his utility function and the

E-V frontier are tangent) which in turn identifies a specific risk aversion parameter (Candler and Boeljhe). 

Third, one may assume that the E-V rule was used by decision makers in generating historical choices, and

can fit the risk aversion parameter as equal to the difference between marginal revenue and marginal cost of

resources, divided by the appropriate marginal variance (Weins).  Fourth, one may estimate a risk aversion

parameter such that the difference between observed behavior and the model solution is minimized (as in

Brink and McCarl (1979) or Hazell et al. (1983)).  Fifth, one may subjectively elicit a risk aversion

parameter (see Anderson, et al. for details) and in turn fit it into the objective function (i.e., given a Pratt

risk aversion coefficient and assuming exponential utility implies the E-V M equals ½ the Pratt risk

aversion coefficient [Freund, 1956 or Bussey]).  Sixth, one may transform a risk aversion coefficient from

another study or develop one based on probabilistic assumptions (McCarl and Bessler). 

The E-V model has a long history.  The earliest application appears to be Freund's (1956). Later,

Heady and Candler; McFarquhar; and Stovall all discussed possible uses of this methodology.  A sample of

applications includes those of Brainard and Cooper; Lin, et al.; and Wiens.  In addition, numerous

references can be found in Boisvert and McCarl; Robinson and Brake; and Barry. 

14.3.1.2 A Linear Approximation - MOTAD

The E-V model yields a quadratic programming problem.  Such problems traditionally have been

harder to solve than linear programs (although McCarl and Onal argue this is no longer true).  Several LP

approximations have evolved (Hazell, 1971; Thomas et al; Chen and Baker; and others as reviewed in

McCarl and Tice).  Only Hazell's MOTAD is discussed here due to its extensive use.  

The acronym MOTAD refers to Minimization of Total Absolute Deviations.  In the MOTAD model,

absolute deviation is the risk measure.  Thus, the MOTAD model depicts tradeoffs between expected

income and the absolute deviation of income.  Minimization of absolute values is discussed in the nonlinear

approximations chapter.  Briefly reviewing, absolute value may be minimized by constraining the terms

whose absolute value is to be minimized (Dk) equal to the difference of two non-negative variables ( Dk =

dk
+ - dk

- ) and in turn minimizing the sum of the new variables 3 ( dk
+ + dk

-).  Hazell(1971) used this

formulation in developing the MOTAD model.11 

Formally, the total absolute deviation of income from mean income under the kth state of nature (Dk)

is



     12 Note this formulation approach can be used within an E-V framework if one squares d+ and d- in
the objective function.
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Dk'* '
j

( ckj & cj ) Xj*

TAD ' '
k

Dk ' '
k

(d %

k % d &

k )

where '
j

(ckj & c̄j ) Xj & d %

k % d &

k ' 0 for all k

Max '
j

c̄jXj & R '
k

( d %

k % d &

k )

s.t. '
j

(ckj&cj) Xj & d %

k % d &

k ' 0 for all k

'
j

aij Xj # bi for all i

Xj , d %

k , d &

k $ 0 for all j,k

Max '
j

cjXj & 2 '
k

d &

k

s.t. '
j

(ckj&cj) Xj % d &

k $ 0 for all k

'
j

aij Xj # bi for all i

Xj , d &

k $ 0 for all j,k

where ckj is the per unit net return to Xj under the kth state of nature and  is the mean.c̄j

Since both terms involve Xj and sum over the same index, this can be rewritten as

Total absolute deviation (TAD) is the sum of Dk across the states of nature.  Now introducing

deviation variables to depict positive and negative deviations we get

Then adding the sum of the deviation variables to the objective function the MOTAD model

maximizes expected net returns less a risk aversion coefficient (Q) times the measure of absolute deviation. 

The final MOTAD formulation is

where dk
+ is the positive deviation of the kth income occurrence from mean income and dk

- is the associated

negative deviation.12 

There have been a number of additional developments regarding the MOTAD formulation.  

Hazell formulated a model considering only negative deviations from the mean, ignoring positive 

deviations.  This formulation is: 
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F . B N
2 (N&1)

0.5

MAD '
B N

2 (N&1)

0.5 TAD
N

'
B

2 N (N&1)

0.5

TAD '
2B

N (N&1)

0.5

TND

Max '
j

cjXj & ( F

s.t. '
j

(ckj& cj) Xj % d &

k $ 0 for all k

'
j

aij Xj # bi for all i

&TND % '
k

d &

k ' 0

2B
N (N&1)

0.5

TND & F ' 0

Xj, TND, d &

k , F $ 0 for all j,k

However, Hazell notes that when the deviations are taken from the mean, the solution to this problem is

equivalent to the total absolute value minimization where  due to the symmetry of the deviations. 2'2Q

The negative deviations only model is the more commonly used MOTAD formulation (for example, see

Brink and McCarl). 

Also, Hazell (1971) reviews Fisher's development which shows that the standard error of a normally

distributed population can be estimated given sample size N, by multiplying mean absolute deviation

(MAD), total absolute deviation (TAD), or total negative deviation (TND) by appropriate constraints. 

Thus,

where  = 22/7 or 3.14176. B

This transformation is commonly used in MOTAD formulations.  A formulation incorporates such as

14.3.1.2.1 Example

This example uses the same data as in the E-V Portfolio example.  Deviations from the means (ckj -

) for the stocks are shown in Table 14.5.  The MOTAD formulation is given in Table 14.6.  Thec̄j

equivalent GAMS statement is called MOTADPOR.

Here  is the constant which approximates standard error from the empirical value of TND as)

discussed above.  This problem is solved for over a range of values for (.  The associated solutions are

reported in Table 14.7 and contain information on investment in the nonzero Xj's, unused funds, mean

absolute deviation, and the approximation of the standard error.  Also, the true variance and standard error

are calculated from the solution values and the original data.  Note the approximate nature of the Fisher

standard error formula.  For example, the approximated standard error at the first risk aversion range is

161.4, but the actual standard error is 140.4.  The approximation initially overstates the true standard
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error, but later becomes quite close.  The E-V and MOTAD frontiers correspond closely (see Figure 14.2). 

However, this is not adequate proof that the solutions will always be close (see Thomson and Hazell for a

comparison between the methods).

14.3.1.2.2 Comments on MOTAD

Many of the E-V model comments are appropriate here and will not be repeated.  However, a number

of other comments are in order.  First, a cursory examination of the MOTAD model might lead one to

conclude covariance is ignored.  This is not so.  The deviation equations add across all the variables,

allowing negative deviation in one variable to cancel positive deviation in another.  Thus, in minimizing

total absolute deviation the model has an incentive to "diversify", taking into account covariance. 

Second, the equivalence of the total negative and total absolute deviation formulations depends

critically upon deviation symmetry.  Symmetry will occur whenever the deviations are taken from the mean. 

This, however, implies that the mean is the value expected for each observation.  This may not always be

the case.  When the value expected is not the mean, then moving averages or other expectation models

should be used instead of the mean (see Brink and McCarl, or Young).  In such cases, the deviations are

generally non-symmetric and consideration must be given to an appropriate measure of risk.  For example,

Brink and McCarl use a mean negative deviation formulation with a moving average expectation.  

Third, most MOTAD applications use approximated standard errors as a measure of risk.  When

using such a measure, the risk aversion parameters can be interpreted as the number of standard errors one

wishes to discount income.  Coupling this with a normality assumption permits one to associate a

confidence limit with the risk aversion parameter.  For example, a risk aversion parameter equal to one

means that level of income which occurs at one standard error below the mean is maximized.  Assuming

normality, this level of income is 84% sure to occur.

Fourth, one must have empirical values for the risk aversion parameter.  All the E-V approaches are

applicable to its discovery.  The most common approach with MOTAD models has been based on observed

behavior.  The procedure has been to:  a) take a vector of observed solution variables, (i.e. acreages); b)

parameterize the risk aversion coefficient in small steps (e.g., 0.25) from 0 to 2.5, at each point computing

a measure of the difference between the model solution and observed behavior; and c) select the risk

aversion parameter value for which the smallest dispersion is found between the model solution values and

the observed values (for examples see Hazell et al.; Brink and McCarl; Simmons and Pomareda; or

Nieuwoudt, et al.). 

Fifth, the MOTAD model does not have a general direct relationship to a theoretical utility function. 

Some authors have discovered special cases under which there is a link (see Johnson and

Boeljhe(1981,1983) and their subsequent exchange with Buccola).  Largely, the MOTAD model has been

presented as an approximation to the E-V model.  However, with the advances in nonlinear programming
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Max cX&Q F2 (X) Max cX& > F(X)

s.t. AX # b versus s.t. AX # b

X $ 0 X $ 0

c & 2 Q F(X) MF(X)
MX

&8A ' 0 c & > MF(X)
MX

&8 A ' 0

Q '
>

2 F(X)

algorithms the approximation motivation is largely gone (McCarl and Onal), but MOTAD may have

application to non-normal cases (Thomson and Hazell). 

Sixth, McCarl and Bessler derive a link between the E-standard error and E-V risk aversion 

parameters as follows: 

Consider the models

The first order conditions assuming X is nonzero are

For these two solutions to be identical in terms of X and 8, then

Thus, the E-V risk aversion coefficient will equal the E-standard error model risk aversion coefficient

divided by twice the standard error.  This explains why E-V risk aversion coefficients are usually very

small (i.e., an E-standard error risk aversion coefficient usually ranges from 0 - 3 which implies when the

standard error of income is $10,000 the E-V risk aversion coefficient range of 0 - .000015).  Unfortunately,

since  is a function of  which depends on X, this condition must hold ex post and cannot be imposed a> F

priori.  However, one can develop an approximate a priori relationship between the risk aversion

parameters given an estimate of the standard error. 

The seventh and final comment regards model sensitivity.  Schurle and Erven show that several plans

with very different solutions can be feasible and close to the plans on the efficient frontier.  Both results

place doubt on strict adherence to the efficient frontier as a norm for decision making.  (Actually the issue

of near optimal solutions is much broader than just its role in risk models.)  The MOTAD model has been

rather widely used.  Early uses were by Hazell (1971); Hazell and Scandizzo; Hazell et al. (1983);

Simmons and Pomareda; and Nieuwoudt, et al.  In the late 1970's the model saw much use.  Articles from

1979 through the mid 1980s in just the American Journal of Agricultural Economics include Gebremeskel

and Shumway; Schurle and Erven; Pomareda and Samayoa; Mapp, et al.; Apland, et al. (1980); and Jabara

and Thompson.  Boisvert and McCarl provide a recent review. 

14.3.1.3 Toward A Unified Model

The E-V and MOTAD models evolved before many software developments.  As a consequence, the

models were formulated to be easily solved with 1960's and 70's software.  A more extensive unified model

formulation is possible today.  The E-standard error form of this model is as follows
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Max Inc & M '
k

pk [(d %

k )2 % (d &

k )2 ]
0.5

s.t. '
j

aijXj # bi for all i

'
j

ckjXj & Inck ' 0 for all k

'
k

pk Inck & Inc ' 0

Inck & Inc & d %

k % d &

k ' 0 for all k

Xj, d %

k , d &

k $ 0 for all j,k

Inck, Inc <
>

0 for all k

In this model the resource constraints continue to appear.  But we introduce a new variable (Inck)

which is income under state of nature k.  This is equated with income arising under the kth state of nature. 

In turn, a variable is entered for average income ( ) which is equated to the probabilities (pk) times theInc

income levels.  This variable appears in the objective function reflecting expected income maximization. 

Finally, deviations between the average and state of nature dependent income levels are treated in deviation

constraints where dk
+ indicates income above the average level whereas dk

- indicates shortfalls.  The

objective function is then modified to include the probabilities and deviation variables.  Several possible

objective function formulations are possible.  The objective function formulation above is E-standard error

without approximation.  Note that the term in parentheses contains the summed, probabilistically weighted,

squared deviations from the mean and is by definition equal to the variance.  In turn, the square root of this

term is the standard deviation and M would be a risk aversion parameter which would range between zero

and 2.5 in most circumstances (as explained in the MOTAD section).

This objective function can also be reformulated to be equivalent to either the MOTAD or E-V cases. 

Namely, in the E-V case if we drop the 0.5 exponent then the bracketed term is variance and the model

would be E-V.  Similarly, if we drop the 0.5 exponent and do not square the deviation variables then a

MOTAD model arises.

This unifying framework shows how the various models are related and indicates that covariance is

considered in any of the models.  An example is not presented here although the files UNIFY, EV2 and

MOTAD2 give GAMS implementations of the unified E-standard error, E-V and MOTAD versions.  The

resultant solutions are identical to the solution for E-V and MOTAD examples and are thus not discussed

further.  

14.3.1.4 Safety First

Roy posed a different approach to handling objective function uncertainty.  This approach, the Safety

First model, assumes that decision makers will choose plans to first assure a given safety level for income. 

The formulation arises as follows: assume the model income level under all k states of nature    (3 ckj Xj )
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'
j

ckj Xj $ S for all k

Max '
j

cjXj

s.t. '
j

aijXj # bi for all i

'
j

ckjXj $ S for all k

Xj $ 0 for all j

must exceed the safety level (S).  This can be assured by entering the constraints   

The overall problem then becomes

where S is the safety level.

14.3.1.4.1 Example

A formulation using the data from the E-V example and a safety level of S is given in Table 14.8 and

a GAMS implementation is in the file SAFETY.  This example was solved for safety levels ranging from -

$100 to +$50.  The solution (Table 14.9) at S = $100 gives the profit maximizing linear programming

solution.  As the safety level is increased the solutions reflect a diversification between X3 and X2.  These

solutions exhibit the same sort of behavior as in the previous examples.  As the safety level increases a

more diversified solution arises with an accompanying reduction in risk and a decrease in expected value. 

For example at S = $50 the mean has dropped from $148.00 to $135.00, but the standard error is cut by

more than two-thirds.  

14.3.1.4.2 Comments

The safety first model has not been extensively used empirically although Target MOTAD as

discussed in the next section is a more frequently used extension.  However, the Safety First model is

popular as an analytical model in characterizing decision making.  For a review and more extensive

discussion see Barry.

14.3.1.5 Target MOTAD

The Target MOTAD formulation developed by Tauer, incorporates a safety level of income while

also allowing negative deviations from that safety level.  Given a target level of T, the formulation is
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Max '
j

cjXj

s.t. '
j

aijXj # bi for all i

'
j

ckjXj % Devk $ T for all k

'
k

pk Devk # 8

Xj , Devk $ 0 for all j,k

All definitions are as above except  is the probability of the kth state of nature; T is the targetpk

income level (somewhat analogous to S in the safety first model); the variable Devk is the negative

deviation of income, allowing income under the kth state of nature to fall below target income; and 8 is the

maximum average income shortfall permitted.  The equation containing T gives the relationship between

income under the kth state of nature and a target income level.  The variable Devk is non-zero if the kth

income result falls below T.  The constraint with the right hand side of 8 limits the average shortfall.  Thus,

the Target MOTAD model has two parameters relating to risk (T and 8) which must be specified.  These,

in turn, can be parameterized to yield different risk solutions. 

14.3.1.5.1 Example

Using the data from the earlier examples and assuming each state of nature is equally probable (Pk =

1/10) yields the formulation given in Table 14.10 and the GAMS formulation is in the file TARGET. 

The Target MOTAD example was solved with a safety level of $120.00 with the allowable deviation

from the safety level varied from allowing as much as $120.00 average deviation to as little as $3.60.  The

solution behavior (Table 14.11) again largely mirrors that observed in the prior examples.  Namely, when a

large deviation is allowed, the profit maximizing solution is found, but as the allowable deviation gets

smaller, then X2 enters and then finally X1.  Again a sacrifice in expected income yields less risk.

14.3.1.5.2 Comments

Target MOTAD has not been applied as widely as other risk programming models.  However, it is

consistent with second degree stochastic dominance (Tauer).  Use of Target MOTAD requires specification

of two parameters, T and 8.  No attempt has been made to determine consistency between a T, 8 choice and

the Arrow-Pratt measure of risk aversion.  Nor is there theory on how to specify T and 8.  The target

MOTAD and original MOTAD models can be related.  If one makes 8 a variable with a cost in the

objective function and makes the target level a variable equal to expected income, this becomes the

MOTAD model.

Another thing worth noting is that the set of Target MOTAD solutions are continuous so that there is

an infinite number of solutions.  In the example, any target deviation between $24.00 and $12.00 would be
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s.t. '
j

aijXj # bi for all i

Wk & '
j

ckj Xj ' Wo for all k

Wk
<
>

0 for all k

Xj $ 0 for all j

a unique solution and would be a convex combination of the two tabled solutions.

McCamley and Kliebenstein outline a strategy for generating all target MOTAD solutions, but it is

still impossible to relate these solutions to more conventional measures of risk preferences.

Target MOTAD has been used in a number of contexts.  Zimet and Spreen formulate a farm

production implementation while Curtis et al., and Frank et al., studied crop marketing problems.

14.3.1.6 DEMP

Lambert and McCarl (1985) introduced the Direct Expected Maximizing Nonlinear Programming

(DEMP) formulation, which maximizes the expected utility of wealth. DEMP was designed as an

alternative to E-V analysis, relaxing some of the restrictions regarding the underlying utility function.  The

basic DEMP formulation requires specification of a utility of wealth function U(W), a level of initial

wealth (Wo), and the probability distribution of the objective function parameters (Ckj).  The basic

formulation is 

where pk is the probability of the kth state of nature;

Wo is initial wealth;

Wk is the wealth under the kth state of nature; and

   ckj is the return to one unit of the jth activity under the kth state of nature.

14.3.1.6.1 Example

Suppose an individual has the utility function for wealth of the form U = ( W) power  with an initial

wealth (W0) of 100, and is confronted with the decision problem data as used in the E-V example.  The

relevant DEMP formulation appears in Table 14.12 with the solution for varying values of the exponent

appearing in Table 14.13.  The GAMS formulation is called DEMP.

 The example model was solved for different values of the exponent (power).  The exponent was

varied from 0.3 to 0.0001.  As this was varied, the solution again transitioned out of sole reliance on stock

three into reliance on stocks two and three.  During the model calculations, transformations were done on

the shadow price to convert it into dollars.  Following Lambert and McCarl, this may be converted into an

approximate value in dollar space by dividing by the marginal utility of average income i.e., dividing the
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shadow prices by the factor.

Preckel, Featherstone, and Baker discuss a variant of this procedure.

14.3.1.6.2 Comments

The DEMP model has two important parts.  First, note that the constraints involving wealth can be

rearranged to yield

This sets wealth under the kth state of nature equal to initial wealth plus the increment to wealth due to the

choice of the decision variables. 

Second, note that the objective function equals expected utility.  Thus the formulation maximizes

expected utility using the empirical distribution of risk without any distributional form assumptions and an

explicit, exact specification of the utility function.  

Kaylen, et al., employ a variation of DEMP where the probability distributions are of a known

continuous form and numerical integration is used in the solution.  The DEMP model has been used by

Lambert and McCarl(1989); Lambert; and Featherstone et al.

Yassour, et al., present a related expected utility maximizing model called EUMGF, which embodies

both an exponential utility function and distributional assumptions.  They recognize that the maximization

of expected utility under an exponential utility function is equivalent to maximization of the moment

generating function (Hogg and Craig) for a particular probability distribution assumption.  Moment

generating functions have been developed analytically for a number of distributions, including the

Binomial, Chi Square, Gamma, Normal and Poisson distributions.  Collender and Zilberman and Moffit et

al. have applied the EUMGF model.  Collender and Chalfant have proposed a version of the model no

longer requiring that the form of the probability distribution be known.

14.3.1.7 Other Formulations

The formulations mentioned above are the principal objective function risk formulations which have

been used in applied mathematical programming risk research. However, a number of other formulations

have been proposed.  Alternative portfolio models such as those by Sharpe; Chen and Baker; Thomas et

al.(1972) exist.  Other concepts of target income have also been pursued (Boussard and Petit) as have

models based upon game theory concepts (McInerney [1967, 1969]; Hazell and How; Kawaguchi and

Maruyama; Hazell(1970); Agrawal and Heady; Maruyama; and Low) and Gini coefficients (Yitzhaki). 

These have all experienced very limited use and are therefore not covered herein. 

14.3.2 Right Hand Side Risk
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Risk may also occur within the right hand side (RHS) parameters.  The most often used approach to

RHS risk in a nonrecourse setting is chance-constrained programming.  However, Paris(1979) has tried to

introduce an alternative.

14.3.2.1 Chance Constrained Programming

The chance-constrained formulation was introduced by Charnes and Cooper and deals with uncertain

RHS's assuming the decision maker is willing to make a probabilistic statement about the frequency with

which constraints need to be satisfied.  Namely, the probability of a constraint being 

satisfied is greater than or equal to a prespecified value .  "

If the average value of the RHS ( ) is subtracted from both sides of the inequality and in turn both b̄i

sides are divided by the standard deviation of the RHS ( ) then the constraint becomesFbi

Those familiar with probability theory will note that the term

gives the number of standard errors that bi is away from the mean.  Let Z denote this term.  

When a particular probability limit (") is used, then the appropriate value of Z is Z" and the 

constraint becomes

Assuming we discount for risk, then the constraint can be restated as

which states that resource use (E aijXj) must be less than or equal to average resource availability less the

standard deviation times a critical value which arises from the probability level.

Values of Z" may be determined in two ways: a) by making assumptions about the form of the

probability distribution of bi (for example, assuming normality and using values for the lower tail from a

standard normal probability table); or b) by relying on the conservative estimates generated by using

Chebyshev's inequality, which states the probability of an estimate falling greater than M standard

deviations away from the mean is less than or equal to one divided by M2.  Using the Chebyshev inequality
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one needs to solve for that value of M such that (1-") equals 1/M2.  Thus, given a probability ", the

Chebyshev value of Z" is given by the equation Z"=(1-")-0.5.  Following these approaches, if one wished an

87.5 percent probability, a normality assumption would discount 1.14 standard deviations and an

application of the Chebyshev inequality would lead to a discount of 2.83 standard deviations.  However,

one should note that the Chebyshev bound is often too large. 

14.3.2.1.1 Example 

The example problem adopted for this analysis is in the context of the resource allocation problem

from Chapter V.  Here three of the four right hand sides in that problem are presumed to be stochastic with

the distribution as given in Table 14.14.  Treating each of these right hand side observations as equally

likely, the mean value equals those numbers that were used in the resource allocation problem and their

standard errors respectively are as given in Table 14.14.  Then the resultant chance constrained formulation

is

Max 67X1 + 66X2 + 66.3X3 + 80X4 + 78.5X5 + 78.4X6

s.t 0.8X1 + 1.3X2 + 0.2X3 + 1.2X4 + 1.7X5 + 0.5X6 # 140 - 9.63 Z"

0.5X1 + 0.2X2 + 1.3X3 + 0.7X4 + 0.3X5 + 1.5X6 # 90 - 3.69 Z"

0.4X1 + 0.4X2 + 0.4X3 + X4 + X5 + X6 # 120 - 8.00 Z"

X1 + 1.05X2 + 1.1X3 + 0.8X4 + 0.82X5 + 0.84X6 #     125

The GAMS implementation is the file CHANCE.  The solutions to this model were run for Z values

corresponding to 0, 90 ,95, and 99 percent confidence intervals under a normality assumption.  The right

hand sides and resultant solutions are tabled in Table 14.15.  Notice as the Z" value is increased, then the

value of the uncertain right hand side decreases.  In turn, production decreases as does profit.  The chance

constrained model discounts the resources available, so one is more certain that the constraint will be met. 

The formulation also shows how to handle simultaneous constraints.  Namely the constraints may be

treated individually.  Note however this requires an assumption that the right hand sides are completely

dependent.  The results also show that there is a chance of the constraints being exceeded but no adjustment

is made for what happens under that circumstance.  

14.3.2.1.2 Comments

Despite the fact that chance constrained programming (CCP) is a well known technique and has been

applied to agriculture (e.g., Boisvert, 1976; Boisvert and Jensen, 1973; and Danok et al., 1980) and water

management (e.g., Eisel; Loucks; and Maji and Heady) its use has been limited and controversial.  See the

dialogue in Blau; Hogan, et al.; and Charnes and Cooper (1959).

The major advantage of CCP is its simplicity; it leads to an equivalent programming problem of

about the same size and the only additional data requirements are the standard errors of the right hand side. 

However, its only decision theoretic underpinning is Simon's principle of satisficing (Pfaffenberger and
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Walker).

This CCP formulation applies when either one element of the right hand side vector is random or

when the distribution of multiple elements is assumed to be perfectly correlated.  The procedure has been

generalized to other forms of jointly distributed RHS's by Wagner (1975).  A fundamental problem with

chance constrained programming (CCP) is that it does not indicate what to do if the recommended solution

is not feasible.  From this perspective, Hogan et al., (1981), conclude that "... there is little evidence that

CCP is used with the care that is necessary" (p. 698) and assert that recourse formulations should be used.  

14.3.2.2 A Quadratic Programming Approach

Paris(1979) proposed a quadratic programming model which permits RHS risk in an E-V context.  In

contrast to chance constrained programming, the formulation treats inter-dependencies between the RHS's. 

The formulation is developed through an application of non-linear duality theory and is 

where X is the vector of activities; N and 1 are risk aversion coefficients with respect to variance in returns

and the RHS.  Sc and Sb are variance-covariance matrices of returns and the RHS's, respectively; Y is the

vector of dual variables, A is the matrix of technical coefficients, and  is the vector of expected values ofb̄

the RHS's.

This primal model explicitly contains the dual variables and the variance-covariance matrix of the

RHS's.  However, the solutions are not what one might expect.  Namely, in our experience, as right hand

side risk aversion increases, so does expected income.  The reason lies in the duality implications of the

formulation.  Risk aversion affects the dual problem by making its objective function worse.  Since the dual

objective function value is always greater than the primal, a worsening of the dual objective via risk

aversion improves the primal.  A manifestation of this appears in the way the risk terms enter the

constraints.  Note given positive 1 and Sb, then the sum involving 1 and Y on the left hand side augments

the availability of the resources.  Thus, under any nonzero selection of the dual variables, as the risk

aversion parameter increases so does the implicit supplies of resources.  Dubman et al., and Paris(1989)

debate these issues, but the basic flaw in the formulation is not fixed.  Thus we do not recommend use of

this formulation and do not include an example.

14.3.3 Technical Coefficient Risk

Risk can also appear within the matrix of technical coefficients.  Resolution of technical coefficient

uncertainty in a non-recourse setting has been investigated through two approaches.  These involve an E-V

like procedure (Merrill), and one similar to MOTAD (Wicks and Guise).  

14.3.3.1 Merrill's Approach
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Merrill formulated a nonlinear programming problem including the mean and variance of the risky

aij's into the constraint matrix.  Namely, one may write the mean of the risky part as  and its'aij Xj

variance as 33 XjXn Finj where  is the mean value of the aij's and Finj is the covariance of the aijaij

coefficients for activities n and j in row i.  Thus, a constraint containing uncertain coefficients can be

rewritten as 

or, using standard deviation,

 Note that the term involving Finj is added inflating resource use above the average to reflect

variability, thus a safety cushion is introduced between average resource use and the reserve limit.  The

parameter M determines the amount of safety cushion to be specified exogenously and could be done using

distributional assumptions (such as normality) or Chebyshev's inequality as argued in McCarl and Bessler. 

The problem in this form requires usage of nonlinear programming techniques. 

Merrill's approach has been unused largely since it was developed at a time when it was incompatible

with available software.  However, the MINOS algorithm in GAMS provides capabilities for handling the

nonlinear constraint terms (although solution times may be long -- McCarl and Onal).  Nevertheless the

simpler Wicks and Guise approach discussed below is more likely to be used.  Thus no example is given.

14.3.3.2 Wicks and Guise Approach

Wicks and Guise provided a LP version of an uncertain aij formulation based on Hazell(1971) and

Merrill's models.  Specifically, given that the ith constraint contains uncertain aij's, the following constraints

may be set up. 

Here the first equation relates the mean value of uncertain resource usage plus a risk term (N Di) to

the right hand side, while the second computes the deviation ( akij -  ) incurred from the kth jointāij

observation on all aij's and sums it into a pair of deviation variables ( ).  These deviation variablesd %

ki , d &

ki

are in turn summed into a measure of total absolute deviation (Di) by the third equation.  The term N Di

then gives the risk adjustment to the mean resource use in constraint i where N is a coefficient of risk

aversion. 
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The Wicks and Guise formulation is essentially this; however, Wicks and Guise convert the total

absolute deviation into an estimate of standard deviation using a variant of the Fisher constant but we will

use the one discussed above

)D - F = 0     

where )  = (B/(2n(n-1))).5 and is the standard error approximation.  The general Wicks Guise formulationF

is 

14.3.3.2.1 Example

Suppose we introduce ingredient uncertainty in the context of the feed problem as discussed in

Chapter V.  Suppose one is using three feed ingredients corn, soybeans, and wheat while having to meet

energy and protein requirements.  However, suppose that there are four states of nature for energy and

protein nutrient content as given in Table 14.16.  Assume that the unit price of corn is 3 cents, soybeans 6

cents, and wheat 4 cents and that the energy requirements are 80% of the unit weight of the feed while the

protein requirement is 50%.  In turn, the GAMS formulation of this is called WICKGUIS and a tableau is

given in Table 14.17.   

The solution to the Wicks Guise example model are given in Table 14.18.  Notice in this table when

the risk aversion parameter is 0 then the model feeds corn and wheat, but as the risk aversion parameter

increases the model first reduces its reliance on corn and increases wheat, but as the risk aversion

parameter gets larger and larger one begins to see soybeans come into the answer.  Notice across these

solutions, risk aversion generally increases the average amount of protein with reductions in protein

variability.  As the risk aversion parameter increases, the probability of meeting the constraint increases. 

Also notice that the shadow price on protein monotonically increases indicating that it is the risky

ingredient driving the model adjustments.  Meanwhile average energy decreases, as does energy variation

and the shadow price on energy is zero, indicating there is sufficient energy in all solutions.    

14.3.3.2.2 Comments

The reader should note that the deviation variables do not work well unless the constraint including
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the risk adjustment is binding.  However, if it is not binding, then the uncertainty does not matter. 

The Wicks and Guise formulation has not been widely used.  Other than the initial application by

Wicks and Guise the only other application we know of is that of Tice. 

Several other efforts have been made regarding aij uncertainty.  The method used in Townsley and

later by Chen (1973) involves bringing a single uncertain constraint into the objective function.  The

method used in Rahman and Bender involves developing an over-estimate of variance. 

14.3.4 Multiple Sources of Risk

Many problems have C's, A's and b's which are simultaneously uncertain.  The formulations above

may be combined to handle such a case.  Thus, one could have a E-V model with several constraints

handled via the Wicks Guise and/or chance constrained techniques.  There are also techniques for handling

multiple sources of risk under the stochastic programming with recourse topic.

14.4 Sequential Risk-Stochastic Programming with Recourse

Sequential risk arises as part of the risk as time goes on and adaptive decisions are made.  Consider

the way that weather and field working time risks are resolved in crop farming.  Early on, planting and

harvesting weather are uncertain.  After the planting season, the planting decisions have been made and the

planting weather has become known, but harvesting weather is still uncertain.  Under such circumstances a

decision maker would adjust to conform to the planting pattern but would still need to make harvesting

decisions in the face of harvest time uncertainty.  Thus sequential risk models must depict adaptive

decisions along with fixity of earlier decisions (a decision maker cannot always undo earlier decisions such

as planted acreage).  Nonsequential risk, on the other hand, implies that a decision maker chooses a

decision now and finds out about all sources of risk later.

All the models above are nonsequential risk models.  Stochastic programming with recourse (SPR)

models are used to depict sequential risk.  The first of the models was originally developed as the

"two-stage" LP formulation by Dantzig (1955).  Later, Cocks devised a model with N stages, calling it

discrete stochastic programming.  Over time, the whole area has been called stochastic programming with

recourse (SPR).  We adopt this name. 

14.4.1 Two stage SPR formulation

Suppose we set up a two stage SPR formulation.  Such formulations contain a probability tree

(Figure 14.3).  The nodes of the tree represent decision points.  The branches of the tree represent

alternative possible states.  A two stage model has one node and set of decision variables (X) at the first

stage, with the second stage containing branches associated with the resolved uncertainty from the first

stage and associated decision nodes (Zk). 

Suppose the variables Xj indicate the amount of the jth alternative which is employed in the first stage. 

There is an associated set of resource constraints where the per unit usage of the ith resource by Xj is aij and
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the endowment of the resources bi.  Suppose that the outcome of Xj is uncertain and dependent on state of

nature where the quantity of the mth output item produced is dmjk where k designates state of nature.  Let us

also define cj as the objective function coefficient for Xj.  In the second stage, the variables are Znk, where n

represents the nth alternative for production and k identifies state of nature.  Here we have different decision

variables for each second stage state of nature.  For example, we have the amount of stock sold if the

market has been moving up and the amount of stock sold if the market is moving down, with second stage

decisions that depend upon the resultant state of nature after the first stage.  We also have parameters

which give the amount of the mth output item carrying over from stage one (fmnk) while gwnk gives the

amount of the wth resource utilized by Znk.  Finally, the objective function parameter for Znk is enk.  The

model also requires definition of right hand side parameters where swk is the amount of the wth resource

available under the kth state of nature.  In setting this model up we also define a set of accounting variables

Yk, which add up income under the states of nature.  Finally suppose pk gives the probability of state k.  

The composite model formulation is

In this problem we have income variables for each of the k states of nature (Yk) which are

unrestricted in sign.  Given that pk is the probability of the kth state of nature, then the model maximizes

expected income.  Note the income variable under the kth state of nature is equated to the sum of the

nonstochastic income from the first stage variables plus the second stage state of nature dependent profit

contribution.  Also note that since Z has taken on the subscript k, the decision variable value will in general

vary by state of nature.  

Several points should be noted about this formulation.  First, let us note what is risky.  In the second

stage the resource endowment (Swk), constraint coefficients (dmjk, fmnk, gwnk) and objective function

parameters (enk) are dependent upon the state.  Thus, all types of coefficients (RHS, OBJ and Aij) are

potentially risky and their values depend upon the path through the decision tree. 

Second, this model reflects a different uncertainty assumption for X and Z.  Note Z is chosen with
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knowledge of the stochastic outcomes; however, X is chosen a priori, with it's value fixed regardless of the

stochastic outcomes.  Also notice that the first, third, and fourth constraints involve uncertain parameters

and are repeated for each of the states of nature.  This problem then has a single X solution and a Z

solution for each state of nature.  Thus, adaptive decision making is modeled as the Z variables are set

conditional on the state of nature.  Note that irreversabilities and fixity of initial decisions is modeled.  The

X variables are fixed across all second stage states of nature, but the Z variables adapt to the state of

nature. 

Third, let us examine the linkages between the stages.  The coefficients reflect a potentially risky link

between the predecessor (X) and successor (Z) activities through the third constraint.  Note the link is

essential since if the activities are not linked, then the problem is not a sequential decision problem.  These

links may involve the weighted sum of a number of predecessor and successor variables (i.e., an uncertain

quantity of lumber harvested via several cutting schemes linked with use in several products).  Also,

multiple links may be present (i.e., there may be numerous types of lumber).  The subscript m defines these

links.  A fourth comment relates to the nature of uncertainty resolution.  The formulation places all

uncertainty into the objective function, which maximizes expected income.

14.4.1.1 Example

Let us consider a simple farm planning problem.  Suppose we can raise corn and wheat on a 100 acre

farm.  Suppose per acre planting cost for corn is $100 while wheat costs $60.  However, suppose crop

yields, harvest time requirements per unit of yield, harvest time availability and crop prices are uncertain. 

The deterministic problem is formulated as in Table 14.20 and file SPREXAM1.  Here the harvest

activities are expressed on a per unit yield basis and the income variable equals sales revenue minus

production costs.  

The uncertainty in the problem is assumed to fall into two states of nature and is expressed in Table

14.19.  These data give a joint distribution of all the uncertain parameters.  Here RHS's, aij's and objective

function coefficient's are uncertain.

Solution of the Table 14.20 LP formulation under each of the states of nature gives two very different

answers.  Namely under the first state of nature all acreage is in corn while under the second state of nature

all production is in wheat.  These are clearly not robust solutions.

The SPR formulation of this example is given in Table 14.21.  This tableau contains one set of first

stage variables (i.e., one set of corn growing and wheat growing activities) coupled with two sets of second

stage variables after the uncertainty is resolved (i.e., there are income, harvest corn, and harvest wheat

variables for both states of nature).  Further, there is a single unifying objective function and land

constraint, but two sets of constraints for the states of nature (i.e., two sets of corn and wheat yield

balances, harvesting hour constraints and income constraints).  Notice underneath the first stage corn and
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wheat production variables, that there are coefficients in both the state of nature dependent constraints

reflecting the different uncertain yields from the first stage (i.e., corn yields 100 bushels under the first state

of nature and 105 under the second; while wheat yields 40 under the first and 38 under the second). 

However, in the second stage resource usage for harvesting is independent.  Thus, the 122 hours available

under the first state of nature cannot be utilized by any of the activities under the second state of nature. 

Also, the crop prices under the harvest activities vary by state of nature as do the harvest time resource

usages.  

The example model then reflects, for example, if one acre of corn is grown that 100 bushels will be

available for harvesting under state of nature one, while 105 will be available under state of nature two.  In

the optimum solution there are two harvesting solutions, but one production solution.  Thus, we model

irreversibility (i.e., the corn and wheat growing variable levels maximize expected income across the states

of nature, but the harvesting variable levels depend on state of nature).

The SPR solution to this example is shown in Table 14.22.  Here the acreage is basically split 50-50

between corn and wheat, but harvesting differs with almost 4900 bushels of corn harvested under the first

state, where as 5100 bushels of corn are harvested under the second.  This shows adaptive decision making

with the harvest decision conditional on state of nature.  The model also shows different income levels by

state of nature with $18,145 made under state of nature one and $13,972 under state of nature two. 

Furthermore, note that the shadow prices are the marginal values of the resources times the probability of

the state of nature.  Thus, wheat is worth $3.00 under the first state of nature but taking into account that

the probability of the first state of nature is 60% we divide the $3.00 by .6 we get the original $5.00 price. 

This shows the shadow prices give the contribution to the average objective function.  If one wishes shadow

prices relevant to income under a state of nature then one needs to divide by the appropriate probability.

The income accounting feature also merits discussion.  Note that the full cost of growing corn is

accounted for under both the first and second states of nature.  However, since income under the first state

of nature is multiplied by .6 and income under the second state of nature is multiplied by .4, then no double

counting is present. 

14.4.2 Incorporating Risk Aversion

The two stage model as presented above is risk neutral.  This two stage formulation can be altered to

incorporate risk aversion by adding two new sets of constraints and three sets of variables following the

method used in the unified model above.  An EV formulation is 
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Note that within this formulation the first new constraint that we add simply accounts expected income into

a variable , while the second constraint computes deviations from expected income into new deviationȲ

variables dk
+, dk

- which are defined by state of nature.  Further, the objective function is modified so it

contains expected income minus a risk aversion parameter times the probabilistically weighted squared

deviations (i.e., variance).  This is as an EV model.  The model may also be formulated in the fashion of the

unified model discussed earlier to yield either a MOTAD or an E-standard deviation model.

14.4.2.1 Example 

Suppose we use the data from the above Wicks Guise example but also allow decision makers once

they discover the state of nature, to supplement the diet.  In this case, suppose the diet supplement to

correct for excess protein deviation costs the firm $0.50 per protein unit while insufficient protein costs

$1.50 per unit.  Similarly, suppose excess energy costs $1.00 per unit while insufficient energy costs $0.10. 

The resultant SPR tableau, portraying just two of the four states of nature included in the tableau, is shown

in Table 14.23 (This smaller portrayal is only done to preserve readability, the full problem is solved). 

Notice we again have the standard structure of an SPR.  Namely the corn, soybeans, and wheat activities

are first stage activities, then in the second stage there are positive and negative nutrient deviations for each

state as well as state dependent objective function and deviation variable accounting.  Notice the average

cost row adds the probabilistically weighted sums of the state of nature dependent variables into average

cost while the cost deviation rows compute deviation under a particular state of nature.  In turn, these

deviations are weighted by the probability times the risk aversion parameter and are entered in the objective

function.  The deviation variables could be treated to form an E-V, MOTAD or E-Standard error

formulation as in the unified model above.  An E-standard deviation model will be used here and is

implemented in the GAMS file FEEDSPR.  Also note these activities repeat for the second state of nature

and also would for the third and fourth if they were portrayed here.
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The risk neutral solution to this problem is given in Table 14.24.  Two solution aspects are worth

discussing.  First, notice that the first stage solution is to buy .283 pounds of corn, .362 pounds of

soybeans, .355 pounds of wheat at an average cost of 6.7 cents.  Cost varies across the states of nature

with cost under the first state equaling 8.1 cents, while under the second state it is 8.3, 5.2 under the third

state and 5.1 under the fourth state.  The cost variation arises as the protein and energy shortfall and excess

variables take on different values in order to mitigate nutrient fluctuation.  

The model was also solved for risk aversion.  The results in Table 14.25 show the solutions from the

example model under varying risk aversion coefficients for a standard deviation implementation.  Table

14.25 gives the changes in corn, soybean, and wheat usage, as well as average income and standard error

of income as the risk aversion parameter is changed for an E-standard deviation formulation as

implemented in the file FEEDSPR.  Here the risk aversion parameter was varied from 0.0 up to 0.6.  As

risk aversion increases the average cost of the diet increases, but the standard error of the cost of the diet

falls with cost variation between the various states of nature narrowing.  Namely under risk neutrality cost

ranges from 5.1 cents to 8.1 cents with a standard error of 1.5 cents, however by the time the risk aversion

parameter is up to .4 the cost varies from only 6.7 to 7.4 cents with a standard error of two tenths of a cent,

at the expense of a 0.4 cent increase in average diet cost.  Thus, as risk aversion increases, the model

adopts a plan which stabilizes income across all of the states of nature.  

14.4.3 Extending to Multiple Stages  

 The models above are two stage models with a set of predecessor activities followed by sets of

successor activities for each state of nature.  It is possible to formulate a multiple stage model as done by

Cocks.  In such a model however, it is relatively cumbersome to express a general formulation.  Thus, we

will express this model only in terms of an example (See Cocks for an N stage formulation and Boisvert

and McCarl for a three stage one).  Let us formulate a relatively simple stock model.  Suppose that a firm

starts with an initial inventory 100 units of common stock and is trying to maximize average ending worth. 

In doing this, suppose that the stock can be sold in one of three time periods.  The first one which is

nonstochastic, the second one which is characterized by two states of nature, and the third which is

characterized by two additional states of nature.  In describing the states of nature the following data are

relevant.  In period one (today) the firm knows the price is $2.00.  In period two, the firm is uncertain of

the interest rate between periods and the future price.  Assume that under state of nature 1, the interest rate

between period one and two for any stock sold is one percent while it is two percent under the second state

of nature 2.  Simultaneously the stock price is $2.20 under the first state of nature and $2.05 under the

second.  Going into the third state of nature, the interest rate is conditional on which state of nature was

drawn for the second state.  Thus, in the third stage if the first state arose the third stage interest rates are

then either 6% (A) or 4% (B).  On the other hand if the second state occurs, the interest rate will either be
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7% (A) or 3% (B).  Third stage crop prices are dependent of which of the two third stage states of nature

occur.  Under the first state of nature (A) the price is $2.18, while under the second one it is $2.44.  The

third stage probabilities are also conditional.  Namely, after the first stage one gets state 1 occurring 70%

of the time while state 2 occurs 30%of the time.  When state 2 results out of stage one then the third stage

probability for state A is 60% and is 40% for state B.  On the other hand, these probabilities change to .7

and .3 if the second state happened out of stage 1.

The resultant formulation of this problem is given in Table 14.26 and file SELLSPR.  Here, again,

there is one set of period one variables which refer to either keeping or selling the stock; two sets of period

two variables, which refer again to keep or sell the stock under each second stage state of nature; and four

sets of period three variables for selling the stock and accounting ending net worth under all the third stage

states of nature.  Note in the first period, if the stock is kept, it carries over from the first period to both

states of nature in the second stage.  Then in the second period the keep activity from the first period

provides stock that could either be sold or kept on into the third.  In turn, if stock is kept in the second

stage, it is held over to both third period states of nature which follow that second period state of nature. 

Notice the probabilities of each of the final states are reflected in the average ending worth.  The worth

under period three state A following period two state one is multiplied 0.42 which reflects the 70%

probability of period two state one times the 60% conditional probability of period three state A.  Also,

notice the prices as they enter the ending worth by state of nature are the sales price in the relevant period

times 1 plus interest earned in the interim periods.  Thus, the ending worth of period one sales following

period two state one and period three state A is 2.1412.  This reflects the original sales price of $2.00, the

1% interest into the second period and the 6% interest into the third period.  The solution to this model is

given in Table 14.27.

14.4.4 Model Discussion

The SPR model is perhaps the most satisfying of the risk models.  Conceptually it incorporates all

sources of uncertainty: right hand side, objective function and technical coefficients while allowing adaptive

decisions.  However, the formulations suffer from the "curse of dimensionality."  Each possible final state

of nature leads to another set of stage two or later activities and large models can result from relatively

simple problems.  For example, consider having ten values of two right hand sides which were

independently distributed.  This would lead to 100 terminal states or sets of rows.  However, such models

can be computationally tractable, since the sparsity and repeated structure tend to make such problems

easier to solve than their size would imply.  Thus, one of the things to be cautious about when using this

particular formulation is size.  When dealing with such a model, it is often advisable to determine the

critical sources of uncertainty which should be extensively modeled.  Uncertainties other than the "most

critical" may be handled with such methods as MOTAD, Wicks and Guise, or chance-constrained as
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discussed above.  Sources of uncertainty which are not important in the problem may be held at their

expected values (see Tice for an example).  Thus, with careful application, this type of model can be quite

useful.

Agricultural economics applications include Yaron and Horowit (1972a); Garoian, et al.; Apland, et

al.(1981); Lambert and McCarl(1989); Leatham and Baker; McCarl and Parandvash; and the early papers

by Rae (1971a, 1971b).  Hansotia; Boisvert and McCarl; and Apland and Kaiser provide literature

reviews.

14.5 General Comments On Modeling Uncertainty

As demonstrated above, there are a number of ways of handling uncertainty when modeling.  Several

aspects of these types of models need to be pointed out.  First, all the formulations convert the problems to

a deterministic equivalent.  Basically, it is assumed that the decision maker is certain of the risk and reacts

to it optimally by discounting the objective function, aij's or right hand sides.  Obviously this means the

modeler must assume knowledge of the distribution of risk faced by a decision maker and the risk aversion

coefficient.  

The second set of comments regards data.  Important parameters within the context of risk models are

the expectation of the coefficient value and its probability distribution around that expectation.  The most

common practice for specification of these parameters is to use the historical mean and variance.  This,

however, is neither necessary nor always desirable.  Fundamentally, the measures that are needed are the

value expected for each uncertain parameter and the perceived probability distribution of deviations from

that expectation (with joint distributions among the various uncertain parameters).  The parameter

expectation is not always a historical mean.  This is most unrealistic in cases where there has been a strong

historical trend (as pointed out by Chen, 1971).  There is a large body of literature dealing with

expectations and/or time series analysis (see Judge for an introduction), and some use of these results and

procedures appears desirable. 

Data are most often generated historically; however, observations could be generated by several other

means.  For example, observations could be developed from a simulation model (see Dillon, et al.), from a

forecasting equation (see Lambert and McCarl(1989)), or from subjective interrogation of the decision

maker (see Sri Ramaratnam et al.).  There are cases where these other methods are more appropriate than

history due to such factors as limited historical data (say, on the price of a new product) or major structural

changes in markets.  Naturally, the form in which the data are collected depends on the particular

application involved. 

A final comment on data regards their probabilistic nature.  Basically when using historically based

means and variance one is assuming that all observations are equally probable.  When this assumption is

invalid, the model is modified so that the value expected is the probabilistically weighted mean (if desired)
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and the variance formula includes the consideration of probability (see Anderson, et al. [pp. 28- 29] for

examples). Deviation models must also be adjusted so that the deviations are weighted by their probability

as done in the MOTAD version of the discrete stochastic model in section 14.23. 

A third and again independent line of comment relates to the question "should uncertainty be modeled

and if so, how?"  Such a concern is paramount to this section.  It is obvious from the above that in

modeling uncertainty, data are needed describing the uncertainty, and that modeling uncertainty makes a

model larger and more complex, and therefore harder to interpret, explain, and deal with.  It is not the

purpose of these comments to resolve this question, but rather to enter some considerations to the resolution

of this question.  First and fundamentally, if a model solution diverges from reality because the decision

maker in reality has somehow considered risk, then it is important to consider risk.  This leads to the

subjective judgment on behalf of the modeling team as to whether risk makes a difference.  Given that risk

is felt to make a difference, then, how should risk be modeled?  In the approaches above, the formulation

model depends upon whether there is conditional decision making and on what is uncertain.  These

formulations are not mutually exclusive; rather, it may be desirable to use combinations of these

formulations (see, for example, Wicks and Guise, Tice or Klemme). 

Several uncertainty models have not been covered the above discussion.  There are more advanced

applications of chance constrained programming such as those found in the books by Sengupta; Vajda; and

Kolbin.  Another approach is called "Cautions Suboptimizing" by Day (1979).  This approach bounds the

adjustments in variables to a maximum amount in any one year.  We also have not covered Monte Carlo

programming as espoused by Anderson, et al., mainly because we do not feel it falls into the class of

programming techniques but rather is a simulation technique. 

Finally, it is relevant to discuss how risk should be modeled.  There have been arguments presented in

literature (e.g. see, for example, Baker and McCarl or Musser, et al.) that risk model solutions are biased if

the model structure is not adequate before risk modeling is incorporated.  Baker and McCarl argue that one

should not include risk until the model structure is fully specified in terms of the needed constraints, the

time disaggregation of constraints, and activities.  
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Table 14.1. Data for E-V Example -- Returns by Stock and Event

----Stock Returns by Stock and Event----

Stock1 Stock2   Stock3        Stock4

Event1 7 6 8 5 

Event2 8 4 16 6 

Event3 4 8 14 6 

Event4 5 9 -2 7 

Event5 6 7 13 6 

Event6 3 10 11 5 

Event7 2 12 -2 6 

Event8 5 4 18 6 

Event9 4 7 12 5 

Event10 3 9 -5 6 

Stock1 Stock2 Stock3 Stock4

Price 22 30 28 26

Table 14.2. Mean Returns and Variance Parameters for Stock Example

Stock1 Stock2 Stock3  Stock4 

Mean Returns     4.70   7.60     8.30     5.80

Variance-Covariance Matrix

Stock1 Stock2 Stock3 Stock4

Stock1 3.21 -3.52 6.99 0.04

Stock2 -3.52 5.84 -13.68 0.12

Stock3 6.99 -13.68 61.81 -1.64

Stock4 0.04 0.12 -1.64 0.36
Table 14.3. GAMS Formulation of E-V Problem

   5   SETS       STOCKS  POTENTIAL INVESTMENTS / BUYSTOCK1*BUYSTOCK4 /
   6              EVENTS  EQUALLY LIKELY RETURN STATES OF NATURE
   7                                            /EVENT1*EVENT10 / ;
   8  
   9   ALIAS (STOCKS,STOCK);
  10  
  11   PARAMETERS     PRICES(STOCKS) PURCHASE PRICES OF THE STOCKS
  12                                / BUYSTOCK1   22
  13                                  BUYSTOCK2   30
  14                                  BUYSTOCK3   28
  15                                  BUYSTOCK4   26 / ;
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  16  
  17   SCALAR      FUNDS    TOTAL INVESTABLE FUNDS / 500 / ;
  18  
  19   TABLE RETURNS(EVENTS,STOCKS) RETURNS BY STATE OF NATURE EVENT
  20  
  21             BUYSTOCK1  BUYSTOCK2   BUYSTOCK3   BUYSTOCK4
  22     EVENT1      7           6           8           5
  23     EVENT2      8           4          16           6
  24     EVENT3      4           8          14           6
  25     EVENT4      5           9          -2           7
  26     EVENT5      6           7          13           6
  27     EVENT6      3          10          11           5
  28     EVENT7      2          12          -2           6
  29     EVENT8      5           4          18           6
  30     EVENT9      4           7          12           5
  31     EVENT10     3           9          -5           6
  32  
  33   PARAMETERS
  34      MEAN (STOCKS)       MEAN RETURNS TO X(STOCKS)
  35      COVAR(STOCK,STOCKS) VARIANCE COVARIANCE MATRIX;
  36  
  37   MEAN(STOCKS) = SUM(EVENTS , RETURNS(EVENTS,STOCKS) / CARD(EVENTS) );
  38   COVAR(STOCK,STOCKS)
  39        = SUM (EVENTS ,(RETURNS(EVENTS,STOCKS) - MEAN(STOCKS))
  40                      *(RETURNS(EVENTS,STOCK)- MEAN(STOCK)))/CARD(EVENTS);
  41  
  42   DISPLAY MEAN , COVAR ;
  43  
  44   SCALAR RAP   RISK AVERSION PARAMETER / 0.0 / ;
  45  
  46   POSITIVE VARIABLES    INVEST(STOCKS)  MONEY INVESTED IN EACH STOCK
  47  
  48   VARIABLE             OBJ            NUMBER TO BE MAXIMIZED ;
  49  
  50   EQUATIONS            OBJJ           OBJECTIVE FUNCTION
  51                                    INVESTAV      INVESTMENT FUNDS AVAILABLE
  52              ;
  53  
  54   OBJJ..
  55   OBJ =E=   SUM(STOCKS, MEAN(STOCKS) * INVEST(STOCKS))
  56           - RAP*(SUM(STOCK, SUM(STOCKS,
  57              INVEST(STOCK)* COVAR(STOCK,STOCKS) * INVEST(STOCKS))));
  58  
  59   INVESTAV..     SUM(STOCKS, PRICES(STOCKS) * INVEST(STOCKS)) =L= FUNDS ;
  60  
  61   MODEL EVPORTFOL /ALL/ ;
  62  
  63   SOLVE EVPORTFOL USING NLP MAXIMIZING OBJ ;
  64  
  65   SCALER VAR  THE VARIANCE ;
  66          VAR = SUM(STOCK, SUM(STOCKS,
  67               INVEST.L(STOCK)* COVAR(STOCK,STOCKS) * INVEST.L(STOCKS))) ;
  68   DISPLAY VAR ;
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  69  
  70   SET RAPS   RISK AVERSION PARAMETERS /R0*R25/
  71  
  72   PARAMETER RISKAVER(RAPS) RISK AVERSION COEFICIENTS
  73             /R0   0.00000,  R1   0.00025,  R2   0.00050,  R3   0.00075,
  74              R4   0.00100,  R5   0.00150,  R6   0.00200,  R7   0.00300,
  75              R8   0.00500,  R9   0.01000,  R10  0.01100,  R11  0.01250,
  76              R12  0.01500,  R13  0.02500,  R14  0.05000,  R15  0.10000,
  77              R16  0.30000,  R17  0.50000,  R18  1.00000,  R19  2.50000,
  78              R20  5.00000,  R21  10.0000,  R22  15.    ,  R23  20.
  79              R24  40.    ,  R25  80./
  80  
  81   PARAMETER OUTPUT(*,RAPS) RESULTS FROM MODEL RUNS WITH VARYING RAP
  82  
  83   OPTION SOLPRINT = OFF;
  84  
  85   LOOP (RAPS,RAP=RISKAVER(RAPS);
  86          SOLVE EVPORTFOL USING NLP MAXIMIZING OBJ ;
  87          VAR = SUM(STOCK, SUM(STOCKS,
  88              INVEST.L(STOCK)* COVAR(STOCK,STOCKS) * INVEST.L(STOCKS))) ;
  89          OUTPUT("OBJ",RAPS)=OBJ.L;
  90          OUTPUT("RAP",RAPS)=RAP;
  91          OUTPUT(STOCKS,RAPS)=INVEST.L(STOCKS);
  92          OUTPUT("MEAN",RAPS)=SUM(STOCKS, MEAN(STOCKS)*INVEST.L(STOCKS));
  93          OUTPUT("VAR",RAPS) = VAR;
  94          OUTPUT("STD",RAPS)=SQRT(VAR);
  95          OUTPUT("SHADPRICE",RAPS)=INVESTAV.M;
  96          OUTPUT("IDLE",RAPS)=FUNDS-INVESTAV.L
  97                );
  98   DISPLAY OUTPUT;
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Table 14.4. E-V Example Solutions for Alternative Risk Aversion Parameters

RAP             0         0.00025      0.0005     0.00075       0.001
BUYSTOCK2                               1.263       5.324       7.355
BUYSTOCK3      17.857      17.857      16.504      12.152       9.977
OBJ           148.214     143.287     138.444     135.688     134.245
MEAN          148.214     148.214     146.581     141.331     138.705
VAR         19709.821   19709.821   16274.764    7523.441    4460.478
STD           140.392     140.392     127.573      86.738      66.787
SHADPRICE       0.296       0.277       0.261       0.260       0.260

RAP            0.0015       0.002       0.003       0.005       0.010
BUYSTOCK2       9.386      10.401      11.416      12.229      12.838
BUYSTOCK3       7.801       6.713       5.625       4.755       4.102
OBJ           132.671     131.753     130.575     129.005     125.999
MEAN          136.080     134.767     133.454     132.404     131.617
VAR          2272.647    1506.907     959.949     679.907     561.764
STD            47.672      38.819      30.983      26.075      23.702
SHADPRICE       0.259       0.257       0.255       0.251       0.241

RAP             0.011       0.012       0.015       0.025       0.050
BUYSTOCK1                               1.273       4.372       4.405
BUYSTOCK2      12.893      12.960      12.420      11.070       8.188
BUYSTOCK3       4.043       3.972       3.550       2.561       1.753
BUYSTOCK4                                                       4.168
OBJ           125.441     124.614     123.380     120.375     116.805
MEAN          131.545     131.459     129.839     125.939     121.656
VAR           554.929     547.587     430.560     222.576      97.026
STD            23.557      23.401      20.750      14.919       9.850
SHADPRICE       0.239       0.236       0.234       0.230       0.224

RAP             0.100       0.300       0.500       1.000       2.500
BUYSTOCK1       4.105       3.905       3.865       3.835       1.777
BUYSTOCK2       6.488       5.354       5.128       4.958       2.289
BUYSTOCK3       1.340       1.064       1.009       0.968       0.446
BUYSTOCK4       6.829       8.602       8.957       9.223       4.296
OBJ           113.118     102.254      92.010      66.674      27.185
MEAN          119.327     117.774     117.463     117.230      54.370
VAR            62.086      51.734      50.905      50.556      10.874
STD             7.879       7.193       7.135       7.110       3.298
SHADPRICE       0.214       0.173       0.133       0.032           0
IDLE FUNDS                                                    268.044

Notes: RAP is the risk aversion parameter (M) value
Stocki gives the amount invested in stocki
Obj gives the objective function value
Mean gives expected income
Var gives the variance of income
STD gives the standard deviation of income
Shadprice gives the shadow price on the capital available constraint
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Table 14.5. Deviations from the Mean for Portfolio
Example

Stock1 Stock2 Stock3 Stock4

Event1 2.3 -1.6 -0.3 -0.8 

Event2 3.3 -3.6 7.7 0.2 

Event3 -0.7 0.4 5.7 0.2 

Event4 0.3 1.4 -10.3 1.2 

Event5 1.3 -0.6 4.7 0.2 

Event6 -1.7 2.4 2.7 -0.8 

Event7 -2.7 4.4 -10.3 0.2 

Event8 0.3 -3.6 9.7 0.2 

Event9 -0.7 -0.6 3.7 -0.8 

Event10 -1.7 1.4 -13.3 0.2 
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Max 4.70 X1 % 7.60 X2 % 8.30 X3 % 5.80 X4 & ( F

s.t. 22 X1 % 30 X2 % 28 X3 % 26 X4 # 500

%2.300 X1 &1.600 X2 &0.300 X3 &0.800 X4 %d &

1 $ 0

%3.300 X1 &3.600 X2 %7.700 X3 %0.200 X4 %d &

2 $ 0

&0.700 X1 %0.400 X2 %5.700 X3 %0.200 X4 %d &

3 $ 0

%0.300 X1 %1.400 X2 &10.300 X3 %1.200 X4 %d &

4 $ 0

%1.300 X1 &0.600 X2 %4.700 X3 %0.200 X4 %d &

5 $ 0

&1.700 X1 %2.400 X2 %2.700 X3 &0.800 X4 %d &

6 $ 0

&2.700 X1 %4.400 X2 &10.300 X3 %0.200 X4 %d &

7 $ 0

%0.300 X1 &3.600 X2 %9.700 X3 %0.200 X4 %d &

8 $ 0

&0.700 X1 &0.600 X2 %3.700 X3 &0.800 X4 %d &

9 $ 0

&1.700 X1 %1.400 X2 &13.300 X3 %0.200 X4 %d &

10 $ 0

'
k

d &

k & TND ' 0

) TND & F ' 0

Table 14.6. Example MOTAD Model Formulation
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Table 14.7. MOTAD Example Solutions for Alternative Risk Aversion Parameters

RAP                         0.050       0.100       0.110       0.120
BUYSTOCK2                                                      11.603
BUYSTOCK3      17.857      17.857      17.857      17.857       5.425
OBJ           148.214     140.146     132.078     130.464     129.390
MEAN          148.214     148.214     148.214     148.214     133.213
MAD           122.143     122.143     122.143     122.143      24.111
STDAPPROX     161.367     161.367     161.367     161.367      31.854
VAR         19709.821   19709.821   19709.821   19709.821     883.113
STD           140.392     140.392     140.392     140.392      29.717
SHADPRICE       0.296       0.280       0.264       0.261       0.259

RAP             0.130       0.150       0.260       0.400       0.500
BUYSTOCK1                                                       2.663
BUYSTOCK2      11.603      11.603      11.916      12.379      10.985
BUYSTOCK3       5.425       5.425       5.090       4.594       3.995
OBJ           129.072     128.435     125.179     121.204     118.606
MEAN          133.213     133.213     132.809     132.210     129.161
MAD            24.111      24.111      22.212      20.827      15.979
STDAPPROX      31.854      31.854      29.345      27.515      21.110
VAR           883.113     883.113     771.228     643.507     455.983
STD            29.717      29.717      27.771      25.367      21.354
SHADPRICE       0.258       0.257       0.250       0.242       0.237

RAP             0.750       1.000       1.250       1.500       1.750
BUYSTOCK1       5.145       7.119       2.817       2.817       2.817
BUYSTOCK2      10.409       9.879       5.617       5.617       5.617
BUYSTOCK3       2.661       1.564       1.824       1.824       1.824
BUYSTOCK4                   0.123       8.402       8.402       8.402
OBJ           114.168     111.009     108.372     106.086     103.801
MEAN          125.384     122.240     119.799     119.799     119.799
MAD            11.320       8.501       6.920       6.920       6.920
STDAPPROX      14.955      11.231       9.142       9.142       9.142
VAR           211.996     121.386      83.886      83.886      83.886
STD            14.560      11.018       9.159       9.159       9.159
SHADPRICE       0.228       0.222       0.217       0.212       0.208

RAP             2.000       2.500       5.000      10.000      12.500
BUYSTOCK1       2.817       2.817       2.858       2.858       2.858
BUYSTOCK2       5.617       5.617       4.178       4.178       4.178
BUYSTOCK3       1.824       1.824       1.242       1.242       1.242
BUYSTOCK4       8.402       8.402      10.654      10.654      10.654
OBJ           101.515      96.944      76.540      35.790      15.415
MEAN          119.799     119.799     117.289     117.289     117.289
MAD             6.920       6.920       6.169       6.169       6.169
STDAPPROX       9.142       9.142       8.150       8.150       8.150
VAR            83.886      83.886      57.695      57.695      57.695
STD             9.159       9.159       7.596       7.596       7.596
SHADPRICE       0.203       0.194       0.153       0.072       0.031

Note: The abbreviations are the same as in Table 14.4 with the addition of MAD which gives the mean
absolute deviation and STDAPPROX which gives the standard deviation approximation. 
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Max 4.70 X1 % 7.60 X2 % 8.30 X3 % 5.80 X4

s.t. 22 X1 % 30 X2 % 28 X3 % 26 X4 # 500

7 X1 % 6 X2 % 8 X3 % 5 X4 $ S

8 X1 % 4 X2 % 16 X3 % 6 X4 $ S

4 X1 % 8 X2 % 14 X3 % 6 X4 $ S

5 X1 % 9 X2 & 2 X3 % 7 X4 $ S

6 X1 % 7 X2 % 13 X3 % 6 X4 $ S

3 X1 % 10 X2 % 11 X3 % 5 X4 $ S

2 X1 % 12 X2 & 2 X3 % 6 X4 $ S

5 X1 % 4 X2 % 18 X3 % 6 X4 $ S

4 X1 % 7 X2 % 12 X3 % 5 X4 $ S

3 X1 % 9 X2 & 5 X3 % 6 X4 $ S

Table 14.8. Example Formulation of Safety First Problem

Table 14.9. Safety First Example Solutions for Alternative Safety Levels

RUIN         -100.000     -50.000       0.0        25.000      50.000
BUYSTOCK2        0.0        2.736       6.219       7.960       9.701
BUYSTOCK3      17.857      14.925      11.194       9.328       7.463
OBJ           148.214     144.677     140.174     137.923     135.672
MEAN          148.214     144.677     140.174     137.923     135.672
VAR         19709.821   12695.542    6066.388    3717.016    2011.116
STD           140.392     112.674      77.887      60.967      44.845
SHADPRICE       0.296       0.280       0.280       0.280       0.280

Note: The abbreviations are the same as in the previous example solutions with RUIN giving the safety
level.
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Max 4.70 X1 % 7.60 X2 % 8.30 X3 % 5.80 X4

s.t. 22 X1 % 30 X2 % 28 X3 % 26 X4 # 500

7 X1 % 6 X2 % 8 X3 % 5 X4 % Dev1 $ T

8 X1 % 4 X2 % 16 X3 % 6 X4 % Dev2 $ T

4 X1 % 8 X2 % 14 X3 % 6 X4 % Dev3 $ T

5 X1 % 9 X2 & 2 X3 % 7 X4 % Dev4 $ T

6 X1 % 7 X2 % 13 X3 % 6 X4 % Dev5 $ T

3 X1 % 10 X2 % 11 X3 % 5 X4 % Dev6 $ T

2 X1 % 12 X2 & 2 X3 % 6 X4 % Dev7 $ T

5 X1 % 4 X2 % 18 X3 % 6 X4 % Dev8 $ T

4 X1 % 7 X2 % 12 X3 % 5 X4 % Dev9 $ T

3 X1 % 9 X2 & 5 X3 % 6 X4 % Dev10 $ T

'
k

Devk # 8

Table 14.10. Example Formulation of Target MOTAD Problem
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Table 14.11. Target MOTAD Example Solutions for Alternative Deviation Limits

TARGETDEV     120.000      60.000      24.000      12.000      10.800
BUYSTOCK2       0.0         0.0         7.081      10.193      10.516
BUYSTOCK3      17.857      17.857      10.270       6.936       6.590
OBJ           148.214     148.214     139.059     135.037     134.618
MEAN          148.214     148.214     139.059     135.037     134.618
VAR         19709.821   19709.821    4822.705    1646.270    1433.820
STD           140.392     140.392      69.446      40.574      37.866
SHADPRICE       0.296       0.296       0.286       0.295       0.295

TARGETDEV       8.400       7.200       3.600
BUYSTOCK1       0.0         0.0         3.459
BUYSTOCK2      11.259      11.782      11.405
BUYSTOCK3       5.794       5.234       2.919
OBJ           133.659     132.982     127.168
MEAN          133.659     132.982     127.168
VAR          1030.649     816.629     277.270
STD            32.104      28.577      16.651
SHADPRICE       0.298       0.298       0.815

Note:  The abbreviations are again the same with TARGETDEV giving the 8 value. 



copyright Bruce A. McCarl and Thomas H. Spreen 14-48

Max '
k

(Wk)
power

s.t. 22 X1 % 30 X2 % 28 X3 % 26 X4 # 500

W1 & 7 X1 & 6 X2 & 8 X3 & 5 X4 ' 100

W2 & 8 X1 & 4 X2 & 16 X3 & 6 X4 ' 100

W3 & 4 X1 & 8 X2 & 14 X3 & 6 X4 ' 100

W4 & 5 X1 & 9 X2 % 2 X3 & 7 X4 ' 100

W5 & 6 X1 & 7 X2 & 13 X3 & 6 X4 ' 100

W6 & 3 X1 & 10 X2 & 11 X3 & 5 X4 ' 100

W7 & 2 X1 & 12 X2 % 2 X3 & 6 X4 ' 100

W8 & 5 X1 & 4 X2 & 18 X3 & 6 X4 ' 100

W9 & 4 X1 & 7 X2 & 12 X3 & 5 X4 ' 100

W10 & 3 X1 & 9 X2 % 5 X3 & 6 X4 ' 100

Table 14.12. Example Formulation of DEMP Problem
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Table 14.13. DEMP Example Solutions for Alternative Utility Function Exponents

POWER           0.950       0.900       0.750       0.500       0.400
BUYSTOCK2                               4.560       8.563       9.344
BUYSTOCK3      17.857      17.857      12.972       8.683       7.846
OBJ           186.473     140.169      60.363      15.282       8.848
MEAN          248.214     248.214     242.319     237.144     236.134
VAR         19709.821   19709.821    8903.295    3054.034    2309.233
STD           140.392     140.392      94.357      55.263      48.054
SHADPRICE       0.287       0.277       0.269       0.266       0.265

POWER           0.300       0.200       0.100       0.050       0.030
BUYSTOCK2       9.919      10.358      10.705      10.852      10.907
BUYSTOCK3       7.230       6.759       6.388       6.230       6.171
OBJ             5.127       2.972       1.724       1.313       1.177
MEAN          235.390     234.822     234.374     234.184     234.113
VAR          1843.171    1534.736    1320.345    1236.951    1207.076
STD            42.932      39.176      36.337      35.170      34.743
SHADPRICE       0.264       0.264       0.263       0.263       0.263

POWER           0.020       0.010       0.001      0.0001
BUYSTOCK2      10.934      10.960      10.960      10.960
BUYSTOCK3       6.143       6.115       6.115       6.115
OBJ             1.115       1.056       1.005       1.001
MEAN          234.079     234.045     234.045     234.045
VAR          1192.805    1178.961    1178.961    1178.961
STD            34.537      34.336      34.336      34.336
SHADPRICE       0.263       0.263       0.263         0

Note:  The abbreviations are again the same with POWER giving the exponent used.
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    Table 14.14. Chance Constrained Example Data

Event Small Lathe Large Lathe Carver

1 140 90 120

2 120 94 132

3 133 88 110

4 154 97 118

5 133 87 133

6 142 86 107

7 155 90 120

8 140 94 114

9 142 89 123

10 141 85 123

Mean 140 90 120

Standard Error 9.63 3.69 8.00

Table 14.15. Chance Constrained Example Solutions for Alternative Alpha Levels

Z"               0.00       1.280       1.654       2.330

PROFIT       10417.291    9884.611    9728.969    9447.647

SMLLATHE       140.000     127.669     124.067     117.554
LRGLATHE        90.000      85.280      83.900      81.407
CARVER         120.000     109.760     106.768     101.360
LABOR          125.000     125.000     125.000     125.000

FUNCTNORM       62.233      78.102      82.739      91.120
FANCYNORM       73.020      51.495      45.205      33.837
FANCYMXLRG       5.180       6.788       7.258       8.108

Note:  Z" is the risk aversion parameter.
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Table 14.16. Feed Nutrients by State of Nature for Wicks Guise Example

 Nutrient  State       CORN   SOYBEANS   WHEAT
ENERGY     S1         1.15     0.26     1.05
ENERGY     S2         1.10     0.31     0.95
ENERGY     S3         1.25     0.23     1.08
ENERGY     S4         1.18     0.28     1.12

    
PROTEIN    S1         0.23     1.12     0.51
PROTEIN    S2         0.17     1.08     0.59
PROTEIN    S3         0.25     1.01     0.46
PROTEIN    S4         0.15     0.99     0.56



copyright Bruce A. McCarl and Thomas H. Spreen 14-52

Corn Soybeans Wheat EnDev EnMAD EnF PrDev PrMAD PrF

Objective 0.03 0.06 0.04

Volume 1 1 1 ' 1

Energy 1.17 0.27 1.05 & N $ 0.8

Protein 0.20 1.05 0.53 & N $ 0.5

Energys1 &0.02 &0.01 %0.00 & d %

e1 %d &

e1 ' 0

Energys2 &0.07 %0.04 &0.10 & d %

e2 %d &

e2 ' 0

Energys3 %0.08 &0.04 %0.03 & d %

e3 %d &

e3 ' 0

Energys4 %0.01 %0.01 %0.07 & d %

e4 %d &

e4 ' 0

EnergyMAD '
k

(d %

ek %d &

ek)/4 & 1 ' 0

EnergyF & ) % 1 ' 0

Proteins1 &0.02 &0.01 %0.00 & d %

p1 %d &

p1 ' 0

Proteins2 &0.07 %0.04 &0.10 & d %

p2 %d &

p2 ' 0

Proteins3 %0.08 &0.04 %0.03 & d %

p3 %d &

p3 ' 0

Proteins4 %0.01 %0.01 %0.07 & d %

p4 %d &

p4 ' 0

ProteinMAD '
k

(d %

pk %d &

pk)/4 & 1 ' 0

ProteinF & ) % 1 ' 0

Table 14.17. Wicks Guise Example

Note: EnDev is the energy deviation
EnMAD is the energy mean absolute deviation
EnF is the energy standard deviation approximations
PrDev is the protein deviation
PrMAD is the protein mean absolute deviation
PrF is the protein standard deviation approximation
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Table 14.18. Results From Example Wicks Guise Model Runs With Varying RAP

RAP                          0.250       0.500       0.750       1.000
CORN             0.091       0.046       0.211       0.230       0.221
SOYBEANS                                 0.105       0.129       0.137
WHEAT            0.909       0.954       0.684       0.641       0.642
OBJ              0.039       0.040       0.040       0.040       0.041
AVGPROTEIN       0.500       0.515       0.515       0.521       0.529
STDPROTEIN       0.054       0.059       0.030       0.028       0.029
AVGENERGY        1.061       1.056       0.993       0.977       0.969
STDENERGY        0.072       0.072       0.061       0.059       0.058
SHADPROT         0.030       0.033       0.036       0.037       0.038

         
RAP              1.250       1.500       2.000
CORN             0.211       0.200       0.177
SOYBEANS         0.146       0.156       0.176
WHEAT            0.643       0.644       0.647
OBJ              0.041       0.041       0.042
AVGPROTEIN       0.536       0.545       0.563
STDPROTEIN       0.029       0.030       0.031
AVGENERGY        0.961       0.953       0.934
STDENERGY        0.057       0.056       0.055
SHADPROT         0.039       0.040       0.042

Note: RAP gives the risk aversion parameter used
CORN gives the amount of corn used in the solution
SOYBEANS gives the amount of soybeans used in the solution
WHEAT gives the amount of wheat used in the solution
OBJ gives the objective function value
AVGPROTEIN gives the average amount of protein in the diet
STDPROTEIN gives the standard error of protein in the diet
AVGENERGY gives the average amount of energy in the diet
STDENERGY gives the standard error of energy in the diet
SHADPROT gives the shadow price on the protein requirement constraint 
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Table 14.19. Data on Uncertain Parameters in First SPR Example

Value Under

Parameter State of Nature 1 State of Nature 2

Probability .6 .4

Corn Yield in bu 100 105

Wheat Yield in bu 40 38

Corn Harvest Rate hours per bu .010 .015

Wheat Harvest Rate hours per bu .030 .034

Corn Price per bu 3.25 2.00

Wheat Price per bu 5.00 6.00

Harvest Time hours 122 143

Table 14.20. Risk Free Formulation of First SPR Example

Grow
Corn

Grow
Wheat

Income Harvest Corn Harvest
Wheat

RHS

Objective 1

Land 1 1 # 100

Corn Yield
Balance

-yieldc 1 # 0

Wheat Yield
Balance

-yieldw 1 # 0

Harvest Hours +harvtimec +harvtimew # harvavail

Income -100 -60 -1 +pricec +pricew = 0
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Table 14.21. Formulation of First SPR Example

State 1 State 2

Grow
Corn

Grow
Wht.

Inc. s1 Harv
Corn 
s1

Harv 
Wht
 s1

Inc. s2 Harv
Corn 
s2

Harv 
Wht
 s2

RHS

Objective .6 .4 max

Land 1 1 # 100

S 
t 
a 
t 
e
1

Corn s1 -100 1 # 0

Wheat s1 -40 1 # 0

Harvest Hours s1 .010 .030 # 122

Income s1 -100 -60 -1 3.25 5.00 = 0

S 
t 
a 
t 
e
2

Corn s2 -105 1 # 0

Wheat s2 -38 1 # 0

Harvest Hours s2 .015 .034 # 143

Income s2 -100 -60 -1 2.00 6.00 = 0
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Table 14.22. Solution of First SPR Example

Equation Slack Shadow Price

Objective 16476

Land 0 24.28

Corn s1 0 -1.95

Wheat s1 0 0.67

Harvest Hours s1 11.75 0

Income s1 0 -0.6

Corn s2 0 -3.00

Wheat s2 0 0.94

Harvest Hours s2 0 98.23

Income s2 0 -0.4

Variable
Solution 

Value
Marginal

Cost

Grow Corn 48.8 0

Grow Wheat 51.2 0

Income S1 18144 0

Harvest Corn s1 4876 0

Harvest Wheat s1 2049 0

Income S2 13972 0

Harvest Corn s2 5120 0

Harvest Wheat s2 1947 0
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Table 14.23. Second SPR Example Formulation (Partial Tableau)

Corn Soy Wht Avg
Cost

Pos
Prot
Dev
s1

Neg
Prot
Dev
s1

Pos
Eng
Dev
s1

Neg
Eng
Dev
s1

Cost
s1

Pos
Cost
Dev
s1

Neg
s

Cost
Dev
s1

Pos
Prot
Dev
s2

Neg
Prot
Dev
s2

Pos
Eng
Dev
s2

Neg
Eng
Dev
s2

Cost
s2

Pos
Cost
Dev
s2

Neg
Cost
Dev
s2

Objective 1 + + + +

Total Feed 1 1 1 = 1

Average Cost 1 -.25 -.25 = 0

Protein-s1 0.23 1.12 0.51 -1 1 = 0.6

Energy -s1 1.15 0.26 1.05 -1 1 = 0.9

Cost-s1 0.03 0.06 0.04 0.50 1.50 1.00 0.10 -1 = 0

Cost dev s1 -1 1 -1 1 = 0

Protein-s2 0.17 1.08 0.59 -1 1 = 0.6

Energy -s2 1.10 0.31 0.95 -1 1 = 0.9

Cost-s2 .03 .06 .04 0.50 1.50 1.00 0.10 -1 = 0

Cost dev s2 -1 1 -1 1 = 0
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Table 14.24. Second SPR Example Risk Neutral Solution

Slack
Shadow

Price Slack
Shadow

Price

Objective 0.067 Corn Purchase 0.283 0

Total Feed 0 -0.14 Soybean Purchase 0.362 0

Average Cost 0.00 1. Wheat Purchase 0.355 0

Protein-s1 0 0.125 Average Cost 0.067 0

Energy -s1 0 0.025 Pos Protein Dev s1 0.052 0

Cost-s1 0 252.66 Neg Protein Dev s1 0. 0.50

Cost dev s1 0 0.00 Pos Energyn Dev s1 0.00 0

Protein-s2 0 0.125 Neg Energy Dev s1 0.108 0

Energy -s2 0 0.025 Cost - s1 0.081 0

Cost-s2 0 0.25 Pos Cost Dev - s1 0.014 0

Cost dev s2 0 0 Neg Cost Dev - s1 0.00 0

Protein-s3 0 -.366 Pos Protein Dev s2 0.049 0

Energy -s3 0 0.025 Neg Protein Dev s2 0.000 0.50

Cost-s3 0 0.25 Pos Energyn Dev s2 0. 0.275

Cost dev s3 0 0 Neg Energyn Dev s2 0.140 0

Protein-s4 0 .08 Cost - s2 0.083 0

Energy -s4 0 .025 Pos Cost Dev - s2 .016 0

Cost-s4 0 0.25 Neg Cost Dev - s2 0.00 0

Cost dev s4 0 0.00 Pos Protein Dev s3 0. 0.491

Neg Protein Dev s3 0. 0.009

Pos Energy Dev s3 0.275

Neg Energy Dev s3 0.080 0

Cost - s3 0.052 0

Pos Cost Dev - s3 0.00 0

Neg Cost Dev - s3 0.014 0

Pos Protein Dev s4 0. 0.205

Neg Protein Dev s4 0. 0.295

Pos Energyn Dev s4 0. 0.275

Neg Energy Dev s4 0.067 0

Cost - s4 0.051 0

Pos Cost Dev - s4 0. 0

Neg Cost Dev - s4 0.016 0
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Table 14.25. SPR Second Example Problem Soution Under Varying Risk
Aversion

RAP     0 0.1 0.2 0.3 0.4 0.500 0.600

Corn    0.283 0.249 0.245 0.244 0.288 0.296 0.297
Soybeans 0.362 0.330 0.327 0.326 0.340 0.342 0.342

Wheat   0.355 0.422 0.428 0.430 0.372 0.363 0.361
Avgcost 0.067 0.067 0.067 0.067 0.071 0.071 0.071

Cost s1  0.081 0.074 0.073 0.073 0.071 0.071 0.071
Cost s2  0.083 0.080 0.080 0.080 0.074 0.073 0.073

Cost s3  0.052 0.066 0.067 0.068 0.071 0.071 0.071
Cost s4  0.051 0.048 0.048 0.048 0.067 0.070 0.071

Std Error 0.015 0.012 0.012 0.012 0.002 0.001 0.001

     RAP is the risk aversion parameter.
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Table 14.26. Example Tableau for Third SPR Problem

Average

Ending

Net

Worth

Period 1 Period 2 Stage 3

Period 2 State 1 Period 2 State 2

State 1 State 2

Period 3 State A  Period 3  State B Period 3  State A Period 3  State B

Sell Keep Sell Keep Sell Keep Sell End

Worth

Sell End

Worth

Sell End

Worth

Sell End

Worth

Objective 1 max

Starting Stock 1 1 # 100

Avg End Worth 1 -0.42 -0.28 -0.21 -0.09 = 0

Stock Kept pd 1 to 2 s1 -1 1 1 # 0

Stock Kept pd 1 to 2 s2 -1 1 1 # 0 

P2

S1

Stock Kept pd 2 to 3

s1-sA

-1 1 # 0 

Ending Worth s1-sA 2.1412 2.332 2.18 -1 = 0 

Stock Kept pd 2 to 3

s1-sB

-1 1 # 0 

Ending Worth s1-sB 2.1008 2.288 2.44 -1 = 0 

P2

S2

Stock Kept pd 2 to 3

s2-sA

-1 1 # 0 

Ending Worth s2-sA 2.1828 2.193 2.18 -1 = 0 

Stock Kept pd 2 to 3

s2-sB

-1 1 # 0 

Ending Worth s2-sB 2.1012 2.111 2.44 -1 = 0 
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Table 14.27. Solution for Third SPR Example

Variable Value Reduced Cost Variable Slack Shadow Price

Average Ending Net Worth 229.748 0 Objective 229.748

Sell In Period 1 0 -0.162 Starting Stock 0 2.297

Keep From Period 1 to 2 100 0 Avg End Worth 0 1

Sell In Period 2 Under State 1 100 0 Stock Kept pd 1 to 2 s1 0 1.62

Keep From Period 2 to 3 Under State 1 0 -0.021 Stock Kept pd 1 to 2 s1 0 0.677

Sell In Period 2 Under State 2 0 -0.027 Stock Kept pd 2 to 3 s1-s1 0 0.916

Keep From Period 2 to 3 Under State 2 100 0 Ending Worth s1-s1 0 -0.42

Sell in Period 3 Under State 1 -- State A 0 0 Stock Kept pd 2 to 3 s1-s2 0 0.683

Ending Worth Under State 1 -- State A 233.2 0 Ending Worth s1-s2 0 -0.28

Sell In Period 3 Under State 1 -- State B 0 0 Stock Kept pd 2 to 3 s2-s1 0 0.458

Ending Worth Under State 1 -- State B 228.8 0 Ending Worth s2-s1 0 -0.21

Sell In Period 3 Under State 2 -- State A 100 0 Stock Kept pd 2 to 3 s2-s2 0 0.22

Ending Worth Under State 2 -- State A 218 0 Ending Worth s2-s2 0 -0.09

Sell In Period 3 Under State 2 -- State B 100 0

Ending Worth Under State 2 -- State B 244 0
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14.1. E-V Model Efficient Frontier

0 20 40 60 80 100 120 140
50

60

70

80

90

100

110

120

130

140

150

Standard Deviation

M
ea

n

Figure 14.2. E-V and MOTAD Efficient Frontiers
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Figure 14.3.Decision Tree for Sequential Programming Example
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Max C1W % C2X % C3Y

s.t. A1W % A2X % A3Y # b

W $ 0

X $ 0 and integer

Y ' 0 or 1

CHAPTER XV:  APPLIED INTEGER PROGRAMMING

LP assumes continuity of the solution region.  LP decision variables can equal whole numbers or any

other real number (3 or 4 as well as 3.49876).  However, fractional solutions are not always acceptable. 

Particular items may only make sense when purchased in whole units (e.g., tractors, or airplanes).  Integer

programming (IP) requires a subset of the decision variables to take on integer values (i.e., 0, 1, 2, etc.).  IP

also permits modeling of fixed costs, logical conditions, discrete levels of resources and nonlinear

functions. 

IP problems usually involve optimization of a linear objective function subject to linear constraints,

nonnegativity conditions and integer value conditions.  The integer valued variables are called integer

variables.  Problems containing integer variables fall into several classes.  A problem in which all variables

are integer is a pure integer IP problem.  A problem with some integer and some continuous variables, is a

mixed-integer IP problem.  A problem in which the integer variables are restricted to equal either zero or

one is called a zero-one IP problem.  There are pure zero-one IP problems where all variables are zero-one

and mixed zero-one IP problems containing both zero-one and continuous variables.  The most general

formulation of the IP problem is: 

where the W's represent continuous variables; the X's integer variables, and the Y's zero-one variables.

Our coverage of integer programming is divided into two chapters.  This chapter covers basic integer

programming problem formulation techniques, and a few characteristics relative to the solution and

interpretation of integer programming problems.  The next chapter goes into a set of example problems.

15.1 Why Integer Programming

The most fundamental question regarding the use of integer programming (IP) is why use it.  Obviously,

IP allows one to depict discontinuous decision variables, such as those representing acquisition of

indivisible items such as machines, hired labor or animals.  In addition, IP also permits modeling of fixed

costs, logical conditions, and discrete levels of resources as will be discussed here.

15.1.1 Fixed Cost

Production processes often involve fixed costs.  For example, when manufacturing multiple products,
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Max CX & FY

s.t. X & MY # 0

X $ 0

Y ' 0 or 1

fixed costs may arise when shifting production between products (i.e., milk plant operators must incur

cleaning costs when switching from chocolate to white milk).  Fixed costs can be modeled using the

following mixed integer formulation strategy: 

Let: X denote the continuous number of units of a good produced;

Y denote a zero-one variable indicating whether or not fixed costs are incurred;

C denote the per unit revenue from producing X;

F denote the fixed cost incurred when producing a nonzero quantity of regardless of how

many units are produced; and

M denote a large number.

The formulation below depicts this problem:

Here, when X = 0, the constraint relating X and Y allows Y to be 0 or 1.  Given F > 0 then the objective

function would cause Y to equal 0.  However, when 0 < X# M, then Y must equal 1.  Thus, any non-zero

production level for X causes the fixed cost (F) to be incurred.  The parameter M is an upper bound on the



copyright Bruce A. McCarl and Thomas H. Spreen 15-3

production of X (a capacity limit). 

The fixed cost of equipment investment may be modeled similarly.  Suppose one is modeling the

possible acquisition of several different-sized machines, all capable of doing the same task.  Further,

suppose that per unit profits are independent of the machine used, that production is disaggregated by

month, and that each machine's monthly capacity is known.  This machinery acquisition and usage decision

problem can be formulated as: 
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Max '
m

CmXm & '
k

FkYk

s.t. Xm & '
k

CapkmYk # 0 for all m

Xm $ 0, Yk ' 0 or 1 for all k and m,
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'
i

Xi & MY # 0

where m denotes month, k denotes machine, Cm is the profit obtained from production in month m; Xm is

the quantity produced in month m; Fk is the annualized fixed cost of the kth machine; Yk is a zero-one 

variable indicating whether or not the kth machine is purchased; and Capkm is the capacity of the kth machine

in the mth month. 

The overall formulation maximizes annual operating profits minus fixed costs subject to

constraints that permit production only when machinery has been purchased.  Purchase of several

machinery items with different capacity characteristics is allowed.  This formulation permits Xm to be

non-zero only when at least one Yk is non-zero.  Again, machinery must be purchased with the fixed cost

incurred before it is used.  Once purchased any machine allows production up to its capacity in each of the

12 months.  This formulation illustrates a link between production and machinery purchase (equivalently

purchase and use of a piece of capital equipment) through the capacity constraint.  One must be careful to

properly specify the fixed costs so that they represent the portion of cost incurred during the time-frame of

the model. 

15.1.2 Logical Conditions

IP also allows one to depict logical conditions.  Some examples are: 

a) Conditional Use - A warehouse can be used only if constructed.

b) Complementary Products - If any of product A is produced, then a minimum quantity of

product B must be produced.         

c) Complementary Investment - If a particular class of equipment is purchased then only

complementary equipment can be acquired.

d) Sequencing - Operation A must be entirely complete before operation B starts.

All of these conditions can be imposed using a zero-one indicator variable.  An indicator variable

tells whether a sum is zero or nonzero.  The indicator variable takes on a value of one if the sum is nonzero

and zero otherwise.  An indicator variable is imposed using a constraint like the following: 

where M is a large positive number, Xi depicts a group of continuous variables, and Y is an indicator

variable restricted to be either zero or one.  The indicator variable Y indicates whether or not any of the X's

are non-zero with Y=1 if so, zero otherwise.  Note this formulation requires that M must be as large as any

reasonable value for the sum of the X's.  

Indicator variables may be used in many ways.  For example, consider a problem involving two

mutually exclusive products, X and Z.  Such a problem may be formulated using the constraints 
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X & MY1 # 0

Z & MY2 # 0

Y1 % Y2 # 1

X, Z $ 0

Y1, Y2 ' 0 or 1

either A1X # b1

or A2X # b2

A1X & MY # b1

A2X & M(1&Y) # b2

X $ 0, Y ' 0 or 1

A1X & MY # b1

A2X % MY # b2 % M

X $ 0, Y ' 0 or 1

Here, Y1 indicates whether or not X is produced, while Y2 indicates whether or not Z is produced.  The

third constraint, Y1 + Y2 # 1, in conjunction with the zero-one restriction on Y1 and Y2, imposes mutual

exclusivity.  Thus, when Y1 = 1 then X can be produced but Z cannot.  Similarly, when Y2 = 1 then X must

be zero while 0 # Z # M.  Consequently, either X or Z can be produced, but not both. 

15.1.2.1 Either-or-Active Constraints

Many types of logical conditions may be modeled using indicator variables and mutual exclusivity. 

Suppose only one of two constraints is to be active, i.e.,

Formulation of this situation may be accomplished utilizing the indicator variable Y as follows   

This is rewritten as

Here M is a large positive number and the value of Y indicates which constraint is active.  When Y = 1 the

second constraint is active while the first constraint is removing it from active consideration.  Conversely,

when Y = 0 the first constraint is active. 

15.1.2.2 An Aside: Mutual Exclusivity

The above formulation contains a common trick for imposing mutual exclusivity.  The formulation

could have been written as: 
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A1X & MY1 # b1

A2X & MY2 # b2

Y1 % Y2 ' 1

X $ 0, Y1, Y2 ' 0 or 1 .

A1 X & MY1 # b1

A2 X & M(1& Y1 ) # b2

A1X & MY1 # b1

A2X & MY2 # b2

:

:

AKX & MYK # bK

'
i
Yi ' K&P

X $ 0, Yi ' 0 or 1 for all i

'
i
Xi & MZ # 0

'
k
Yk & RZ $ 0

Xi, Yk $ 0, Z ' 0 or 1

However, one can solve for Y2 in the third constraint yielding Y2 = l - Y1. In turn, substituting in the first 

two equations gives 

which is the compact formulation above.  However, Williams (1978b) indicates that the more extensive

formulation will solve faster. 

15.1.2.3 Multiple Active Constraints

The formulation restricting the number of active constraints may be generalized to logical 

conditions where P out of K constraints are active (P < K).  This is represented by 

Here, Yi identifies whether constraint i is active (Yi = 0) or not (Yi = 1).  The last constraint requires

exactly K - P of the K constraints to be non-active, thus P constraints are active. 

15.1.2.4 Conditional Restrictions

Logical conditions and indicator variables are useful in imposing conditional restrictions.  For

example, nonzero values in one group of variables (X) might imply nonzeros for another group of variables

(Y).  This may be formulated as 

Here Xi are the elements of the first group; Z is an indicator variable indicating whether any Xi has been

purchased; Yk are the elements of the second group; and M is a large number.  Z can be zero only if all the
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or

X1 & F1Y1 & F2Y2 & F3Y3 ' 0

X2 & F1(1&Y1) & F2(1&Y2) & F3(1&Y3) ' 0

X2 % F1Y1 % F2Y2 % F3Y3 ' F1 % F2 % F3

Xk $ 0, Yi ' 0 or 1 for all k and i

X & V1Y1 & V2Y2 & V3Y3 ' 0

Y1 % Y2 % Y3 ' 1

X $ 0, Y ' 0 or 1 .

X & Y1 & 2Y2 & 4Y3 & 8Y4 ' 5

X $ 0, Yi ' 0 or 1

X's are 0 and must be one otherwise.  The sum of the Y's must be greater than R if the indicator variable Z

is one. 

15.1.3 Discrete Levels of Resources

Situations may arise where variables are constrained by discrete resource conditions.  For example,

suppose a farm has three fields.  Farmers usually plant each field to a single crop.  Thus, a situation might

require crops to be grown in acreages consistent with entire fields being planted to a single crop.  This

restriction can be imposed using indicator variables.  Assume that there are 3 fields of sizes F1, F2, and F3,

each of which must be totally allocated to either crop 1 (X1) or crop 2 (X2).  Constraints imposing such a

condition are 

The variable Yi indicates whether field i is planted to crop 1 (Yi=1) or crop 2 (Yi=0).  The Xi variables

equal the total acreage of crop i which is planted.  For example, when Y1=1 and Y2, Y3 = 0, then the

acreage of crop 1 (X1) will equal F1 while the acreage of crop 2 (X2) will equal F2 + F3. The discrete

variables insure that the fields are assigned in a mutually exclusive fashion. 

15.1.4 Distinct Variable Values

Situations may require that decision variables exhibit only certain distinct values (i.e., a variable

restricted to equal 2, 4, or 12).  This can be formulated in two ways.  First, if the variable can take on

distinct values which exhibit no particular pattern then: 

Here, the variable X can take on either the discrete value of V1, V2, or V3, where Vi may be any real

number.  The second constraint imposes mutual exclusivity between the allowable values. 

On the other hand, if the values fall between two limits and are separated by a constant interval,

then a different formulation is applicable.  The formulation to be used depends on whether zero-one or

integer variables are used.  When using zero-one variables, a binary expansion is employed.  If, for

example, X were restricted to be an integer between 5 and 20 the formulation would be: 
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X & 'N
k'1

2k&1Yk ' a

&Z % X1 % X2 # 1

2Z & X1 & X2 # 0

Z, X1, X2, ' 0 or 1

Here each Yi is a zero-one indicator variable, and X is a continuous variable, but in the solution, X will

equal an integer value.  When all the Y's equal zero, then X = 5.  If Y2 and Y4 both equal 1 then X = 15. 

Through this representation, any integer value of X between 5 and 20 can occur.  In general through the use

of N zero-one variables, any integer value between the right hand side and the right hand side plus 2N-1 can

be represented.  Thus, the constraint 

restricts X to be any integer number between a and a+2N-1.  This formulation permits one to model general

integer values when using a zero-one IP algorithm. 

15.1.5 Nonlinear Representations

Another usage of IP involves representation of the multiplication of zero-one variables.  A term

involving the product of two zero-one variables would equal one when both integer variables equal one and

zero otherwise.   Suppose Z equals the product of two zero-one variables X1 and X2, 

Z ' X1X2.

We may replace this term by introducing Z as a zero-one variable as follows: 

The first constraint requires that Z+1 be greater than or equal to X1 + X2.  Thus, Z is forced to equal 1 if

both X1 and X2 equal one.  The second constraint requires 2Z to be less than or equal to X1 + X2. This

permits Z to be nonzero only when both X1 and X2 equal one.  Thus, Z will equal zero if either of the

variables equal zero and will equal one when both X1 and X2 are one.  One may not need both constraints,

for example, when Z appears with positive returns in a profit maximizing objective function the first

constraint could be dropped, although as discussed later it can be important to keep many constraints when

doing applied IP. 

15.1.6 Approximation of Nonlinear Functions

IP is useful for approximating nonlinear functions, which cannot be approximated with linear

programming i.e., functions with increasing marginal revenue or decreasing marginal cost.  (LP step

approximations cannot adequately approximate this; the resultant objective function is not concave.) One

can formulate an IP to require the approximating points to be adjacent making the formulation work

appropriately.  If one has four step variables, an adjacency restriction can be imposed as follows: 



     13 We will reference pure IP in this section.
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81 % 82 % 83 % 84 ' 1

81 & Z1 # 0

82 & Z2 # 0

83 & Z3 # 0

84 & Z4 # 0

Z1 % Z2 % Z3 % Z4 # 2

Z1 % Z3 # 1

Z1 % Z4 # 1

Z2 % Z4 # 1

8i $ 0 Zi ' 0 or 1

The lambdas (8) are the approximation step variables; the Zi's are indicator variables indicating whether a

particular step variable is non-zero.  The first constraint containing Z1 through Z4 allows no more than two

nonzero step variables.  The next three constraints prohibit non-adjacent nonzero 8's. 

There is also a second type of nonlinear approximation using zero-one variables.  This will be

demonstrated in the next chapter on economies of scale. 

15.2 Feasible Region Characteristics and Solution Difficulties

IP problems13 are notoriously difficult to solve.  This section supplies insight as to why this is so. 

Nominally, IP problems seem easier to solve than LP problems.  LP problems potentially have an infinite

number of solutions which may occur anywhere in the feasible region either interior, along the constraints,

or at the constraint intersections.  However, it has been shown that LP problems have solutions only at

constraint intersections (Dantzig, 1963).  Thus, one has to examine only the intersections, and the one with

the highest objective function value will be the optimum LP solution.  Further, in an LP given any two

feasible points, all points in between will be feasible.  Thus, once inside the feasible region one need not

worry about finding infeasible solutions.  Additionally, the reduced cost criterion provides a decision rule

which guarantees that the objective function will increase when moving from one feasible point to another

(or at least not decrease).  These properties greatly aid solution. 

However, IP is different.  This is best shown through an example.  Suppose that we define a pure

IP problem with nonnegative integer variables and the following constraints.

2X % 3Y # 16

3X % 2Y # 16.
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& X1 % 7X2 $ 23.1

X1 % 10X2 # 54

A graph of this situation is given by Figure 15.1.  The diamonds in the graph represent the integer points,

which are the potential integer solutions.  Obviously the feasible integer solution points fall below or on the

constraints while simultaneously being above or on the X and Y axes.  For this example the optimal

solution is probably not on the constraint boundaries (i.e. X=Y may be optimal), much less at the constraint

intersections.  This introduces the principal difficulty in solving IP problems.  There is no particular

location for the potential solutions.  Thus, while the equivalent LP problem would have four possible

solutions (each feasible extreme point and the origin), the IP problem has an unknown number of possible

solutions.  No general statement can be made about the location of the solutions.      

A second difficulty is that, given any two feasible solutions, all the points in between are not

feasible (i.e., given [3 3] and [2 4], all points in between are non-integer).  Thus, one cannot move freely

within the IP area maintaining problem feasibility, rather one must discover the IP points and move totally

between them. 

Thirdly, it is difficult to move between feasible points.  This is best illustrated by a slightly 

different example.  Suppose we have the constraints 

where X1 and X2 are nonnegative integer variables.  A graph of the solution space appears in Figure 15.2. 

Note here the interrelationship of the feasible solutions do not exhibit any set patterns.  In the first graph

one could move between the extreme feasible solutions by moving over one and down one.  In Figure 15.2,

different patterns are involved.  A situation which greatly hampers IP algorithms is that it is difficult to

maintain feasibility while searching for optimality.  Further, in Figure 15.2, rounding the continuous

solution  at say (4.6, 8.3) leads to an infeasible integer solution (at 5, 8). 

Another cause of solution difficulties is the discontinuous feasible region.  Optimization theory

traditionally has been developed using calculus concepts.  This is illustrated by the LP reduced cost (Zj-Cj)

criteria and by the Kuhn-Tucker theory for nonlinear programming.  However, in an IP setting, the

discontinuous feasible region does not allow the use of calculus.  There is no neighborhood surrounding a

feasible point that one can use in developing first derivatives.  Marginal revenue-marginal cost concepts are

not readily usable in an IP setting.  There is no decision rule that allows movement to higher valued points. 

Nor can one develop a set of conditions (i.e., Kuhn-Tucker conditions) which characterize optimality.

In summary, IP feasible regions contain a finite number of solution alternatives, however, there is

no rule for either the number of feasible solution alternatives or where they are located.  Solution points

may be on the boundary of the constraints at the extreme points or interior to the feasible region. Further,

one cannot easily move between feasible points.  One cannot derive marginal revenue or marginal cost



copyright Bruce A. McCarl and Thomas H. Spreen 15-12

2X1 % 3X2 # 16

3X1 % 2X2 # 16

X1 $ 0 integer

X2 $ 0

information to help guide the solution search process and to more rapidly enumerate solutions.  This makes

IP's more difficult to solve.  There are a vast number of solutions, the number of which to be explored is

unknown.  Most IP algorithms enumerate (either implicitly or explicitly) all possible integer solutions

requiring substantial search effort.  The binding constraints are not binding in the linear programming

sense.  Interior solutions may occur with the constraint restricting the level of the decision variables. 

15.2.1 Extension to Mixed Integer Feasible Regions

The above comments reference pure IP.  Many of them, however, are also relevant to mixed 

IP.  Consider a graph (Figure 15.3) of the feasible region to the constraints 

The feasible region is a set of horizontal lines for X2 at each feasible integer value of X1.  This yields a

discontinuous area in the X1 direction but a continuous area in the X2 direction.  Thus, mixed integer

problems retain many of the complicating features of pure integer problems along with some of the niceties

of LP problem feasible regions. 

15.3 Sensitivity Analysis and Integer Programming

The reader may wonder, given the concentration of this book on problem formulation and solution

interpretation, why so little was said above about integer programming duality and associated valuation

information.  There are several reasons for this lack of treatment.  Duality is not a well-defined subject in

the context of IP.  Most LP and NLP duality relationships and interpretations are derived from the calculus

constructs underlying Kuhn-Tucker theory.  However, calculus cannot be applied to the discontinuous

integer programming feasible solution region.  In general, dual variables are not defined for IP problems,

although the topic has been investigated (Gomory and Baumol;  Williams, 1980).  All one can generally

state is that dual information is not well defined in the general IP problem.  However, there are two aspects

to such a statement that need to be discussed. 

First, most commonly used algorithms printout dual information.  But the dual information is often

influenced by constraints which are added during the solution process.  Most solution approaches involve

the addition of constraints to redefine the feasible region so that the integer solutions occur at extreme

points (see the discussions of algorithms below).  Thus, many of the shadow prices reported by IP codes

are not relevant to the original problem, but rather are relevant to a transformed problem.  The principal

difficulty with these dual prices is that the set of transformations is not unique, thus the new information is

not unique or complete (see the discussion arising in the various duality papers such as that by Gomory and
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Baumol or those referenced in von Randow).  Thus, in many cases, the IP shadow price information that

appears in the output should be ignored. 

Second, there does seem to be a major missing discussion in the literature.  This involves the

reliability of dual variables when dealing with mixed IP problems.  It would appear to follow directly from

LP that mixed IP shadow prices would be as reliable as LP shadow prices if the constraints right hand sides

are changed in a range that does not imply a change in the solution value of an integer variable.  The dual

variables from the constraints which involve only continuous variables would appear to be most accurate. 

Dual variables on constraints involving linkages between continuous and integer variable solution levels

would be less accurate and constraints which only involve integer variables would exhibit inaccurate dual

variables.  This would be an interesting topic for research as we have not discovered it in the IP literature. 

The third dual variable comment regards "binding" constraints.  Consider Figure 15.1.  Suppose

that the optimal solution occurs at X=3 and Y=3.  Note that this point is strictly interior to the feasible

region.  Consequently, according to the complementary slackness conditions of LP, the constraints would

have zero dual variables.  On the other hand, if the first constraint was modified so that its right hand side

was more than 17, the solution value could move to X=4 and Y=3.  Consequently, the first constraint is not

strictly binding but a relaxation of its right hand side can yield to an objective function increase.  Therefore,

conceptually, it has a dual variable.  Thus, the difficulty with dual variables in IP is that they may be

nonzero for nonbinding constraints. 

15.4 Solution Approaches to Integer Programming Problems

 IP problems are notoriously difficult to solve. They can be solved by several very different

algorithms. Today, algorithm selection is an art as some algorithms work better on some problems.  We

will briefly discuss algorithms, attempting to expose readers to their characteristics.  Those who wish to

gain a deep understanding of IP algorithms should supplement this chapter with material from the literature

(e.g., see Balinski or Bazaraa and Jarvis; Beale (1965,1977); Garfinkel and Nemhauser; Geoffrion and

Marsten; Hammer et al.; Hu; Plane and McMillan; Salkin (1975b); Taha (1975); von Randow; Zionts;

Nemhauser; and Woolsey). Consultation with experts, solution experimentation and a review of the liter-

ature on solution codes may also be necessary when one wishes to solve an IP problem. 

Let us develop a brief history of IP solution approaches.  LP was invented in the late 1940's. 

Those examining LP relatively quickly came to the realization that it would be desirable to solve problems

which had some integer variables (Dantzig, 1960).  This led to algorithms for the solution of pure IP

problems.  The first algorithms were cutting plane algorithms as developed by Dantzig, Fulkerson and

Johnson (1954) and Gomory (1958, 1960, 1963).  Land and Doig subsequently introduced the branch and

bound algorithm.  More recently, implicit enumeration (Balas), decomposition (Benders), lagrangian

relaxation (Geoffrion, 1974) and heuristic (Zanakis and Evans) approaches have been used. Unfortunately,
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X1 & 7X2 # &22.5

X1 % 10X2 # 54

X1, X2 $ 0 and integer

after 20 years of experience involving literally thousands of studies (see Von Randow) none of the available

algorithms have been shown to perform satisfactorily for all IP problems.   However, certain types of algo-

rithms are good at solving certain types of problems.  Thus, a number of efforts have concentrated on

algorithmic development for specially structured IP problems. The most impressive recent developments

involve exploitation of problem structure.  The section below briefly reviews historic approaches as well as

the techniques and successes of structural exploitation.  Unfortunately, complete coverage of these topics is

far beyond the scope of this text.  In fact, a single, comprehensive treatment also appears to be missing

from the general IP literature, so references will be made to treatments of each topic.

 There have been a wide variety of approaches to IP problems. The ones that we will cover below

include Rounding, Branch and Bound, Cutting Planes, Lagrangian Relaxation, Benders Decomposition,

and Heuristics.  In addition we will explicitly deal with Structural Exploitation and a catchall other

category. 

15.4.1 Rounding

Rounding is the most naive approach to IP problem solution.  The rounding approach involves the

solution of the problem as a LP problem followed by an attempt to round the solution to an integer one by: 

a) dropping all the fractional parts; or b) searching out satisfactory solutions wherein the variable values

are adjusted to nearby larger or smaller integer values.  Rounding is probably the most common approach

to solving IP problems. Most LP problems involve variables with fractional solution values which in reality

are integer  (i.e., chairs produced, chickens cut up).  Fractional terms in solutions do not make strict sense,

but are sometimes acceptable if rounding introduces a very small change in the value of the variable (i.e.

rounding 1003421.1 to 1003421 or even 1003420 is probably acceptable). 

 There is, however, a major difficulty with rounding.  Consider the example 

as graphed in Figure 15.2.  In this problem rounding would produce a solution outside the feasible region.  

In general,  rounding is often practical, but it should be used with care. One should compare the

rounded and unrounded solutions to see whether after rounding:  a) the constraints are adequately satisfied;

and b) whether the difference between the optimal LP and the post rounding objective function value is

reasonably small.  If so IP is usually not cost effective and the rounded solution can be used.  On the other

hand, if one finds the rounded objective function to be significantly altered or the constraints violated from

a pragmatic viewpoint, then a formal IP exercise needs to be undertaken. 
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15.4.2 Cutting Planes 

The first formal IP algorithms involved the concept of cutting planes.   Cutting planes remove part

of the feasible region without removing integer solution points. The basic idea behind a cutting plane is that

the optimal integer point is close to the optimal LP solution, but does not fall at the constraint intersection

so additional constraints need to be imposed.  Consequently, constraints are added to force the noninteger

LP solution to be infeasible without eliminating any integer solutions.  This is done by adding a constraint

forcing the nonbasic variables to be greater than a small nonzero value.  Consider the following integer

program: 
Maximize X1 % X2

2X1 % 3X2 # 16

3X1 % 2X2 # 16

X1, X2 $ 0 and integer
The optimal LP solution tableau is

X1 X2 S1 S2 b

obj 1.4 1 0 0

X1 1 0 .6 & .4 3.2

X2 0 1 & .4 .6 3.2

Zj&Cj 0 0 .2 .2 6.4

which has X1=X2=3.2 which is noninteger.  The simplest form of a cutting plane would be to require the

sum of the nonbasic variables to be greater than or equal to the fractional part of one of the variables.  In

particular, generating a cut from the row where X1 is basic allows a constraint to be added which required

that 0.6 S1 - .4 S2 $ 0.2.  The cutting plane algorithm continually adds such constraints until an integer

solution is obtained.

Much more refined cuts have been developed.  The issue is how should the cut constraint be 

formed.  Methods for developing cuts appear in Gomory (1958, 1960, 1963). 

Several points need to be made about cutting plane approaches.  First, many cuts may be required

to obtain an integer solution.  For example, Beale (1977) reports that a large number of cuts is often

required (in fact often more are required than can be afforded).  Second, the first integer solution found is

the optimal solution.  This solution is discovered after only enough cuts have been added to yield an integer

solution.  Consequently, if the solution algorithm runs out of time or space the modeler is left without an

acceptable solution (this is often the case). Third, given comparative performance vis-a-vis other

algorithms, cutting plane approaches have faded in popularity (Beale,1977). 

15.4.3 Branch and Bound 

The second solution approach developed was the branch and bound algorithm.  Branch and bound,

originally introduced by Land and Doig, pursues a divide-and-conquer strategy. The algorithm starts with a
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Maximize 1.4X1 % X2

2X1 % 3X2 # 16

3X1 % 2X2 # 16

X1 # 3

X1, X2 $ 0

and

Maximize 1.4X1 % X2

2X1 % 3X2 # 16

3X1 % 2X2 # 16

X1 $ 4

X1, X2 $ 0

LP solution and also imposes constraints to force the LP solution to become an integer solution much as do

cutting planes.  However, branch and bound constraints are upper and lower bounds on variables. Given

the noninteger optimal solution for the example above (i.e., X1  = 3.2), the branch and bound algorithm

would impose constraints requiring X1 to be at or below the adjacent integer values around 3.2; i.e., X1 # 3

and X1 $ 4.  This leads to two disjoint problems, i.e.,

The branch and bound solution procedure generates two problems (branches) after each LP

solution.  Each problem excludes the unwanted noninteger solution, forming an increasingly more tightly

constrained LP problem.  There are several decisions required. One must both decide which variable to

branch upon and which problem to solve (branch to follow). When one solves a particular problem, one

may find an integer solution. However, one cannot be sure it is optimal until all problems have been

examined. Problems can be examined implicitly or explicitly.  Maximization problems will exhibit

declining objective function values whenever additional constraints are added. Consequently, given a

feasible integer solution has been found, then any solution, integer or not, with a smaller objective function

value cannot be optimal, nor can further branching on any problem below it yield a better solution than the

incumbent ( since the objective function will only decline). Thus, the best integer solution found at any

stage of the algorithm provides a bound limiting the problems (branches) to be searched. The bound is

continually updated as better integer solutions are found.

 The problems generated at each stage differ from their parent problem only by the bounds on the

integer variables.  Thus, a LP algorithm which can handle bound changes can easily carry out the branch

and bound calculations.  

The branch and bound approach is the most commonly used general purpose IP  solution algorithm

(Beale, 1977; Lawler and Wood).  It is implemented in many codes  (e.g., OSL, LAMPS,  and LINDO)

including all of those interfaced with GAMS.  However, its use can be expensive.  The algorithm does yield

intermediate solutions which are usable although not optimal.  Often the branch and bound algorithm will

come up with near optimal solutions quickly but will then spend a lot of time verifying optimality.  Shadow

prices from the algorithm can be misleading since they include shadow prices for the bounding constraints. 
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Maximize CX % FY

s.t. AX % GY # b

DX % HY # e

X $ 0, Y $ 0 and integer,

Maximize CX % FY & 8(DH % HY & e)

s.t. AX % GY # b

X $ 0, Y $ 0 and integer,

A specialized form of the branch and bound algorithm for zero-one programming was developed by

Balas.  This algorithm is called implicit enumeration.  This method has also been extended to the mixed

integer case as implemented in LINDO (Schrage, 1981b). 

15.4.5 Lagrangian Relaxation

Lagrangian relaxation (Geoffrion (1974), Fisher (1981, 1985)) is another area of IP algorithmic

development.  Lagrangian relaxation refers to a procedure in which some of the constraints are relaxed into

the objective function using an approach motivated by Lagrangian multipliers. The basic Lagrangian

Relaxation problem for the mixed integer program: 

involves discovering a set of Lagrange multipliers for some constraints and relaxing that set of constraints

into the objective function.  Given that we choose to relax the second set of constraints using lagrange

multipliers (8) the problem becomes 

The main idea is to remove difficult constraints from the problem so the integer programs are much easier

to solve.   IP problems with structures like that of the transportation problem can be directly solved with

LP.  The trick then is to choose the right constraints to relax and to develop values for the lagrange

multipliers (8k) leading to the appropriate solution. 

Lagrangian Relaxation has been used in two settings: 1) to improve the performance of bounds on

solutions;  and 2) to develop solutions which can be adjusted directly or through heuristics so they are

feasible in the overall problem (Fisher (1981, 1985)).  An important Lagrangian Relaxation result is that

the relaxed problem provides an upper bound on the solution to the unrelaxed problem at any stage.

Lagrangian Relaxation has been heavily used in branch and bound algorithms to derive upper bounds for a

problem to see whether further traversal down that branch is worthwhile. 

Lagrangian Relaxation has been applied extensively.  There have been studies of the travelling

salesman problem (Bazaraa and Goode), power generation systems (Muckstadt and Koenig); capacitated

location problem (Cornuejols, et al.); capacitated facility location problem (Geoffrion and McBride); and

generalized assignment problem (Ross and Soland).  Fisher (1981,1985) and Shapiro (1979a) present
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Maximize CZ

s.t. AZ # b2 & HX( (")

DZ # b3 (()

Z $ 0

Maximize FX % Q

X, ", (, Q

Q # "i(b2 & HX) % (ib3 i ' 1, 2, ...p

GX # b1

X integer

Q >
<

0

survey articles.

15.4.6 Benders Decomposition

Another algorithm for IP is called Benders Decomposition.  This algorithm solves mixed integer

programs via structural exploitation.  Benders developed the procedure, thereafter called Benders

Decomposition, which decomposes a mixed integer problem into two problems which are solved iteratively

- an integer master problem and a linear subproblem.  

The success of the procedure involves the structure of the subproblem and the choice of the

subproblem.  The procedure can work very poorly for certain structures. (e.g. see McCarl, 1982a or

Bazarra, Jarvis and Sherali.) 

A decomposable mixed IP problem is:

 Maximize FX % CZ

s.t. GX # b1

HX % AZ # b2

DZ # b3

X is integer, Z $ 0Development of the decomposition of this problem proceeds by iteratively developing feasible

points X* and solving the subproblem:

Solution to this subproblem yields the dual variables in parentheses.  In turn a "master" problem is formed

as follows 

This problem contains the dual information from above and generates a new X value.  The constraint

involving Q gives a prediction of the subproblem objective function arising from the dual variables from the

ith previous guess at X.  In turn, this problem produces a new and better guess at X.  Each iteration adds a
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constraint to the master problem.  The objective function consists of FX + Q, where Q is an approximation

of CZ.   The master problem objective function therefore constitutes a monotonically nonincreasing upper

bound as the iterations proceed.  The subproblem objective function (CZ) at any iteration plus FX can be

regarded as a lower bound.  The lower bound does not increase monotonically.  However, by choosing the

larger of the current candidate lower bound and the incumbent lower bound, a monotonic nondecreasing

sequence of bounds is formed.  The upper and lower bounds then give a monotonically decreasing spread

between the bounds.  The algorithm user may stop the solution process at an acceptably small bound

spread.  The last solution which generated a lower bound is the solution which is within the bound  spread

of the optimal solution.  The form of the overall problem guarantees global optimality in most practical

cases. Global optimality will occur when all possible X's have been enumerated (either implicitly or

explicitly).   Thus, Benders decomposition convergence occurs when the difference between the bounds is

driven to zero.   When the problem is stopped with a tolerance, the objective function will be within the

tolerance, but there is no relationship giving distance between the variable solutions found and the true

optimal solutions for the variables. (i.e., the distance of Z* and X* from the true optimal Z's and X's). 

Convergence will occur in a practical setting only if for every X a relevant set of dual variables is returned. 

This will only be the case if the subproblem is bounded and has a feasible solution for each X that the

master problem yields.  This may not be generally true; artificial variables may be needed.

However, the boundedness and feasibility of the subproblem says nothing about the rate of

convergence.  A modest sized linear program will have many possible (thousands, millions) extreme point

solutions.  The real art of utilizing Benders decomposition involves the recognition of appropriate problems

and/or problem structures which will converge rapidly.  The general statements that can be made are: 

1. The decomposition method does not work well when the X variables chosen by the master

problem do not yield a feasible subproblem. Thus, the more accurately the constraints in

the master problem portray the conditions of the subproblem, the faster will be

convergence.  (See Geoffrion and Graves; Danok, McCarl and White (1978); Polito;

Magnanti and Wong; and Sherali for discussion.) 

2. The tighter (more constrained) the feasible region of the master problem the better.  (See

Magnanti and Wong; and Sherali.)     

3. When possible, constraints should be entered in the master problem precluding feasible yet

unrealistic (suboptimal) solutions to the overall problem. (See the minimum machinery

constraints in Danok, McCarl and White, 1978.) 

The most common reason to use Benders is to decompose large mixed integer problem into a small,

difficult master problem and a larger simple linear program.  This allows the solution of the problem by

two pieces of software which individually would not be adequate for the overall problem but collectively
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are sufficient for the resultant pieces.  In addition, the decomposition may be used to isolate particular

easy-to-solve subproblem structures (see the isolation of transportation problems as in Geoffrion and

Graves or Hilger et al.).  Finally, multiple levels of decomposition may be done in exploiting structure (see

Polito). 

15.4.7 Heuristics

Many IP problems are combinatorial and difficult to solve by nature.  In fact, the study of NP

complete problems (Papadimitrou and Steiglitz) has shown extreme computational complexity for problems

such as the traveling salesman problem.  Such computational difficulties have led to a large number of

heuristics.  These heuristics (following Zanakis and Evans) are used when: a) the quality of the data does

not merit the generation of exact optimal solutions; b) a simplified model has been used, and/or c) when a

reliable exact method is not available, computationally attractive, and/or affordable. Arguments for heur-

istics are also presented regarding improving the performance of an optimizer where a heuristic may be

used to save time in a branch and bound code, or if the problem is repeatedly solved.  Many IP heuristics

have been developed, some of which are specific to particular types of problems.  For example, there have

been a number of traveling salesman problem heuristics as reviewed in Golden et al.  Heuristics have been

developed for general 0-1 programming (Senju and Toyoda; Toyoda) and general IP (Glover;

Kochenberger, McCarl, and Wyman), as well as 0-1 polynomial problems (Granot). Zanakis and Evans

review several heuristics, while Wyman presents computational evidence on their performance. Generally,

heuristics perform well on special types of problems, quite often coming up with errors of smaller than two

percent.  Zanakis and Evans; and Wyman both provide discussions of selections of heuristics vis-a-vis one

another and optimizing methods.  Heuristics also do not necessarily reveal the true optimal solution, and in

any problem, one is uncertain as to how far one is from the optimal solution although the Lagrangian

Relaxation technique can make bounding statements. 

15.4.8 Structural Exploitation

Years of experience and thousands of papers on IP have indicated that general-purpose IP

algorithms do not work satisfactorily for all IP problems.  The most promising developments in the last

several years have involved structural exploitation, where the particular structure of a problem has been

used in the development of the solution algorithm. Such approaches have been the crux of the development

of a number of heuristics, the Benders Decomposition approaches, Lagrangian Relaxation and a number of

problem reformulation approaches.  Specialized branch and bound algorithms adapted to particular

problems have also been developed (Fuller, Randolph and Klingman; Glover et al. ,1978). The application

of such algorithms has often led to spectacular results, with problems with thousands of variables being

solved in seconds of computer time (e.g., see the computational reports in Geoffrion and Graves; Zanakis;

and the references in Fisher, 1985).  The main mechanisms for structural exploitation are to develop an



copyright Bruce A. McCarl and Thomas H. Spreen 15-21

algorithm especially tuned to a particular problem or, more generally, to transform a problem into a simpler

problem to solve. 

15.4.9 Other Solution Algorithms and Computer Algorithms

The above characterization of solution algorithms is not exhaustive.  A field as vast as IP has

spawned many other types of algorithms and algorithmic approaches.  The interested reader should consult

the literature reviews in von Randow; Geoffrion (1976); Balinski; Garfinkel and Nemhauser; Greenberg

(1971); Woolsey; Shapiro (1979a, 1979b); and Cooper as well as those in textbooks. 

15.5 The Quest for Global Optimality:  Non-Convexity

Most of the IP solution material, as presented above, showed the IP algorithms as involving some

sort of an iterative search over the feasible solution region.  All possible solutions had to be either explicitly

or implicitly enumerated.  The basic idea behind most IP algorithms is to search out the solutions.  The

search process involves implicit or explicit enumeration of every possible solution. The implicit

enumeration is done by limiting the search based on optimality criterion (i.e., that solutions will not be

examined with worse objective functions than those which have been found).   The enumeration concept

arises because of the nonconvex nature of the constraint set; in fact, in IP it is possible to have a disjoint

constraint set.  For example, one could implement an IP problem with a feasible region requiring X to be

either greater than 4 or less than 5. Thus, it is important to note that IP algorithms can guarantee global

optimality only through an enumerative search. Many of the algorithms also have provisions where they

stop depending on tolerances.  These particular algorithms will only be accurate within the tolerance factor

specified and may not reveal the  true optimal solution. 

15.6 Formulation Tricks for Integer Programming - Add More Constraints 

IP problems, as alluded to above, involve enumerative searches of the feasible region in an effort to

find the optimal IP solutions.  Termination of a direction of search occurs for one of three reasons: 1) a

solution is found; 2) the objective function is found to go below some certain value, or 3) the direction is

found to possess no feasible integer solutions.  This section argues that this process is speeded up when the

modeler imposes as many reasonable constraints as possible for defining the feasible and optimal region. 

Reasonable means that these constraints are not redundant, each uniquely helping define and reduce the size

of the feasible solution space. 

LP algorithms are sensitive to the number of constraints. Modelers often omit or eliminate

constraints when it appears the economic actions within the model will make these constraints unnecessary. 

However, in IP, it is often desirable to introduce constraints which, while appearing unnecessary, can

greatly decrease solution time.  In order to clarify this argument, three cases are cited from our experiences

with the solution of IP models. 
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Y1 & Md # 0

Y2 & Md # 0

In the first example, drawn from Danok's masters thesis (1976), Danok was solving a mixed IP

problem of machinery selection.  The problem was solved using Benders decomposition, in which the

integer program for machinery selection was solved iteratively in association with a LP problem for

machinery use.  Danok solved two versions.  In the first, the machinery items were largely unconstrained. 

In the second, Danok utilized the amount of machinery bought in the LP solution as a guide in imposing

constraints on the maximum and minimum amount of types of machinery.  Danok constrained the solution

so that no more than 50 percent more machinery could be purchased than that utilized in the optimal LP

solution (i.e., ignoring the integer restrictions).  The solution time reduction between the formulations were

dramatic.  The model with the extra constraints solved in less than 10 percent of the computer time.  How-

ever, the solutions were identical and far away from the LP derived constraints.  Thus, these constraints

greatly reduced the number of solutions which needed to be searched through, permitting great efficiencies

in the solution process.  In fact, on the larger Danok problem, the amount of computer time involved was

considerable (over 1,000 seconds per run) and these constraints allowed completion of the research project. 

The second example arose in Polito's Ph.D. thesis.  Polito was solving a warehouse location type

problem and solved two versions of the problem (again with Benders decomposition). In the first version,

constraints were not imposed between the total capacity of the plants constructed and the demand.  In the

second problem, the capacity of the plants located were required to be greater than or equal to the existing

demand.  In the first problem, the algorithm solved in more than 350 iterations; in the second problem only

eight iterations were required. 

The third example arises in Williams (1978a or 1978b) wherein constraints like

Y1 % Y2 & Md # 0

including the indicator variable d, are replaced with

which has more constraints.  The resultant solution took only 10 percent of the solution time. 

In all cases the imposition of seemingly obvious constraints, led to great efficiencies in solution

time.  Thus, the integer programmer should use constraints to tightly define the feasible region.  This

eliminates possible solutions from the enumeration process. 

15.7 IP Solutions and GAMS

The solution of integer programs with GAMS is achieved basically by introducing a new class of

variable declaration statements and by invoking an IP solver.  The declaration statement identifies selected

variables to either be BINARY (zero one) or INTEGER.  In turn, the model is solved by utilizing a solved

statement which says "USING MIP".  Table 1 shows an example formulation and Table 2 the GAMS input
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string.  This will cause GAMS to use the available integer solvers.  Currently the code ZOOM is

distributed with the student version, but we do not recommend ZOOM for practical integer programming

problems.  Those wishing to solve meaningful problems should use OSL, LAMPS, XA, CPLEX or one of

the other integer solvers.
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Table 15.1.

Maximize 7X1 -3X2 -10X3  

X1 -2X2 # 0

X1 -20X3 # 0

X1 $ 0 X2 $ 0 integer X3  0,1,

Table 15.2. GAMS Input for Example Integer Program

   5   POSITIVE VARIABLE       X1
   6   INTEGER VARIABLE        X2
   7   BINARY VARIABLE         X3
   8   VARIABLE                OBJ
   9  
  10   EQUATIONS               OBJF
  11                           X1X2
  12                           X1X3;
  13  
  14   OBJF..     7*X1-3*X2-10*X3 =E= OBJ;
  15   X1X2..     X1-2*X2 =L=0;
  16   X1X3..     X1-20*X3 =L=0;
  17  
  18   MODEL IPTEST /ALL/;
  19   SOLVE IPTEST USING MIP MAXIMIZING OBJ;
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F igure 15.1  Graph of Feasible Integer Points for F irst LP Problem
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X1

F igure 15.2 Graph of Feasible Integer Points for Second Integer Problem
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Figure 15.3 Mixed Integer Feasible Region
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Max '
j
vjXj

s.t. '
j
djXj # W

Xj ' 0 or 1 for all j

Max 17x1 % 5x2 % 22x3 % 12x4 % 25x5 % x6 % 15x7 % 21x8 % 5x9 % 20x10

s.t. 70x1 % 10x2 % 20x3 % 20x4 % 15x5 % 5x6 % 120x7 % 5x8 % 20x9 % 20x10 # 250

xj ' 0 or 1, for all j

CHAPTER XVI:  INTEGER PROGRAMMING FORMULATIONS

IP is a powerful technique for the formulation of a wide variety of problems.  This section presents

a number of common formulations.

16.1 Knapsack - Capital Budgeting Problem 

The knapsack problem, also known as the capital budgeting or cargo loading problem, is a famous

IP formulation.  The knapsack context refers to a hiker selecting the most valuable items to carry, subject

to a weight or capacity limit.  Partial items are not allowed, thus choices are depicted by zero-one variables. 

The capital budgeting context involves selection of the most valuable investments from a set of available,

but indivisible, investments subject to limited capital availability.  The cargo loading context involves

maximization of cargo value subject to hold capacity and indivisibility restrictions. 

The general problem formulation assuming only one of each item is available is

The decision variables indicate whether the jth alternative item is chosen (Xj=1) or not (Xj=0).  Each item is

worth vj.  The objective function gives the total value of all items chosen.  The capacity used by each Xj is

dj.  The constraint requires total capacity use to be less than or equal to the capacity limit (W). 

16.1.1 Example

Suppose an individual is preparing to move.  Assume a truck is available that can hold at most 250

cubic feet of items.  Suppose there are 10 items which can be taken and that their names, volumes and

values are as shown in Table 16.1.  The resultant formulation is 

The GAMS formulation is called KNAPSACK.  The optimal objective function value equals 128. 

The values of the variables and their respective reduced costs are shown in Table 16.2.  This solution

indicates that all items except furniture, X7, should be taken.  

There are a couple of peculiarities in this solution which should be noted.  First, the constraint has

65 units in slack (250-185) and no shadow price.  However, for practical purposes the constraint does have

a shadow price as the X7 variable would come into the solution if there were 120 more units of capacity,

but slack is only 65.  Further, note that each of the variables has a non-zero reduced cost.  This is because

this particular problem was solved with the GAMS version of OSL, a branch and bound type algorithm
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and each of these variables was bounded at one.  Thus, they have reduced costs reflecting bounds requiring

the variables to equal either zero or one.  These data are misleading as indicated in the discussion in the

previous chapter on IP shadow prices. 

16.1.2 Comments

The knapsack problem has been the subject of considerable theoretical interest and several

applications (see von Randow; Salkin, 1975a).  Armstrong, Sinha, and Zoltners provide a recent

application.  The capital budgeting problem context has been extensively studied (Weingartner 1963, 1966,

von Randow).  Variants include the cutting stock problem, where one explores the best way to cut up items

such as logs, sheets of veneer, and plywood, (Eisemann and Golden).  Knapsack problems also commonly

appear as subproblems in algorithmic approaches to problems as shown by Williams (1978a) and

Geoffrion and McBride. 

The knapsack formulation contains a number of simplifying assumptions.  First, the formulation

permits no more than one unit of any item.  This assumption could be relaxed by changing from zero-one to

integer variables with constraints on item availability.  Second, the value and resource usage of the items

are assumed independent of the mix of items chosen.  However, there may be interactions where the value

of the one item is increased or decreased when certain other items are also chosen.  Thus, one might need to

include formulation features involving multiplication of zero-one variables.  Third, capacity available is

assumed independent of the value of the resource.  One could relax this assumption and put in a supply

curve representation. 

16.2 Warehouse Location

Warehouse location problems are commonly formulated as integer programs.  They involve

location of warehouses within a transportation system so as to minimize overall costs.  The basic decision

involves tradeoffs between fixed warehouse construction costs and transportation costs.  In agriculture, this

formulation has been used in the location of high volume grain handling facilities (Hilger, McCarl and

Uhrig) and agricultural processing facilities (Fuller, Randolph and Klingman; Faminow and Sarhan).  The

plant, store and distribution center location problems are closely related (von Randow).  A general

warehouse location problem formulation is as follows:
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Min '
k

FkVk % '
i
'
k

CikXik % '
k
'
j
DkjYkj % '

i
'
j
EijZij

s.t. '
k
Xik % '

j
Zij # Si for all i

'
k
Ykj % '

i
Zij $ Dj for all j

& '
i
Xik % '

j
Ykj # 0 for all k

&CAPkVk % '
j
Ykj # 0 for all k

'
k

AmkVk # bm for all m

Vk ' 0 or 1, Xik, Ykj, Zij $ 0 for all i, j, k

This is an extension of the basic transportation problem containing intermediate shipments (transshipments)

into warehouses from supply points (Xik) and from warehouses to demand points (Ykj).  The formulation

also contains fixed cost and new warehouse capacity considerations.  The variables in the formulation are: 

Vk - a zero-one indicator variable indicating whether the kth warehouse is constructed;

Xik - a continuous variable indicating the quantity shipped from supply point i to warehouse k;

Ykj - a continuous variable indicating the quantity shipped from warehouse k to demand point j;

Zij - a continuous variable indicating the quantity shipped from supply point i directly to demand

point j.  

The problem is also characterized by a number of parameters.  Fk - the fixed cost associated with

construction of the kth warehouse.  This cost should be developed so that it represents the cost incurred

during the period of time represented by the supply and demand constraints; CAPk - the capacity of the kth

warehouse during the time frame leading to the supply and demand quantities; Amk - the amount of the mth

configuration constraint used when constructing the kth warehouse; Cik  - the cost of shipping from supply

point i to warehouse k; Dkj  - the cost of shipping from warehouse k to demand point j; Eij  - the cost of

shipping from supply point i to demand point j; Dj  - the amount of demand which must be filled at the jth

demand point in the time period modeled; Si  - the amount of supply available at ith supply point in the time

period modeled; bm  - the upper limit on the mth configuration constraint.

The objective function depicts total cost minimization where total cost includes warehouse

construction plus shipping costs for shipments a) to warehouses, b) from warehouses, and c) directly to

final demand points.  The first constraint equation balances outgoing shipments with available supply for a

supply point.  The second constraint gives the demand requirements by demand location and requires a

minimum level of incoming shipments from warehouses and supply locations.  The third constraint requires

outgoing shipments at a warehouse location not to exceed incoming shipments to that warehouse.  The next

constraints both involve our zero-one warehouse variables imposing prospective warehouse capacity using

the modeling approach in the fixed cost discussion in chapter 15.  Outgoing shipments are balanced with
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constructed warehouse capacity.  When the warehouse is not constructed then outgoing shipments must

equal zero.  Thus, warehouses can only be used when constructed.  The last constraint limits warehouse

construction through configuration constraints.  Many different types of constraints could be included here,

dependent on the problem setting.  An example is given below.

16.2.1 Example

Suppose a firm can construct a warehouse at one of three sites (A,B,C).  Currently, the firm has

two supply points and ships to two demand points with annual demand requirements and supply capacity

given in Table 16.3.  Further suppose that the potential warehouses have annual capacity and fixed cost as

shown in Table 16.4.  If warehouse B were constructed its annual capacity would be 60, it would cost $720

for the 12 year life or, assuming straight line depreciation, $60 per year.  Suppose that the firm has

developed a transport cost matrix as shown in Table 16.5.  Finally suppose only one warehouse can be

built.  

This leads to the formulation shown in Table 16.6.  The objective function minimizes the annual

fixed cost of warehouses plus the annual variable cost of shipping.  The constraints impose maximum

supply constraints at two locations,  minimum demand constraints at two locations, supply/demand

balances at three warehouses, balances between capacity and warehouse use at three warehouses, and a

constraint that requires only one of the three warehouses be constructed (i.e., a configuration constraint). 

Warehouse 1 capacity is set to 9999 which effectively makes its capacity unlimited if it is constructed.  The

GAMS formulation is called WAREHOUS.

In the solution to this model, the objective function value equals 623, and the variable and equation

solutions are shown in Table 16.7.  This solution corresponds to the company constructing warehouse C. 

The shipment pattern involves shipping 70 units from supply point 2 to warehouse C, 20 units from

warehouse C to demand point 1, and 50 units from C to demand point 2.  In addition, 5 units are shipped

directly from supply point 2 to demand point 1 while 50 units are shipped from supply point 1 to demand

point 1.  The shadow prices reflect demand at point 1 costing 7 units on the margin and a cost of 5 units at

demand point 2.  Additional supply is worth $3 a unit at the first supply point and $0 a unit at the second

supply point.

16.2.2 Comments

This formulation is simplified.  One could have a number of complications such as cost-volume

relationships, or multiple warehouse alternatives at a site.  Those interested in related work and extensions

should see the papers by Geoffrion (1975); Francis and Goldstein; Francis, McGinnis, and White;

McGinnis; Fuller, Randolph, and Klingman; Hilger, McCarl, and Uhrig; or Geoffrion and Graves. 

16.3 Traveling Salesman Problem



copyright Bruce A. McCarl and Thomas H. Spreen 16-5

Min '
i
'
j

i…j

dijXij

s.t. '
j

i…j

Xij ' 1 for all i

'
i

i…j

Xij ' 1 for all j

Xij ' 0 or 1 for all i and j where i … j

Another common IP formulation is the "Traveling Salesman Problem" (Burkard; Bellmore and

Nemhauser).  This problem involves developing a minimum cost route for a salesman visiting N cities then

returning home.  The basic problem involves selection of a route visiting all cities which minimizes the total

travel cost.  The machine shop scheduling may also be formulated as a travelling salesman problem

(Pickard and Queyranne). 

The basic problem formulation is much like the assignment problem and is:

The decision variable (Xij) equals one if the salesman goes from city i to city j, and zero otherwise.  The

possibility of moving from any city to itself is precluded.  There is a known cost of moving from city i to

city j (dij).  The objective function gives the total cost of completing the route which will be minimized. 

The first constraint states that the salesman must leave each city once.  The second constraint states that

the salesman must enter each city once.  All decision variables are restricted to equal either zero or one.

The above formulation is that of the classical assignment problem (Wagner); however, it is not yet

a complete traveling salesman formulation.  There is a difficulty that often arises, known as a subtour.

Consider a 5-city problem in which the optimum solution consists of X12=1, X23=1, X31=1, X45=1 and

X54=1.  This solution is feasible in the above formulation and could be minimum distance.  However, it

reflects a disjointed trip in which one salesman goes from city 1 to city 2 to city 3 and back to city 1

without visiting cities 4 and 5, while another salesman goes from city 4 to city 5 and back to city 4.  This

solution exhibits so-called subtours, disjoint loops of a size less than the number of cities.  Such subtours

can be of any size involving two, three, four, or any number of cities up to the number in the problem

minus two, although empirical evidence (cited in Garfinkel and Nemhauser; Bellmore and Nemhauser)

indicates that subtours of more than four or five cities do not appear in practice.  The prohibition of

subtours requires additional constraints.  The subtours could be eliminated by the imposition of the

following constraints:
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Two City

Xij % Xji # 1 for all i and j where i…j

Three City

Xij % Xjk % Xki # 2 for all i, j and k where i…j…k

Four City

Xij % Xjk % XkL % XLi # 3 for all i, j, k, and L where i…j…k…L

Ui & Uj % NXij # N & 1 i'2, ..., N; j'2, ..., N; i…j

Ui $ 0 i'2, ..., N

The first set of constraints renders all two-city subtours infeasible enforcing mutual exclusivity between the

variables representing travel from city i to city j and travel from city j to city i.  The next constraint set

precludes three city subtours prohibiting travel from i to j then on to k, finally from k back to i.  Here only

two of the three activities are allowed in the solution.  Similarly, the four-city subtour constraints prevent

one from traveling from city i to city j, then j to k, and on from k to L, and from L back to i. 

In a practical problem this way of dealing with subtours would produce a very large constraint set. 

For example, with 30 cities there would be 870 constraints for the prevention of the two city subtours

alone.  In general, constraints would be required precluding subtours from size 2 up through the greatest

integer number not exceeding half the number of cities.  Other formulations exist which preclude subtours

in a more compact fashion.  Miller, Tucker, and Zemlin show that the following constraints eliminate

subtours in an N city problem, 

where new continuous variables (U) are introduced.  Dantzig, Fulkerson, and Johnson (1954) give yet

another method. 

16.3.1 Example

Consider a salesman that has to visit six cities.  Suppose these cities are separated by the distances

in Table 16.8 and the salesman wants to minimize total distance traveled.  The example formulation

appears in Table 16.9.  The objective function minimizes the sum of the distance times zero-one variables

indicating whether the salesman travels between cities i and j, Xij.  The first six constraints require that

each city be left and the next six constraints require that each city be visited.  Subtours are prevented by the

last 20 constraints following Miller, Tucker, and Zemlin (containing the 6s in the matrix and 5s on the

right-hand sides).  The GAMS formulation is called TRAVEL.  The solution to this problem is shown in

Table 16.10. 

This solution reflects the traveling salesman traveling 46 miles going from city 1 to city 2, to city

3, to city 6, to city 5, to city 4 and back to city 1, completing a loop.  Subtours are not present.  
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Max eY & f(Z)

s.t. Y & '
m

GmXm # 0

'
m

AmXm & Z # 0

'
m

HimXm # bi for all i

Y, Xm, Z $ 0

16.3.2 Comments

This problem has been extensively studied (see reviews by Bellmore and Nemhauser; Golden and

Assad; Laporte and Lawler et. al.).  Unfortunately, solving this problem is very difficult because of the

number of possible feasible solutions (e.g., in the six-city problem there are five factorial possible

solutions).   Several heuristics have been developed for this problem.  It is not recommended that it be

directly solved with an IP algorithm, rather heuristics are usually used.  A variant of this problem involves

scheduling problems (Eilon). 

16.4 Decreasing Costs

Models may need to depict situations where volume increases lead to either marginal cost decreases

or marginal revenue increases.  For example such situations would occur when:  a) the purchase of

transportation services involves volume discounts, or b) production exhibits positive economies of scale

when cost drops as more units are produced.  LP cannot satisfactorily model these situations.  A separable

LP formulation would use the cheapest cost activity first ignoring the volume  requirements necessary to

incur such a cost (i.e., using the activity with lowest transportation cost at less than the required volume

rather than using more expensive transport rate relevant at that lower volume).  Thus, another modeling

approach is required.  One could use the nonlinear form of separable programming, but this would yield

local optimal solutions. Alternatively, a mixed IP formulation can be used.  This will be explained herein.

The basic problem in matrix form is 

where Z is the quantity of input used, f(Z) is the total cost of acquiring the input which exhibits diminishing

marginal cost (i.e., the per unit cost of Z falls as more is purchased); e is the sale price for a unit of output

(Y); Gm is the quantity of output produced per unit of production activity Xm; Am is the amount of the

resource which is used per unit of Xm; and Him is the number of units of the ith fixed resource which is used

per unit of Xm.

In this problem the objective function maximizes total revenue from product sale (eY) less total

costs (f(Z)).  The first constraint balances products sold (Y) with production (G GmXm).  The second

constraint balances input usage (G AmXm) with supply (Z).  The third constraint balances resource  usage

by production (G HimXm) with exogenous supply (bi). This problem may be reformulated as an IP problem
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Max eY & '
k
f´(Zk

( ) Rk

s.t. Y & '
m

GmXm # 0

'
m

AmXm & '
k

Rk # 0

'
m

HimXm # bi for all i

Rk & (Zk
( & Z (

k& 1)Dk # 0 for all k

& Rk % (Zk
( & Zk& 1

( )Dk% 1 # 0 for all k but the last one

Y, Xm, Rk $ 0 for all m and k

Dk ' 0 or 1 for all k

Max 4Y & (3&.125Z) Z

Y & 2X # 0

X & Z # 0

X # 5

Y, X, Z $ 0

by following an approximation point approach.

The variables are Y and Xm, as above, but the Z variable has been replaced with two sets of variables:  Rk

and Dk.  The variables Rk which are the number of units purchased at cost f '(Zk*); Zk* are a set of

approximation points for Z where Z0* = 0; where f '(Zk*) is the first derivative of the f(Z) function

evaluated at the approximation point Zk
*.  While simultaneously the data for Dk is a zero-one indicator

variable indicating whether the kth step has been fully used.

The formulation insures that the proper total cost is incurred, and that the decreasing per unit costs

are only used when the proper quantities are purchased.  The last two constraints enforce this restriction,

requiring Rk to equal Zk - Zk-1 before Rk+1 can be non-zero (i.e., the kth increment must be paid for before

the k+1st increment can be purchased).  The first three equations are as defined above.  Notice that the kth

step variable can be no larger than Dk times the difference between Zk and Zk-1.  Thus, Rk is prevented from

being non-zero unless the indicator variable Dk is also non-zero.  However, the last constraint imposes a

relationship between the kth step variable and the indicator variable for step k+1.  Consequently, Rk must

equal its maximum value (Zk+1 - Zk) if the k+1st indicator is non-zero.  Similarly, R1 through Rk-1 must

equal their upper limits in order that Rk can be non-zero.  Consequently, this only permits input purchases

at the lower cost exhibited under the higher volumes, only if inputs have been purchased at all volumes

previous to those. 

16.4.1 Example

Consider a problem in which total cost of the input Z and the production relationships are given by 

Suppose we approximate Z at 2, 4, 6, 8 and 10.  The formulation becomes 
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Max 4Y & 2.50R1 & 2.00R2 & 1.50R3 & 1.00R4 & 0.50R5

Y & 2X # 0

X & R1 & R2 & R3 & R4 & R5 # 0

X # 5

R1 & 2D1 # 0

R2 & 2D2 # 0

R3 & 2D3 # 0

R4 & 2D4 # 0

R5 & 2D5 # 0

& R1 % 2D2 # 0

& R2 % 2D3 # 0

& R3 % 2D4 # 0

& R4 % 2D5 # 0

where the variables D1 through D5 are zero-one indicator variables and the variables X, Y, and R are

continuous.  Note that before R2 can be nonzero, the variable D2 must be nonzero because of the equation

relating R2 and D2.  However, if D2 is nonzero, R1 must be in the solution equaling 2, because of the

equation relating R1 and D2.  The other constraints also require that D1 be one.  Consequently, in order to

purchase inputs at the second cost step, the first cost step must be fully utilized.  In general for Rn to be

non-zero then r1 through rn-1 must be in solution at their upper limits.  Thus, one must  use the higher cost

(lower revenue) activities before the lower cost (higher revenue) activities can be undertaken.  The GAMS

formulation is called DECOST.  The solution to this problem is given in Table 16.11 and shows that Y =

10, X = 5, and Z = 5 based on the r values (R1=R2=2 and R3=1).  Note that the first three indicator

variables are in the basis at 1, and that the last two are in at zero. Thus, the values of the variables R1 and

R2 must equal their upper limit, and R3 is between zero and its upper limit.  In this case, it is equal to 1

because of the constraint X # 5. 

16.4.2 Comments

This problem depicts minimization of a non-convex phenomena.  However, a global optimum

solution will be found because of the enumerative nature of IP algorithms.  The objective function

approximates total revenue minus total cost by accumulating the total cost approximation as the sums of

derivatives at the approximating points times the associated quantities.

16.5 Machinery Selection

IP is often used to formulate investment problems (Weingartner [1963, 1966]).  The machinery

selection problem is a common investment problem.  In this problem one maximizes profits, trading off the
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Max & '
k

FkYk % '
j

'
m

CjmXjm

s.t. & Capik Yk % 'J
j
'
m

AijkmXjm # 0 for all i and k

'
j
'
m

DnjmXjm # bn for all n

'
k

GrkYk # er for all r

Yk is a nonnegative integer, Xjm $ 0 for all j, k, and m

annual costs of machinery purchase with the extra profits obtained by having that machinery.  A general

formulation of this problem is

The decision variables are Yk, the integer number of units of the kth type machinery purchased; Xjm, the

quantity of the jth activity produced using the mth machinery alternative.  The parameters of the model are: 

Fk, the annualized fixed cost of the kth machinery type; Capik, the annual capacity of the kth machinery type

to supply the ith resource; Grk, the usage of the rth machinery restriction when purchasing the kth machinery

type; Cjm, the per unit net profit of Xjm; Aijkm, the per unit use by Xjm of the ith capacity resource supplied by

purchasing machine k; Dnjm, the per unit usage of fixed resources of the nth type by Xjm; bn, the endowment

of the nth resource in the year being modeled; and er, the endowment of the rth machinery restriction.

The objective function maximizes profits from machinery operation less the fixed costs of

acquisition.  The first constraint balances the capacity of the machinery purchased with the use of that

capacity.  These constraints preclude machinery from being used unless it is purchased.  The second

constraint imposes constraints on resources other than machinery.  The third constraint imposes

configuration constraints on machinery purchases. 

16.5.1 Example

Assume that a farm is considering the purchase of equipment involving a choice of two tractors,

two plows, two discs, two planters and two harvesting units.  The working rates and costs are given in

Table 16.12.  Time available by period is given in Table 16.13.  The farm has 600 acres.  Machinery

resource calculations are shown in Table 16.14.  Yields, prices, and costs are given in Table 16.15. 

Three operations are done on the farm: plowing, simultaneous discing and planting, and harvesting;

plowing is done in time periods 1-2; disc-planting in period 2 and harvesting in period 3.  In addition, when

buying the equipment, one must match the disc and the planter; disc number one an be purchased only with

planter number one and disc number two only with planter number two.  The formulation is given in Table

16.16 and in file MACHSEL.  The solution to this IP problem yields an IP objective function of 116,100

when it is solved as an LP its objective function equals 124,301.  The values of the solution variables are
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given in Table 16.17.   

16.5.2 Comments

This formulation has been used in agricultural economics.  For example see the machinery

selection work by Danok, McCarl, and White (1978, 1980); Clayton and McCarl; or Baker, Dixit, and

McCarl. 

16.6 Other Formulations 

While several classes of formulations were addressed above, there are numerous other formulations

which could have been included.  Here we mention networks, dynamic programming, scheduling, and

combinational problems.  

The vast majority of network problems are integer by nature.  Many of them yield integer solutions

because of the structure of the basis (Wagner, 1969).  These types of problems are the assignment,

transportation, transshipment, shortest path, maximal flow, and minimum spanning tree.  A general

presentation can be seen in Kennington and Helgeson; Bazaraa, Jarvis and Sherali; or Jensen and Barnes. 

A second related class of problems are dynamic programming problems.  Many dynamic

programming algorithms involve integer valued variables.  Many common IP problems have been cast as

dynamic programming problems; e.g., Nemhauser mentions network, traveling salesmen and scheduling

problems as places where dynamic programming has been applied. 

There is also a large class of integer scheduling problems.  One such problem is the vehicle

scheduling problem where buses, aircraft, or ships are routed to places where items need to be delivered. 

Wagner (1969), and Markowitz and Manne give early developments and references to solve this class of 

problems. While Assad and Golden give more recent references there have been a vast number of machine

scheduling applications involving assembly line balancing, flow shop scheduling, batch sizing, etc.  Eilon

reviews this topic, and von Randow gives 13 pages of references.  Project scheduling problems have also

been formulated (Davis, Patterson). 

Another class of integer problems are the combinational problems, most of which can be

formulated as IP problems.  These include network type problems such as maximum flow problems, set

covering, matching problems, weighted matching problems, spanning trees, and traveling salesmen

problems.   Many of these problems are classed as very difficult to solve.  The book by Papadimitriou and

Steiglitz gives background and formulations. 

Finally, we should mention that new applications of IP are developed virtually every day.  For

example, von Randow, in a bibliography of studies between 1978 and 1981, gives 130 pages of citations to

IP relating mainly to that time period.  Thus, there are many classes of problems that we have not covered

above. 
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Table 16.1.  Items for the Knapsack Example Problem

Variable Item Name
Item Volume
(Cubic feet)

Item Value
($)

X1 Bed and mattress 70 17

X2 TV set 10 5

X3 Turntable and records 20 22

X4 Armchairs 20 12

X5 Air conditioner 15 25

X6 Garden tools and fencing 5 1

X7 Furniture 120 15

X8 Books 5 21

X9 Cooking utensils 20 5

X10 Appliances 20 20

Table 16.2.  Solution to the Knapsack Example Problem

Obj = 128

Variable Value Reduced Cost

X1 1 17

X2 1 5

X3 1 22

X4 1 12

X5 1 25

X6 1 1

X7 0 15

X8 1 21

X9 1 5

X10 1 20

Constraint Activity Shadow Price

Space 185 0

Table 16.3.  Supply/Demand Information for Warehouse Location Example

Total Supply Total Demand

Point Units Point Units

1 50 1 75

2 75 2 50
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Table 16.4.  Warehouse Capacities and Costs for the Warehouse Location Example

Warehouse Annual Capacity Fixed Cost/Life ($) 1 -Year Cost

A Unlimited 500/10 years $50

B 60 720/12 years $60

C 70 680/10 years $68

Table 16.5.  Transport Costs (in $/unit) for Warehouse Location Example

Shipping Point

Supply Warehouse

1 2 A B C

Warehouse A 1 6 - - -

B 2 3 - - -

C 8 1 - - -

Demand 1 4 7 4 3 5

2 8 6 6 4 3
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Table 16.6.  Formulation of the Warehouse Location Example Problem

VA VB VC X1A X1B X1C X2A X2

B 

X2C YA1 YA2 YB1 YB2 YC1 YC2 Z11 Z12 Z21 Z22 RHS

50 60 68 1 2 8 6 3 1 4 6 3 4 5 3 4 8 7 6 Min

1 1 1 1 1 # 75

1 1 1 1 1 # 50

1 1 1 1 1 $ 50

1 1 1 1 1 $ 75

-1 -1 1 1 # 0

-1 -1 1 1 # 0

-1 -1 1 1 # 0

-9999 1 1 # 0

-60 1 1 # 0

-70 1 1 # 0

1 1 1 # 1

VA, VB, VC 0 (0,1) xik, Ykj,   
Zij

 $       
0

for all i,
j, k
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Table 16.7.  Solution Results for the Warehouse Location Example

Obj = 623

Variable Value Reduced Cost Equation Slack Shadow Price

VA 0 0 1 0 -3.00

VB 0 2 2 0 0

VC 1 0 3 0 7.00

X1A 0 0 4 0 5.00

X1B 0 2.00 5 0 -4

X1C 0 10.00 6 0 -3.00

X2A 0 2 7 0 -1.00

X2B 0 0 8 0 -0.05

X2C 70 0 9 0 -1.00

YA1 0 1.052 10 0 -1.00

YA2 0 5.052 11 0 -2

YB1 0 0

YB2 0 3.00

YC1 20 0

YC2 50 0

Z11 50 0

Z12 0 6.00

Z21 5 0

Z22 0 1.00
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Table 16.8.  Distances Between Cities for the Travelling Salesman Problem
1 2 3 4 5 6

1 -- 11 7 6 8 14
2 11 -- 7 9 12 13
3 7 7 -- 3 7 8
4 6 9 3 -- 4 8
5 8 12 7 4 -- 10
6 14 13 8 8 10 --



copyright Bruce A. McCarl and Thomas H. Spreen 16-19

Table 16.9. Formulation of the Traveling Salesman Problem

      X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X               
      1  1  1  1  1  2  2  2  2  2  3  3  3  3  3  4  4  4  4  4  5  5  5  5  5  6  6  6  6  6  U  U  U  U  U
      2  3  4  5  6  1  3  4  5  6  1  2  4  5  6  1  2  3  5  6  1  2  3  4  6  1  2  3  4  5  2  3  4  5  6

 Min 11  7  6  8 14 11  7  9 12 13  7  7  3  7  8  6  9  3  4  8  8 12  7  4 10 14 13  8  8 10               
      1  1  1  1  1                                                                                           = 1
                     1  1  1  1  1                                                                            = 1
                                    1  1  1  1  1                                                             = 1
                                                   1  1  1  1  1                                              = 1
                                                                  1  1  1  1  1                               = 1
                                                                                 1  1  1  1  1                = 1
                     1              1              1              1              1                            = 1
      1                                1              1              1              1                         = 1
         1              1                                1              1              1                      = 1
            1              1              1                                1              1                   = 1
               1              1              1              1                                1                = 1
                  1              1              1              1              1                               = 1
                        6                                                                       1 -1          # 5
                           6                                                                    1    -1       # 5
                              6                                                                 1       -1    # 5
                                 6                                                              1          -1 # 5
                                       6                                                       -1  1          # 5
                                          6                                                        1 -1       # 5
                                             6                                                     1    -1    # 5
                                                6                                                  1       -1 # 5
                                                      6                                        -1     1       # 5
                                                         6                                        -1  1       # 5
                                                            6                                         1 -1    # 5
                                                               6                                      1    -1 # 5
                                                                     6                         -1        1    # 5
                                                                        6                         -1     1    # 5
                                                                           6                         -1  1    # 5
                                                                              6                          1 -1 # 5
                                                                                    6          -1           1 # 5
                                                                                       6          -1        1 # 5
                                                                                          6          -1     1 # 5
                                                                                             6          -1  1 # 5

                                         Xij                           Ui >   0
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Table 16.10.  Solution to the Travelling Salesman Example
Obj = 46
Variable Value Reduced Cost Equation Slack Shadow Price

X12 1.00 11 Leave 1 0 0
X13 0 7 Leave 2 0 0
X14 0 6 Leave 3 0 0
X15 0 8 Leave 4 0 0
X16 0 14 Leave 5 0 0
X21 0 11 Leave 6 0 0
X23 1.00 7 Enter 1 0 0
X24 0 9 Enter 2 0 0
X25 0 12 Enter 3 0 0
X26 0 13 Enter 4 0 0
X31 0 7 Enter 5 0 0
X32 0 7 Enter 6 0 0
X34 0 3 Subtour 23 4 0
X35 0 7 Subtour 24 8 0
X36 1.00 8 Subtour 25 7 0
X41 1.00 6 Subtour 26 0 0
X42 0 9 Subtour 32 0 0
X43 0 3 Subtour 34 9 0
X45 0 4 Subtour 35 8 0
X46 0 8 Subtour 36 7 0
X51 0 8 Subtour 42 2 0
X52 0 12 Subtour 43 1 0
X53 0 7 Subtour 45 4 0
X54 1.00 4 Subtour 46 3 0
X56 0 10 Subtour 52 3 0
X61 0 14 Subtour 53 2 0
X62 0 13 Subtour 54 0 0
X63 0 8 Subtour 56 4 0
X64 0 8 Subtour 62 4 0
X65 1.00 10 Subtour 63 3 0
U2 0 0 Subtour 64 7 0
U3 1 0 Subtour 65 0 0
U4 4 0
U5 3 0
U6 2 0
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Table 16.11.  Solution to the Decreasing Costs Example
Objective function = 29.50

Variable Value Reduced Cost Equation Slack Shadow Price
Y 10 0 Y balance 0 4.0
X 5 6.5 Z balance 0 1.5
R1 2 0 R1D1 0 0
R2 2 0 R2D2 0 0
R3 1 0 R3D3 1 0
R4 0 0 R4D4 0 0.5
R5 0 0 R5D5 0 1.0
D1 1 0 R1D2 0 1.0
D2 1 -2 R2D3 0 0.5
D3 1 -1 R3D4 1 0
D4 0 1 R4D5 0 0
D5 0 2
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Table 16.12.  Data for the Machinery Selection Problem

Equipment
Annualized 
Fixed Cost

Cost/Hour
of Operation

Hrs. of Labor
Used/Hr. of
Operation

Acres
Treated/Hour

Tractor 1 5,000 10.00 1.00 -
Tractor 2 9,000 10.00 1.00 -
Plow 1 1,000 2.00 0.20 5*

Plow 2 1,200 2.00 0.20 10*

Disc 1 1,000 1.20 0.10 10*

Disc 2 1,200 1.20 0.10 12**

Planter 1 2 ,000 3.40 0.10 --**

Planter 2 2,100 3.40 0.22 --**

Harvester 1 1,000 23.0 1.00 3***

Harvester 2 12,000 28.0 1.00 4***

* Requires a tractor.  Working rates are given for tractor 1; tractor 2 is twice as fast.
** Has the same working rate as that of the disc that the planter is used with.
*** Uses one hour of tractor time/hour of harvesting.

Table 16.13.  Hours Available for the Machinery Selection Problem
Time Period Hours of Labor Hours for Machinery

1 200 160
2 210 180
3 250 200



copyright Bruce A. McCarl and Thomas H. Spreen 16-23

Table 16.14.  Machinery Usage Computations

Operation
Tractor
Used

Cost/A
cre ($)

Hrs. of
Tractor/Ac

re
Plow
Used

Hrs. Plow
Use/Acre Plante

r Used

Hrs.
Planter

Use/Acre
Disc
Used

Hrs. Disc
Used/Acre

Harvester
Used

Hrs.
Harvester
Used/Acre

Plow 1 2.40 0.2 1 0.2 -- -- -- -- -- --
Plow 1 1.20 0.1 2 0.1 -- -- -- -- -- --
Plow 2 1.20 0.1 1 0.1 -- -- -- -- -- --
Plow 2 0.60 0.05 2 0.05 -- -- -- -- -- --
Plant-disc 1 1.46 0.1 -- -- 1 0.1 1 0.1  -- --
Plant-disc 1 1.22 0.0833 -- -- 2 0.0833 2 0.0833 -- --
Plant-disc 2 0.73 0.05 -- -- 1 0.05 1 0.05 -- --
Plant-disc 2 0.61 0.04167 -- -- 2 0.04107 1 0.0417  -- --
Harvest 1   11  0.333 -- -- -- -- -- -- 1 0.333
Harvest 2 11 0.333 -- -- -- -- -- -- 1 0.333
Harvest 1 9.5 0.25 -- -- -- -- -- -- 2 0.25
Harvest 2 9.5 0.25 -- -- -- -- -- -- 2 0.25

                                                                

Table 16.15.  Yields, Prices, and Costs
Non-machinery cost per acre 110
Price per unit of yield 2.5
Yield per acre 140
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Table 16.16.  Formulation of the Machinery Selection Problem
Machinery Use Continuous Variables

Plow with Tractor 1 Plow with Tractor 2 Plant Disc 8 Harvest with

Crop

Sales

Input

Pur-

chases

Machinery Acquisition Integer Variables and Plow 1 and Plow 2 and Plow 1 ans Plow 2 Tractor 1 Tractor 2 Tractor 1 Tractor 2

Tractor Plow Planter Disc Harvester in Period in Period in Period in Period Planter Planter Harvester Harvester

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

Objectives (max) -5000 -9000 -1000 -1200 -2000 -2100 -1000 -1200 -10000 -12000 -

2.4

-2.4 -1.2 -1.2 -1.2 -1.2 -0.6 -0.6 -1.46 -1.22 -0.73 -0.61 -9.33 -8.35 -9.33 -8.25 2.5 -110

Tractor 1

Capacity

in Period

1 -160 .2 .1 # 0

2 -180 .2 .1 .1 .0833 # 0

3 -200 .33 .25 # 0

Tractor 2

Capacity

in Period

1 -160 .1 .05 # 0

2 -180 .1 .05 .05 .04167 # 0

3 -200 .33 .25 # 0

Plow 1

Capacity

in Period

1 -160 .2 .1 # 0

2 -180 .2 .1 # 0

Plow 2

Capacity

in Period

1 -160 .1 .05 # 0

2 -180 .1 .05 # 0

Capacity

of 

Planter

1 -180 .1 0.05 # 0

2 -180 0.083

3

.0417 # 0

Capacity

of 

Disc

1 -180 .1 0.05 # 0

2 -180 0.083

3

.0417 # 0

Capacity

of Har-

vester

1 -200 .33 .33 # 0

2 -200 .25 .25 # 0

Labor

Available

in Period

1 .24 .12 .12 .06 # 200

2 .24 .12 .12 .06 .12 .11 .06 .055 # 210

3 .5 .375 .5 .375 # 250

Plow-Plant Sequencing -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 # 0

Plant-Harvest

Sequencing -1 -1 -1 -1 1 1 1 1 # 0

Land Available 1 1 1 1 1 1 1 1 # 600
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Mutual   Planters

Exclu-

sivity   Discs

1 1 # 1

1 1 # 1

Link    1-1

Disc-

Planter 2-2

-1 1 # 0

-1 1 # 0

Yield Balance -140 -140 -140 -140 1 # 0

Input Balance 1 1 1 1 -1 # 0
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Table 16.17. Solution for the Machinery Selection Problem
obj = 116,100

Variable Value Reduced Cost Equation Slack Shadow Price

Buy Tractor 1 1 -5,000 Tractor 1 capacity in Period 1 100 0
Buy Tractor 2 0 0 Tractor 1 capacity in Period 2 130 0
Buy Plow 1 0 0 Tractor 1 capacity in Period 3 50 0
Buy Plow 2 1 -1,200 Tractor 2 capacity in Period 1 0 12
Buy Planter 1 0 0 Tractor 2 capactiy in Period 2 0 14.6
Buy Planter 2 1 -3300 Tractor 2 capacity in Period 3 0 22.26
Buy Disc 1 0 0 Plow 1 capacity in Period 1 0 6.25
Buy Disc 2 1 0 Plow 1 capacity in Period 2 0 0
Buy Harvester 1 0 0 Plow 2 capacity in Period 1 100 0
Buy Harvestor 2 1 0 Plow 2 capacity in Period 2 180 0
Plow with Tractor 1 and Plow 1 in Period 1 0 -2.45 Planter 1 capacity 0 0
Plow with Tractor 1 and Plow 1 in Period 2 0 -1.20 Planter 2 capacity 130 0
Plow with Tractor 1 and Plow 2 in Period 1 600 0 Disc 1 0 0
Plow with Tractor 1 and Plow 2 in Period 2 0 0 Disc 2 130 0
Plow with Tractor 2 and Plow 1 in Period 1 0 -1.825 Harvester 1 0 50
Plow with Tractor 2 and Plow 1 in Period 2 0 -1.46 Harvester 2 50 0
Plow with Tractor 2 and Plow 2 in Period 1 0 0 Labor available in Period 1 128 0
Plow with Tractor 2 and Plow 2 in Period 2 0 0.13 Labor available in Period 2 144 0
Plant with Tractor 1 and Planter 1 0 -1.91 Labor available in Period 3 25 0
Plant with Tractor 1 and Planter 2 600 0 Plow Plant 0 230.533
Plant with Tractor 2 and Planter 1 0 -1.077 Plant Harvester 0 341.75
Plant with Tractor 2 and Planter 2 0 0 Land 0 229.333
Harvest with Tractor 1 and Harvester 1 0 -17.75 One Planter 0 0
Harvest with Tractor 1 and Harvester 2 600 0 One Disc 0 0
Harvest with Tractor 2 and Harvester 1 0 -25.17 Planter 1 to Disc 1 0 0
Harvest with Tractor 2 and Harvester 2 0 -5.565 Planter 2 to Disc 2 0 0
Sell Crop 84,000 0 Yield Balance 0 2.5
Purchase Inputs 600 0 Input Balance 0 110
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CHAPTER XVII: FIXING IMPROPERLY WORKING MODELS

Empirical models do not always yield acceptable solutions.  This chapter contains discussion of 

unacceptable solution conditions and techniques for diagnosing the causes of such conditions.  

17.1 Unacceptable Solution Conditions

Four cases of improper solutions can arise.  First, a solver could fail exhibiting: a) a time, iteration,

or resource limit; b) a lack of meaningful progress; or c) a report of numerical difficulties.  Second, a

solver may halt identifying that the problem is infeasible.  Third, a solver may halt identifying that the

problem is unbounded.  Fourth, the solver may yield an "optimal," but unacceptable solution. 

17.1.1 Solver Failure -- Causes and Prevention

When solvers fail because of numerical difficulties or use an unrealistically large amount of

resources to make little progress, the modeler is often in an awkward position.  However, several actions

may alleviate the situation.  

One should first examine whether the model specification is proper.  The section on structural

checking below gives some techniques for examining model structure.  In addition traditional input

(commonly called MPS input) based solvers frequently fail because of improper coefficient location

(although GAMS prevents some of these errors).  In particular, errors can arise in MPS coefficient

placement or item naming resulting in more than one (duplicate) coefficient being defined for a single

matrix location.  Given our concentration on the GAMS modeling system, procedures for finding duplicate

coefficients will not be discussed.  Nevertheless, this is probably the most common reason why MPS input

based solvers run out of time.   

The second reason for solver failure involves degeneracy induced cycling. Apparently, even the

best solvers can become stuck or iterate excessively in the presence of massive degeneracy.  Our 

experience with such cases indicates one should use an a priori degeneracy resolution scheme as discussed

below.  We have always observed reduced solution times with this modification.

Thirdly, a solver may fail citing numerical difficulties, an ill-conditioned basis or a lack of

progress.  Such events can be caused by model specification errors or more commonly poor scaling.  Often

one needs to rescale the model to narrow the disparity between the magnitude of the coefficients.  Scaling

techniques are discussed below. 

All of the preventative techniques for avoiding solver failures can be used before solving a model. 

Modelers should check structure and consider scaling before attempting model solutions.  However,

degeneracy resolution should not usually be employed until a problem is identified.

17.1.2 Unbounded or Infeasible Solutions

Often the applied modeler finds the solver has stopped, indicating that the model is infeasible or
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unbounded.  This situation, often marks the beginning of a difficult exercise directed toward finding the

cause of the infeasibility or unboundedness, particularly when dealing with large models.  There are several

techniques one can use when this occurs.  The first involves structural checking to find obvious model

formulation defects.  The second and third techniques involve the use of artificial variables and large upper

bounds to find difficulties.  Finally one could use the techniques called budgeting and row summing. 

17.1.3 Unsatisfactory Optimal Solutions

Unfortunately, optimal solutions can be unrealistic.  Discovering an optimal solution means the

problem has a mathematically consistent optimum.  However, mathematical consistency does not 

necessarily imply real world consistency (Heady and Candler).  Usually, unrealistic solutions may be

caused by improper problem specification or assumption violations.  Cases arise where the model solution

is improper because of: a) omitted constraints or variables; b) errors in coefficient estimation; c) algebraic

errors; or d) coefficient placement errors. 

Basically, a model may be judged improper because of incorrect valuation or allocation results. 

Valuation difficulties arise from the reduced cost or shadow price information, such items take on values

when primal reduced costs are formed.  Allocation difficulties arise when the slack or decision variable

values are unrealistic.  The values of these items are formed through the constraint interactions.  Thus, to

diagnose the cause of the unrealistic solution, one investigates either the reduced costs associated with the

nonbasic primal variables or the calculations inherent in the primal constraints.  Two techniques are

presented below, one for the investigation of reduced costs, which we call "budgeting"; and another for the

reconstruction of the constraint calculations, which we call "row summing." 

17.2 Techniques for Diagnosing Improper Models

Now suppose we turn our attention to the techniques one might use to alleviate model solution

difficulties.  Table 17.1 presents an array of the possible problems and an indication of the techniques one

might use to diagnose such problems.

17.2.1 Simple Structural Checking

There are some simple yet powerful techniques for checking LP formulations, regardless of their

presentation method.  These fall into two categories: one numerical and one analytical. 

17.2.1.1 Analytical Checking

In the case of analytical techniques, consider the problem: Max '
j

cj Xj

s.t. '
j

aij Xj # bi for all i

'
j

enj Xj ' dn for all n

'
j

fmj Xj $ gm for all m

Xj $ 0 for all j



copyright Bruce A. McCarl and Thomas H. Spreen 17-3

Certain values of these parameters can cause the model to: 1) be infeasible, 2) contain a set of

variables that must be zero, 3) contain redundant constraints, and 4) yield an unbounded solution, or 5)

contain variables that are always unattractive.  Table 17.2 presents a set of cases where model structures

will guarantee these properties.  Suppose we elaborate on one case which leads to each of the five

properties.

A model formulation can cause infeasibility.  Suppose in the first constraint, bi, is less than zero

and all the aij's in that particular constraint are nonnegative.  Obviously this constraint causes the model to

be infeasible, since it is impossible for the sum of nonnegative numbers to be less than or equal to a

negative number. 

Second, it is possible that the constraints require that certain variables be zero.  Consider what

happens if in the second constraint the right hand side (dn) equals to zero and all enj's are greater than or

equal to zero, then every variable with a nonzero coefficient in that constraint must be zero. 

There are also cases where the model possesses redundant constraints.  Suppose bi is positive, but

all aij's are negative or zero; then, clearly, this constraint will be redundant as the sum of negative numbers

will always be less than or equal to a positive number.  

Checks can also be made for whether the problem is unbounded or contains variables which will

never come into the solution.  Consider an activity with a positive objective function coefficient which has

all nonzero aij's negative, all zero enj's and all nonzero fmj's positive.  Clearly, then, this variable contributes

revenue but relaxes all constraints.  This will be unbounded regardless of the numerical values.  Further,

variables may be specified which will never come into the solution.  For example, this is true when cj is less

than 0, all nonzero aij's are greater than 0, enj's zero, and nonzero fmj's negative.

These particular structural checks allow one to examine the algebraic formulation or its numerical

counterpart.  Unfortunately, it is not possible to make simple statements when the constraint coefficients

are of mixed sign.  In such cases, one will have to resort to numerical checking.  All of the procedures

above have been automated in GAMSCHCK although they can be programmed in GAMS (See McCarl,

1977). 

17.2.1.2 Numerical Model Analysis

Another model analysis methodology involves numerical investigation of the equations and

variables.  Here, one prints out the equations of a model (in GAMS by using the OPTION LIMROW and

LIMCOL command) and mentally fixes variables at certain levels, and then examines the relationship of

these variables with other variables by examining the equations.  Examples of this are given in the joint

products problem above.  Numerical model analysis can also be carried out by making sure that units are

proper, using the homogeneity of units tests.
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Another numerical technique involves use of a "PICTURE" with which coefficient placement and

signs can be checked.  GAMS does not contain PICTURE facilities, so we do not discuss the topic here,

although one is contained in GAMSCHK (see McCarl, 1977).    

17.2.2 A Priori Degeneracy Resolution

Degeneracy can cause solvers to cycle endlessly making little or no progress.  Solvers like MINOS

( Murtaugh and Saunders, 1983) on occasion give messages like "terminating since no progress made in

last 1000 iterations" or "Sorry fellows we seem to be stuck."  Our experience with such cases indicates one

should use an a priori degeneracy resolution scheme adding small numbers to the right hand sides,

especially to those constraints which start out with zero or identical right hand sides. The magnitude of the

small numbers should be specified so that they are not the same for all rows and so that they do not

materially affect the solution.  Thus, they might be random or systematically chosen numbers of the order

10-3 or 10-4  (although they can be larger or smaller depending on the scaling and purpose of the constraints

as in McCarl, 1977).  We have always observed reduced solution times with this modification.  OSL

automatically invokes such a procedure.

17.2.3 Altering Units of Constraints and Variables: Scaling

Scaling is done automatically in a number of algorithms including MINOS which is used in

GAMS.  However, automatic scaling is not always successful.  Modelers are virtually always more

effective in scaling (Orchard-Hayes).  This section explores scaling procedures, discussing the effects on

resulting optimal solutions.  

Altering the units of constraints and variables improves the numerical accuracy of computer

algorithms and can reduce solution time.  Scaling is needed when the disparity of matrix coefficient

magnitudes is large.  An appropriate rule of thumb is, one should scale when the matrix coefficient

magnitudes differ in magnitude by more than 103 or 104.  In other words, scaling is needed if the aij coeffi-

cient with the largest absolute value divided by the coefficient with the smallest nonzero absolute value

exceeds 10000.  One achieves scaling by altering the formulation so as to convert: a) the objective function

to aggregate units (i.e., thousands of dollars rather than dollars), b) constraints to thousands of units rather

than units (i.e., one might alter a row from pounds to tons), or c) variables into thousands of units (e.g.,

transport of tons rather than pounds).  

17.2.3.1 Scaling-The Basic Procedure

Given the LP problem
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Max c1 X1 % c2 X2

s.t. a11 X1 % a12 X2 # b1

a21 X1 % a22 X2 # b2

X1 , X2 $ 0

Max SC1 c1 X1 / SC1 % c2 X2

s.t. SC1 a11 X1 / SC1 % a12 X2 # b1

SC1 a21 X1 / SC1 % a22 X2 # b2

X1 , X2 $ 0

Max SC1 c1 X '
1 % c2 X2

s.t. SC1 a11 X '
1 % a12 X2 # b1

SC1 a21 X '
1 % a22 X2 # b2

X '
1 , X2 $ 0

Suppose one wished to change the units of a variable (for example, from pounds to thousand

pounds).  The homogeneity of units test requires like denominators in a column.  This implies every

coefficient under that variable needs to be multiplied by a scaling factor which equals the number of old

variable units in the new unit; i.e., if Xj is in old units and X'j is to be in a new unit, with aij and a'ij being

the associated units.

Xj'   =  Xj/ SCj;  

where SCj  equals the scaling coefficient giving the new units over the old units

aij'  =  aij  /   (SCj). 

 The scaling procedure can be demonstrated by multiplying and dividing each entry associated with the

variable by the scaling factor.  Suppose we scale X1 using  SC1

or substituting a new variable X1'  =  X1/SC1  we get

Variable scaling alters the magnitude of the solution values for the variables and their reduced cost as we

will prove later.

Scaling can also be done on the constraints.  When scaling constraints; e.g., transforming their

units from hours to thousands of hours, every constraint coefficient is divided by the scaling factor (SR) 

as follows: 
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Max c1 X1 % c2 X2

s.t. a11 / SR X1 % a12 / SR X2 # b1 / SR

a21 X1 % a22 X2 # b2

X1 , X2 $ 0

Max c1 X1 % c2 X2

s.t. a11 X1 % a12 X2 # b1 / SH

a21 X1 % a22 X2 # b2 / SH

X1 , X2 $ 0

Max c1 / SO X1 % c2 / SO X2

s.t. a11 X1 % a12 X2 # b1

a21 X1 % a22 X2 # b2

X1 , X2 $ 0

where SR is the number of old units in a new unit and must be positive.  Constraint scaling affects :1) the

slack variable solution value, which is divided by the scaling factor; 2) the reduced cost for that 

slack, which is multiplied by the scaling factor; and 3) the shadow price, which is multiplied by the scaling

factor.

The way scaling factors are utilized may be motivated by reference to the homogeneity of units

section.  The coefficients associated with any variable are homogeneous in terms of their denominator units. 

Thus, when a variable is scaled, one multiplies all coefficients by a scaling factor (the old unit over the new

unit) changing the denominator of the associated coefficients.  Constraints, however, possess homogeneity

of numerator units so, in scaling, we divide through by the new unit divided by the old unit. Thus, when

changing a constraint from pounds to tons one divides through by 2000 (lbs/tons).  

Two other types of scaling are also relevant in LP problems.  Suppose that the right hand sides are

scaled, i.e., scaled from single units of resources available to thousands of units of resources available. 

Then one would modify the model as follows:

The net effects of this alteration will be that the optimal value of every decision variable and slack would be

divided by the scaling factor, as would the optimal objective function value.  The shadow prices and

reduced costs would be unchanged.

One may also scale the objective function coefficients by dividing every objective function

coefficient through by a uniform constant (SO). 

Under these circumstances, the optimal decision variables and slack solutions will be unchanged;
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Max SC c1 X '
1 % c2 X2

s.t. SC a11 X '
1 % a12 X2 # b1

SC a21 X '
1 % a22 X2 # b2

X '
1 , X2 $ 0

but both the shadow prices and reduced costs will be divided by the objective function scaling factor as will

be the optimal objective function value. 

Scaling may be done in GAMS using an undocumented feature.  Namely putting in the statement

variablename.scale = 1000  would cause all variables in the named variable block to be scaled by 1000

with the solution automatically being readjusted.  Similarly equationname.scale = 1000 will scale all

constraints in a block.  This must be coupled with the command Modelname.scaleopt=1.

17.2.3.2 Mathematical Investigation of Scaling

In this section an investigation will be carried out on the effects of scaling using the matrix algebra

optimality conditions for a linear program.  Readers not interested in such rigor may wish to skip to the

summary and empirical example. 

The optimality conditions for the LP problem are given by

CB B-1 aj - cj $ 0  for all j

B-1 b $ 0.

Given such a solution the optimal decision variables are given by 

XB = B-1 b,

the shadow prices by

U = CB B-1 

and the reduced costs by

CB B-1 aj - cj,

and the optimal Z value is 

Z = CB B-1 b

 In our investigation, we examine the impact of scaling on each of these items.

17.2.3.2.1 Variable Scaling

When a variable is scaled, the problem becomes:

where X1 equals SCX'
1 and SC is a positive scalar.

The effect on the solution depends on whether the scaled variable is basic or nonbasic.  First,

consider nonbasic variables.  If a nonbasic variable is scaled, then the scaling operation does not affect the

basis inverse.  Thus, the only thing that needs to be investigated is whether or not scaling the nonbasic
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KB '

1 0 0 ... 0 ... 0

0 1 0 ... 0 ... 0

0 0 1 ... 0 ... 0

... ... ... ... ... ... ...

0 0 0 ... SC ... 0

... ... ... ... ... ... ...

0 0 0 ... 0 ... 1

variable renders it attractive to bring into the basis.  This involves an investigation of the reduced cost after

scaling.  Constructing the reduced cost for this particular variable 

CB B-1  SC  aj -  SC  cj = SC  (CB B-1 aj - cj) 

we find that the reduced cost after scaling (new) equals the reduced cost before scaling (old) times the

scaling factor.  Thus, we have the old reduced cost multiplied by the scaling constant and under positive SC

the before scaling solution remains optimal.  The only alteration introduced by scaling a nonbasic variable

is that its reduced cost is multiplied by the scaling factor.  This can be motivated practically.  If it costs $50

to enter one acre of a crop not being grown into solution, it would logically cost $50,000 to bring in a

thousand acres of that crop. 

Now suppose a basic variable is scaled.  In this case, the basis inverse is altered.  Suppose that the

basis matrix before scaling is B, while the matrix of technical coefficients before scaling is A.   The new

matrices (B*,A*) can be expressed as the old matrices (B,A) post-multiplied by matrices KA and KB which

are modified identity matrices.  Assuming the nth column of B is being scaled, then the element on the

diagonal in the nth column of the KB matrix will be the scaling factor.  Thus, 

A* = AKA          B* = BKB

where

The KA matrix would be formed similarly with the column in the A matrix being scaled identifying the

diagonal element where SC appears.

We may derive a relationship between the basis inverses before and after scaling. Matrix algebra

theory shows that 

(B*)-1 = (BKB)-1 = KB
-1 B-1 

We should also note that the scaled objective function coefficients of the basic variables are post-multiplied

by KB, i.e.,           

CB = CB KB

Now let us look at the optimality criteria for non-basic variables        
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C (

B B (&1 a (

j & c (

j .

C (

B B (&1 a (

j & c (

j ' CB KB K &1
B B &1 aj& cj

' CB B &1 aj & cj $ 0

X (

B ' B (&1 b ' K &1
B B &1 b ' K &1

B XB .

K &1
B '

1 0 0 ... 0 ... 0

0 1 0 ... 0 ... 0

0 0 1 ... 0 ... 0

... ... ... ... ... ... ...

0 0 0 ... 1/SC ... 0

... ... ... ... ... ... ...

0 0 0 ... 0 ... 1

XB ' K &1
B XB '

XB1

XB2

...

XBk
/ SC

...

XBm

The reduced cost after scaling becomes

since KBK-1 = I.  Thus, the reduced costs after scaling equal the reduced costs before scaling.  Thus, we

have proven that the solution will remain optimal. 

We now need to turn our attention to whether or not the basic variables remain nonnegative.  The

values of the basic variables at optimality are given by B*-1b.  Substituting in our relationships, we obtain 

The scaled solution equals KB
-1 times the unscaled solution.  The inverse of KB is an identity-like

matrix with one over the scaling factor on the diagonal in the position where the scaled variable enters the

basis.  

The KB 
-1 XB multiplication yields the vector       

Thus, scaling reduces the magnitude of the particular basic variable being scaled, while all other variables

are unaffected.  

We may also investigate the objective function consequences.  The optimal objective function value
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Z ( ' C (

B B (&1 b ' C (

B KB K &1
B B (&1 b ' CB B &1 b ' Z

Max c1 X1 % c2 X2

s.t. a11 / SR X1 % a12 / SR X2 # b1 / SR

a21 X1 % a22 X2 # b2

X1 , X2 $ 0

Max C X Max C X

s.t. RAX # Rb or s.t. A (X # b (

X $ 0 X $ 0,

R '

1 0 0 ... 0 ... 0

0 1 0 ... 0 ... 0

0 0 1 ... 0 ... 0

... ... ... ... ... ... ...

0 0 0 ... 1/RS ... 0

... ... ... ... ... ... ...

0 0 0 ... 0 ... 1

.

of the scaled problem is 

Clearly, then, the objective function value after the change equals the objective function value before the

change.  All in all, column scaling leaves the problem with the same qualitative answer.  The  solution

value of the particular variable being scaled and its reduced cost are altered by the scaling factor. 

17.2.3.2.2 Effects of Constraint Scaling

When one scales a constraint, the resultant problem appears as

or

where R is a scaling matrix of the form

 

Further, the new basis (B*) is related to the old basis as follows

B* = RB

and the basis inverse is the old basis inverse multiplied by the inverse of R. 

B*-1 = B-1 R-1 

Again, R-1 is an identity-like matrix quality.
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R &1 '

1 0 0 ... 0 ... 0

0 1 0 ... 0 ... 0

0 0 1 ... 0 ... 0

... ... ... ... ... ... ...

0 0 0 ... RS ... 0

... ... ... ... ... ... ...

0 0 0 ... 0 ... 1

C (

B B (&1 a (

j & c (

j ' CB B &1 R &1 Raj & cj ' CB B &1 aj & cj.

Now let us turn our attention to the effects of scaling a constraint.  We will derive the results

assuming the slack variable is not in the basis.  The reduced cost criteria for the scaled problem is given by

Thus, the optimality conditions are the same as before scaling and the solution remains optimal with

unchanged reduced costs.  We now may investigate the variable solution values. For the scaled problem,

the solution values are 

X*
B = B*-1 b*  =  B-1 R-1 R b = B-1 b 

which shows that the values of the basic variables are unaffected.  The objective function is also

unchanged. 

Thus, the optimality and feasibility of the basis remain entirely unaffected. What then does change? 

The shadow prices after scaling are 

U = CB B-1 R-1.

Given the form of R-1 from above, the shadow prices are identical to the shadow prices before scaling

 Ui = (CB B-1)i 

for all rows but the particular row being scaled.  For that row, the shadow price is multiplied by the 

scaling factor 

Ui = (CB B-1)i RS

Finally we should note that when a slack variable is in the basis, then constraint scaling simply

changes the magnitude of the optimal slack variable value by dividing it by the scaling factor.

17.2.3.2.3 Objective Function and Right Hand Side Scaling

If the objective function coefficients are uniformly divided by a constant, the values of the solution

variables (B-1 b) are unaffected.  However,  the magnitudes of the shadow prices (CB B-1), the optimal

objective function value (CB B-1b), and the reduced costs (CB B-1aj - cj) are affected.  In all of  these cases,

these items would be uniformly divided by the objective function scaling factor.  A similar observation can

be made regarding scaling the right hand side.  The right hand side determines only the objective function
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Max CX

s.t. AX # b

X $ 0

value  (CB B-1 b) and the solution value of the basic variables (B-1 b).  Dividing all right hand sides by a

constant would divide the objective function and all the optimal variable values by the same constant. 

17.2.3.4 Summary

Scaling alters coefficient magnitudes within the matrix and the resultant magnitude of selected

items in the solution. Consider the LP problem 

Suppose a set of positive (all scaling factors must be positive) scaling factors will be applied to the LP

model.  The scaling factors are a) COLSCALj for the jth variable - a factor multiplying every coefficient

under that variable,  b) ROWSCALi for the ith constraint - a factor dividing every coefficient in that

constraint, c) OBJSCAL for the objective function - a factor dividing every coefficient in the objective row

and d) RHSSCAL for the right hand side - a factor dividing every right hand side value. The parameters of

the model after scaling are:

 

c '
j ' cj (

COLSCALj

OBJSCAL

a '
ij ' aij (

COLSCALj

ROWSCALi

b '
i ' bi (

1
ROWSCALi ( RHSSCALwhere the / denotes the new coefficients. The relationship between solution items before and after scaling is

given in Table 17.3.  Thus, if a particular variable j is scaled by 1000 and constraint i is scaled by a 1000,

the aij value is numerically unchanged.  However, if variable j is scaled by 1000 and constraint i was scaled

by 100, then the value of the aij coefficient is multiplied by 10. 

Thus, for example, if an optimal variable value before scaling was 6 and the right hand side is

multiplied by 100 while the coefficients of that variable are multiplied by .02 then the resultant value after

scaling would be 3. 

Finally, we must emphasize that the only proper way of scaling is to operate on all coefficients for

each variable, right hand side and objective function in the same manner.  One cannot selectively scale

selected coefficients.  The interaction of the various scaling factors can make it look like one is only scaling

selected coefficients, as will be demonstrated in the empirical example below.  But this is not the case,

consistency must be maintained.

17.2.3.5 Empirical Example of Scaling

The previous discussion deals with the implications of changes in constraint, variable, right hand
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Max X1 & 500X2 & 400X3 & 5000X4

s.t. X1 & 10000X2 & 8000X3 # 0

5X2 % 4X3 & 50X4 # 0

1500X2 % 2000X3 # 600000

50X2 % 45X3 # 30000

X1 , X2 , X3 , X4 $ 0

side and objective function units. The reader, however, should note that gains in terms of numerical

stability may arise only when several items are simultaneously scaled.  This is illustrated in the example.  

Consider the following problem

where:

X1  is the sale of nibbles in pounds.  It returns $1 of profit per unit and removes one pound

from the nibble balance row. 

X2 is the hours of nibble production via process 1. One hour's worth of production uses $500

worth of direct cost, 5 units of gribbles, 1500 hibbles and 50 hours of labor.  As a result,

one gets 10,000 nibbles. 

X3
 is the hours of nibble production using process 2 . Here 8000 nibbles are produced at a

direct cost of $400 with four pounds of gribbles used, 2,000 hibbles, and 45 hours of labor

produced. 

 X4 is the number of 50 pound sacks of gribbles purchased, costing $5000 and providing 50

pounds of gribbles into the gribble balance row. 

The right hand side shows an endowment of 600,000 hibbles and 30,000 hours of labor. The objective

function is in the units of dollars and represents profit.  The first constraint balances the units of nibbles

produced with those sold.  The second constraint balances the units of gribbles used with those purchased. 

The third constraint limits the number of hibbles used to the fixed  endowment.  The fourth 

constraint limits the hours of labor used to the fixed endowment. Non-negativity of all variables is assumed. 

This problem is not well-scaled and its scaling characteristics will be altered.  (This will be done to

illustrate scaling - the problem is scaled satisfactorily for any solver).  At solution, the objective function

equals 3,600,000 and the variables values (with their units) are shown in Table 17.4.

Now suppose we scale the first constraint by dividing through by 1000.  Simultaneously, let us

scale the third constraint by dividing through by 100, and divide the fourth constraint by 10.  This changes

the units of these constraints such that the first constraint is in thousands of nibbles, the third constraint is 
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Max X1 & 500X2 & 400X3 & 5000X4

s.t. 0.001X1 & 10X2 & 8X3 # 0

5X2 % 4X3 & 50X4 # 0

15X2 % 20X3 # 6000

5X2 % 4.5X3 # 3000

X1 , X2 , X3 , X4 $ 0

Max 1000X1 & 500X2 & 400X3 & 100X4

s.t. X1 & 10X2 & 8X3 # 0

5X2 % 4X3 X4 # 0

15X2 % 20X3 # 6000

5X2 % 4.5X3 # 3000

X1 , X2 , X3 , X4 $ 0

hundreds of hibbles, and the fourth constraint is in 10's of labor hours.  The new model resulting from the

scaling is

According to Table 17.3 the optimal shadow price on constraint 1 will be the corresponding

prescaled solution value multiplied by 1,000, the shadow price on constraint 3 is multiplied by 100 and the

shadow price for constraint 4 is increased by a factor of 10. The primal solution variables are unchanged as

well as the value of the objective function.  The solution to this model is shown in Table 17.5.  The impact

of scaling on the optimal solution is as forecast.   

The optimal objective function value equals 1.8 million.  Note, we really have not gained anything

with scaling as there is the same disparity of orders of magnitudes within the matrix as before.  Further

scaling will alter this.  Suppose we choose to rescale X1 into 1000's of pounds and X4 to pounds.  This

involves multiplying all coefficients in the X1 column by 1000 and all coefficients associated with X4 by

.02.

 The formulation subsequent to this scaling is 

The net effect of this scaling operation causes the optimal solution X1 value to be divided by 1000, and X4

to be divided by .02.  The resultant solution is shown in Table 17.6.  

The solution again corresponds to predictions.  The optimal value of the objective function equals

1.8 million.  This particular problem is now fairly well scaled; however, for illustrative purposes suppose
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Max X1 & 0.5X2 & 0.4X3 & 0.1X4

s.t. X1 & 10X2 & 8X3 # 0

5X2 % 4X3 & X4 # 0

15X2 % 20X3 # 60

5X2 % 4.5X3 # 30

X1 , X2 , X3 , X4 $ 0

that we scale the objective function and right hand side.  First, suppose we divide the objective function by

1000 and the right hand side coefficients by 100.   The resulting LP problem is 

This should result in a solution with the shadow prices and reduced costs divided through by 1000, the

objective function by 100,000 and the variable solution values by 100.  The optimal solution is shown in

Table 17.7.  The optimal value of the objective function equals 18.  This solution can easily be shown to 

be equivalent to the solution of the unscaled problem, Table 17.4, through the scaling relations in Table

17.3.  

Summarizing, scaling allows one to narrow the discrepancies within the magnitudes of the numbers

within the matrix.  One can, given the scaling factors, derive the original unscaled solution from the scaled

solution. Practitioners should use scaling to decrease disparities in order of magnitude which will severally

improve the performance of the solution algorithm. 

17.2.4 The Use of Artificial Variables to Diagnose Infeasibility

Often the applied modeler finds the solver has stopped indicating that the model is infeasible.  This

situation, particularly when dealing with large models, often marks the beginning of a difficult exercise. 

There are several ways one can proceed.  The first technique involves use of the above simple structural

checking procedures to insure that the rows with minimum requirements have some way of satisfying those

minimum requirements.  Also, if available, a "picture" also can be used to find misplaced coefficients,

misspecified or duplicate coefficients.  However, suppose that all the simple mechanical checks are

examined and the model is still infeasible or unbounded, then what? 

There is an empirical approach involving the use of artificial variables.  As discussed in Chapter 2,

artificial variables permit infeasible solutions to appear feasible. Artificial variables have a large negative

objective function coefficient (when the objective is to maximize) and positive in a single constraint.

Artificial variables only remain in the solution when the restrictions with which they are associated cannot

be met, as occurs in misspecified LP models.  For example, a model might contain a minimum requirement

of 10,000 units production whereas the labor resource availability constraint permits fewer units. This

problem may arise if: a) the 10,000 unit requirement is too large and has been improperly entered, b) the
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Max 50X1 % 50X2

s.t. X1 % X2 # 50

50X1 % X2 # 65

X1 $ 20

X1 , X2 $ 0

Max 50X1 % 50X2 & 10000A

X1 % X2 # 50

50X1 % X2 # 65

X1 % A $ 20

labor endowment is erroneously too small, c) the labor requirements for production have been

overestimated, or d) the contribution to the minimum requirement constraint is too small. 

The last three cases arise when the minimum requirement level is correct, but the infeasibility is

caused by misspecifications in other coefficients.  Thus, infeasibilities arise not only because of improperly

specified minimum requirement rows, but also because of errors in other coefficients. 

The question is "how can one discover the cause of the infeasibility?"  This can be done by adding

artificial variables to the model formulation.  The inclusion of artificial variables permits all models to have

feasible optimal solutions regardless of whether the "real" constraints are satisfied.  Infeasible solutions

exhibit nonzero artificial variables.  Nonzero artificial variables will cause a large negative objective

function value and large shadow prices since some CB's in the CB B-1 computations are large.  Specifically,

constraints which exhibit large shadow prices are those involved with the infeasibility.  The constraints not

causing the infeasibility will have unaffected shadow prices.  Thus, the imposition of artificial variables

allows one to identify which constraints are nominally causing the infeasibility.  We do not argue that such

information cannot be found in an ordinary infeasible solution; however, it is more difficult to interpret. 

Ordinarily, infeasible solver solutions are detected by phase 1 of the simplex algorithm wherein the shadow

prices give the marginal contribution of a change in the right hand side to the sum of the infeasibilities.

To illustrate the use of artificial variables in the context of an infeasible model consider the

following example:

This problem is infeasible due to the interaction of the second and third constraints.  Suppose that an error

was made and the number 50 which is specified as the requirement of X1 for the second resource should

have been 0.50.  The third constraint has a minimum requirement, thus an artificial variable is included.

Here the artificial variable A is entered with a large negative number in the objective function and a



copyright Bruce A. McCarl and Thomas H. Spreen 17-17

Max cX

s.t. AX # b

X # M

X $ 0

Max 3X1 & X2 % X3

s.t. X1 & X2 ' 0

X3 # 5

X1 , X2 , X3 $ 0

plus one in the third constraint, thus permitting a minimum requirement to be satisfied.  The solution to the

augmented problem is shown in Table 17.8.  The value of the objective function is -186,935.  In this

solution, the artificial variable A is nonzero with the second and third constraints binding.  The shadow

prices on the second and third constraints reflect the influence of the artificial variable.  Thus, the modeler

would receive signals that there was something wrong in the interaction of the second and third constraints. 

Hopefully then the data error would be found. 

In summary, artificial variables are useful in finding the source of infeasibility.  Artificials are only

needed in constraints that are not satisfied when the decision variables are zero.  Their use allows the model

user to find infeasibilities by narrowing attention to the constraints which are the underlying causes of the

infeasible solution.  We also feel they should be used where infeasibilities can arise in models which: a)

continually have their data altered; and b) are used by people other than the modeler (see McCarl et al.).

17.2.5 Use Unrealistically Large Upper Bounds to Find Causes of Unboundedness

LP problems may also yield unbounded solutions.  One can again use structural checking or a

picture to find the problem.  However, if these checks fail, imposition of large upper bounds in an

unbounded model on all variables which exhibit desirable objective function coefficients will prevent

unboundedness, and will cause the variables causing unboundedness to take on large solution values. 

Investigation of the variables which take on such large values will allow the modeler to find the cause of the

unboundedness.  Consider a LP problem which has large upper bounds imposed. 

Here the equations X # M are upper bound constraints limiting the decision variables to a large number

(e.g., the constraint X1 # 100,000 has been imposed on the model).  Given decision variables, M would be

set so it was unrealistically large (i.e., 1,000 times larger than the largest expected X value). Why would

anyone want to impose such bounds?  Consider the following simple example.

This problem is unbounded: the model can purchase X2, using it to produce X1 at a net operating profit of
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Max '
j

cjXj

s.t. '
j

aijXj # bi for all i

'
j

Xj # M

Xj $ 0 for all j

$2 without limit.  However, the imposition of the constraint X1 # 100,000 yields the solution X1 = X2 =

100,000, X3 = 50.  Thus, if the model user saw this solution and felt that X1 = 100,000 was unrealistically

large then this would show that there is something wrong within the model.  It also shows that X1 and X2

are the items involved with the unboundedness while X3 is not a factor.

The use of large upper bounds precludes the possibility of an unbounded solution but causes the

objective function and some of the variables to take on unrealistically large values. Subsequently, one can

trace the cause of the unboundedness by examining the set of variables which are unrealistically large. 

This is important since ordinarily LP solvers are implemented so that when they discover an unbounded

solution they automatically stop.  This leaves the user without much information as to the cause of the

unboundedness.  

Decision modelers may wish to upper bound the sum of a number of variables rather than each and

every variable.  This could be done by using the following:       

Here one specifies that the sum of all variables is less than or equal to an unrealistically large number.

17.2.6 Budgeting

Yet another model analysis technique, particularity when dealing with unrealistic optimal solutions,

involves Budgeting.  Budgeting herein refers to the reconstruction and examination of reduced cost and

shadow price information.  The procedure is best illustrated through example.  Consider the model shown

in Table 17.9. 

This model contains activities for buying miscellaneous inputs; selling corn, soybeans, and pork;

and producing corn, soybeans, and hogs.  The model is maximized subject to a resource constraint on land,

along with supply-demand balances on pork, soybeans, corn, and miscellaneous inputs.  The miscellaneous

input item is specified in dollars and therefore enters the objective function at a per unit cost of $1 while

supplying a dollar's worth of miscellaneous inputs.  Corn is sold for $2.50 per unit, soybeans $6 per unit,

and pork $.50 per unit.  Corn production incurs $75 in direct production costs and $125 in miscellaneous

inputs while using one acre of land and yielding 120 bushels of corn.  Soybean production costs $50 in

direct production costs and another $50 in miscellaneous inputs while using an acre of land and yielding 50



copyright Bruce A. McCarl and Thomas H. Spreen 17-19

CB B (&1 aj& cj ' '
i

(CB B (&1)i aij& cj $ 0,

'
i

Ui aij& cj $ 0

bushels of soybeans.  Hog production has no direct costs, uses $20 in miscellaneous inputs, and requires 20

bushels of corn.  An unrealistically large yield in the hog activity has been entered (1000 pounds per hog). 

This example "error" will be sought by the budgeting technique. 

The optimum solution to this model is shown in Table 17.10.  The optimal value of the objective

function is $1,508,000.  This solution includes several symptoms that there is something wrong.  For

example, 3,600,000 pounds of pork are sold, the reduced cost on raising soybeans is $2,480 an acre, the

shadow price on land is $2,680 and the shadow price of corn is $24 a bushel.  Budgeting investigates the

shadow prices and reduced costs in an effort to discover model misspecifications. 

The matrix and summation formula for reduced costs is     

which will be greater than or equal to zero for all nonbasic variables and exactly equal to zero for basic

variables.  Utilizing the fact that the CB B-1 are the shadow prices, then the equation becomes 

where Ui is the shadow price associated with row i, the aij's are the technical coefficients of the original

model, and the cj is the original objective function coefficients associated with Xj. 

Budgeting involves construction of an extensive version of the reduced cost calculations which in

turn are examined for plausibility.  The variable budgeted first could be chosen because:  a) it is nonbasic

when intuition suggests it should be basic; b) it has an unrealistically high reduced cost; or  c) it uses a

resource which appears to be improperly valued. In the example, suppose we budget soybean production

because of its high reduced cost.  To budget, write a row for each nonzero coefficient (aij) under the chosen

variable, with associated shadow prices (Ui) and aijUi the product, then finally subtracting cost.  The budget

for soybean production is shown in Table 17.11. 

Mechanically the budget examines the cost of resource usage in those rows for which the activity

uses resources and values (shadow price) of these resources.  In turn the objective function value of the

variable is considered and the reduced costs reconstructed.  The soybean production variable has non-zero

coefficients in the land, soybean production, and miscellaneous input constraints.  The shadow price for

land is $2,680.  Thus, one acre of soybeans uses $2,680 worth of land and yields 50 bushels, each selling

for $6. Also, 50 units of miscellaneous inputs are used which, when valued at $1, cost $50.  Summing

these terms, the marginal contribution of soybean production, ignoring its direct costs, is $2,430.  Its direct

cost (cj=50) is then subtracted yielding a $2,480 reduced cost.  One may conclude that, the $2,480 reduced

cost is caused by the $2,680 shadow price on land.  The question then becomes why is land this valuable.
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Shadow prices are derived from setting the reduced costs of basic variables to zero.  Thus, the high

land shadow price must arise from the reduced costs of some basic variable which utilizes land.  The only

land using basic variable is corn production.  We then budget the corn production variable (Table 17.12). 

Note that while one acre of corn production uses $2,680 of land, it receives $2,880 from the value of the

corn sold.  Here, the reason for the $2,680 cost of land is the $2,880 value of the corn.  Institutional

knowledge indicates the 120 bushels per acre corn yield is reasonable, but the $24 corn shadow price per

bushel is not.  Thus, the question becomes, "Why is the corn shadow price so high?" Again, this will be

determined by a basic variable which utilizes corn.  The only basic cornusing variable is hog production. 

The budget for hog production is shown in Table 17.13.  These computations show that zero reduced cost

for this activity requires that 20 bushels of corn be valued at $24/unit.  The cause of the $500/bushel value

for corn is an unrealistic value of pork produced ($500). The erroneous 1000 pound coefficient for pork

production per hog would then be discovered.  A revised value of the pork yield per hog would alter the

model, making the solution more realistic. 

The budgeting technique is useful in a number of settings.  Through its use, one may discover why

variables are nonbasic when they should be basic.  The soybean production variable budget provides such

an example.  Budgeting, in such a case, may discover difficulties in the particular variable being budgeted

or in shadow prices. 

Budgeting may also be used to discover why particular activities are basic when modeler intuition

suggests they should be nonbasic.  For example, by tracing out the costs and returns to corn as opposed to

soybean production to see what the major differences that lead to corn being profitable while soybeans are

not. 

The third use of budgeting involves discovering the causes of improper shadow prices.  Shadow

prices arise from a residual accounting framework where, after the fixed revenues and costs are considered,

the residual income is attributed to the unpriced resources. 

Budgeting can also be used to deal with infeasible solutions from Phase I of a Phase I/Phase II

simplex algorithm.  Phase I of such algorithms minimizes the sum of infeasibilities.  Thus, all of the

objective function coefficients of the decision variables in the model are set to zero.  The phase I shadow

prices refer to the amount by which the sum of the infeasibilities will be reduced by a change in the right

hand sides.  Budgeting then can be done to trace shadow price origins and to see why certain variables do

not come into solution.  Solutions containing artificial variables may also be budgeted. 

17.2.7 Row Summing

Model solutions also may be analyzed by examination of the primal allocation results.  In the

budgeting example problem, one could have examined the reasons for the sale of 3.6 million pounds of
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pork.  This can be done through a procedure we call row summing.  This is illustrated through a slightly

different, but related, example Table 17.14. 

Compared to the model shown in Table 17.9, the pork production coefficient has been altered to

-150, while the corn yield per unit has been changed to an incorrect value of -1200 -- the error.  We have

also introduced a RHS of 20 on the corn balance equation.  The solution to this model is shown in Table

17.15.  The optimal value of the objective function is $1,860,055.  Here 5.4 million pounds of pork are

sold which one would probably judge to be unrealistically high.  Further, there are more than 36,000 hogs

on the farm. 

A row sum is simply a detailed breakdown of a constraint: each variable appearing in that

constraint, its corresponding coefficient (aij) and the product aijXj.  The products are then summed, and

subtracted from the right hand side and the slack variable formed.  The use of row summing in our example

begins with the pork sales constraint to see if 5.4 million lbs. is reasonable (Table 17.16.). 

The pork constraint contains the variables sell pork and hog production.  The sell pork variable

uses one pound of pork per unit, while the hog production variable yields 150 pounds of pork per unit.  The

second column of Table 17.15 contains the optimal variable values.  In the third column we write the pro-

duct of the variable value and its aij.  The products are summed to give total endogenous use which in this

case equals zero.  We then enter the right hand side and subtract it to determine the value of the slack vari-

able.  All these items in this case are zero.  Given institutional knowledge, one would conclude the error has

not yet been found as the 150 lbs. of pork per hog is reasonable, and all pork produced is sold.  However,

one would wonder if a production level of 36,001 hogs is reasonable. The next step is to examine the

resources used by hog production.  For illustrative purposes, we begin with the miscellaneous input

supply-demand balance.  The row sum for this constraint is shown in Table 17.17. 

There are four entries in the constraint involving both basic and nonbasic variables.  The row sum

does not reveal anything terribly unrealistic except the large amount of activity from the hog production

variable. The basic question is yet to be resolved. 

We next investigate the corn supply-demand balance.  The row sum computations for this

constraint are shown in Table 17.18.  In this case the constraint has a non-zero right hand side; thus, the

endogenous sum is 20 which equals the right hand side leaving the slack variable zero.  We find the 36,001

hogs require 720,020 bushels of corn, and the reason they are able to obtain all this corn is because of the

inaccurate yield on the corn production variable.  The modeler would then correct the yield on the corn

production variable. 

The above example illustrates the principles behind using the allocation results to debug a model. 



copyright Bruce A. McCarl and Thomas H. Spreen 17-22

One identifies a variable or slack with an unrealistically high solution value, and then row sums the

constraints in which that variable is involved with to discover the problem.  Row summing can be used to

discover why particular variables have unrealistically large values by identifying incorrect coefficient

values or coefficient placement errors.  For example, suppose that the corn yield was inadvertently punched

in the soybean row; then one might have discovered a solution in which soybeans are sold but no soybeans

are produced.  A row sum would quickly determine the source of the soybeans and indicate the error.  Row

summing can also be applied to discover the causes of large values for slack or surplus variables. 
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Table 17.1. Priorities of Techniques to Use to Diagnose Improper Model Solution Outcomes

                                           Type
of Solution Outcome

Structural
Checka

Degen.
Resol.

   Scalinga Artificial
Variables

Upper
Bounds

     
Budget Row Sum

Solver Failure 1 3 2 5 4

Unbounded Solution 1 3 2 4

Infeasible Solutions 1 3 2 4 5

Unsat. Optimal Solutions 1 2 2

Notes: The entries in the table gives information on the order in which to try techniques with the technique numbered 1 being
the item to try first.

a This technique could be employed before any solving occurs.  The technique also can be used when problems appear.
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Table 17.2. Solution Properties of Various Model Formulations

Cases Where the Model Must have an Infeasible Solution 

             bi < 0   and   aij $ 0  for all j Y row i will not allow a feasible solution

             dn < 0   and   enj $ 0  for all j Y row n will not allow a feasible solution

             dn > 0   and   enj # 0  for all j Y row n will not allow a feasible solution

             gm > 0   and   fmj # 0  for all j Y row m will not allow a feasible solution

Cases where certain variables in the model must equal zero

             bi = 0   and   aij $ 0  for all j Y all Xj's with aij … 0 in row i will be zero

             dn = 0   and   enj $ 0  for all j Y all Xj 's with enj … 0 in row n will be zero

             dn = 0   and   enj # 0  for all j Y all Xj 's with enj … 0 in row n will be zero

             gm = 0   and   fmj # 0  for all j Y all Xj 's with fmj … 0 in row m will be zero

Cases where certain constraints are obviously redundant

             bi $ 0   and   aij # 0  for all j means row i is redundant

             gm # 0   and   fmj $ 0  for all j means row m is redundant  

Cases where certain variables cause the model to be unbounded 

cj > 0 and aij # 0 or enj = 0 and fmj $ 0 for all i, m, and n means variable j is unbounded 

Cases where certain variables will be zero at optimality 

cj < 0 and aij $ 0 or enj = 0 and fmj # 0 for all i, m, and n means variable j will always be zero
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Table 17.3. Relationships Between Items Before and After Scaling

Item

Symbol
Before
Scaling

Symbol
After

Scaling Unscaled Value in Terms of Scaled Value Scaled Value in Terms of Unscaled Value

Variables Xj Xj' Xj = X j'* (COLSCALj * RHSSCAL) Xj' = X j /(COLSCALj * RHSSCAL)

Slacks Si Si' Si= S i'*(ROWSCALi * RHSSCAL) Si' = S i / (ROWSCALi * RHSSCAL)

Reduced Cost zj - cj zj '- cj' zj - cj = (zj '- cj') * (OBJSCAL/COLSCALj) zj '- cj ' = (zj - cj) /  (OBJSCAL/COLSCALj)

Shadow Price Ui Ui' Ui = Ui' * (OBJSCAL/ROWSCALi) ) Ui '= Ui /  (OBJSCAL/ROWSCALi) )

Obj. Func. Value Z Z ' Z = Z' * OBJSCAL * RHSSCAL Z '= Z / ( OBJSCAL * RHSSCAL)
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Table 17.4. Optimal Solution to Unscaled Nibble Production Problem

Obj = 3,600,000

Variable Units Value
Reduced

Cost Equation Unit Slack
Shadow

Price

X1 Lbs. of  Nibbles 4000000 0 1 Lbs. of  Nibbles 0 1

X2 Hrs. of Process 1 400 0 2 Lbs. of Gribbles 0 100

X3 Hrs. of Process 2 0 4800 3 # of Hibbles 0 6

X4 Sacks of Gribbles 40 0 4 Hrs of Labor 10000 0

Table 17.5. Optimal Solution to Nibble Production Problem After Row Scaling

Variable Units Value
Reduced

Cost Equation Unit Slack
Shadow

Price

X1 Lbs. of  Nibbles 4000000 0 1 1000's of Lbs. of  Nibbles 0 1000

X2 Hrs. of Process 1 400 0 2 Lbs. of Gribbles 0 100

X3 Hrs. of Process 2 0 4800 3 100's of Hibbles 0 600

X4 Sacks of Gribbles 40 0 4 10's of Hrs of Labor 10000 0
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Table 17.6. Optimal Solution to Nibble Production Problem After Row and Column Scaling

Variable Units Value
Reduced

Cost Equation Unit Slack
Shadow

Price

X1 1000's of Lbs. of Nibbles 4000000 0 1 1000's of Lbs. of  Nibbles 0 1000

X2 Hrs. of Process 1 400 0 2 Lbs. of Gribbles 0 100

X3 Hrs. of Process 2 0 4800 3 100's of Hibbles 0 600

X4 Sacks of Gribbles 40 0 4 10's of Hrs of Labor 10000 0

Table 17.7. Optimal Solution to Nibble Production Problem After Row, Column, Objective Function and RHS Scaling

Variable Units  Value
Reduced

Cost Equation Unit Slack
Shadow

Price

X1 100,000's Lbs. of  Nibbles 40 0 1 100,000's of Lbs. of  Nibbles 0 1

X2 100's of Hrs. of Process 1 4 0 2 100's Lbs. of Gribbles 0 0.1

X3 100's of Hrs. of Process 2 0 4.8 3 10,000's of Hibbles 0 0.6

X4 100's of Sacks of Gribbles 20 0 4 1000's of Hrs of Labor 100 0
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Table 17.8. Solution to Infeasible Example with Artificial Present

Objective Function = -186935

Variable Value Reduced Cost Equation Level Shadow Price

X1 1.3 0 1 48.7 0

X2 0 1940 2 0 1990

A 18.7 0 3 0 -10,000

Table 17.9. Tableau of Budgeting Example

Row Buy Misc. Sell Corn Sell Soyb. Sell Pork Prod Corn Prod Soyb. Prod Hogs RHS

Objective
Func

-1 2.5 6 0.5 -75 -50 MAX

Land
Available

1 1 # 600

Pork Balance 1 -1000 # 0

Soybean Bal 1 -50 # 0

Corn Balance 1 -120 20 # 0

Misc. Inp.
Bal.

-1 125 50 20 # 0
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Table 17.10. Optimal Solution to Budgeting Example

     
Variable Value

Reduced
Cost Equation Level

Shadow
Price

Buy Misc. Input 147,000 0 Land Available 0 2680.00

Sell Corn 0 22.50 Pork Balance 0 0.5

Sell Soybeans 0 0 Soybean Balance 0 6.00

Sell Pork 3,600,000 0 Corn Balance 0 24.00

Produce Corn 600 0 Misc. Input  Balance 0 1.00

Produce Soybeans 0 2,480.00

Produce Hogs 3,600 0

Table 17.11.  Budget of Soybean Production Activity

Constraint aij Shadow Price (Ui) Product (Uiaij)

Land Available 1 2680 2680

Soybean Balance -50 6 -300

Misc. Input  Balance 50 1 50

Indirect Cost Sum   (3Uiaij) 2430

Less Objective Function (cj) -50 -(-50)

Red. Cost (3Uiaij -cj) 2480(nonbasic)
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Table 17.12. Corn Production Budget

Constraint aij Shadow Price (Ui) Product (Uiaij)

Land Available 1 2680 2680

Corn Balance -120 24 -2880

Misc. Input  Balance 125 1 125

Indirect Cost Sum ( 3 Ui aij  ) -75

Less Objective Function (cj) -75 -(-75)

Reduced Cost(3Uiaij -cj) 0(basic)

Table 17.13. Hog Production Budget

Constraint aij Shadow Price (Ui) Product (Uiaij)

Pork Balance -1000 0.5 -500

Corn Balance 20 24 480

Misc. Input  Balance 20 1 20

Indirect Cost Sum   (3Uiaij) 0

Less Objective Function (cj) 0 -(0)

Reduced Cost (3Uiaij -cj) 0(basic)
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Table 17.14. Row Summing Example

Row Buy Misc. Sell Corn Sell Soyb. Sell Pork Prod Corn Prod Soyb. Prod Hogs RHS

Objective Func -1 2.5 6 0.5 -75 -50 MAX

Land Available 1 1 # 600

Pork Balance 1 -150 # 0

Soybean Bal 1 -50 # 0

Corn Balance 1 -1200 20 # 20

Misc. Inp. Bal. -1 125 50 20 # 0

Table 17.15. Optimal Solution to Row Summing Example

Variable Value
Reduced

Cost Equation Level
Shadow

Price

Buy Misc. Input 795,020 0 Land Available 0 3,100

Sell Corn 0 0.25 Pork Balance 0 0.5

Sell Soybeans 0 0 Soybean Balance 0 6.00

Sell Pork 5,400,150 0 Corn Balance 0 2.75

Produce Corn 600 0 Misc. Input  Balance 0 1.00

Produce Soybeans 0 2,480.00

Produce Hogs 36,001 0



copyright Bruce A. McCarl and Thomas H. Spreen 17-33

Table 17.16. Row Sum of Pork Constraint

Variable aij Optimal Value (Xj*) Product (aijXj*)

Sell Pork 1 5,400,150 5,400,150

Produce Hogs -150 36,001 -5,400,150

Endogenous Sum   (3aij Xj*) 0

 Right Hand Side(bi) 0 0

Slack (bi-3aij Xj*) 0

Table 17.17. Row Sum of Miscellaneous Input Constraint

Variable aij Optimal Value (Xj*) Product (aijXj*)

Buy Miscellaneous Inputs -1 795,020 -795,020

Produce Corn 125 600 75,000

Produce Soybeans 50 0 0

Produce Hogs 20 36,001 720,020

Endogenous Sum   (3aij Xj*) 0

 Right Hand Side(bi) 0 0

Slack (bi-3aij Xj*) 0

Table 17.18. Row Sum of Corn Balance Constraint

Variable aij Optimal Value (Xj*) Product (aijXj*)

Sell Corn 1 0 0

Produce Corn -1,200 600 -720,000

Produce Hogs 20 36,001 720,020

Endogenous Sum   (3aij Xj*) 20

 Right Hand Side(bi) 20 20

Slack (bi-3aij Xj*) 0



     14 The material in this chapter is largely drawn from McCarl (1984) and McCarl and Apland.

     15 The word validate is controversial. Some prefer to use verify. Within this text, validate refers to
exercises determining whether the model user and or modeling team feels the model behavior is
close enough to real world behavior.
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CHAPTER XVIII: VALIDATION OF PROGRAMMING MODELS

Model validation is important in any empirical analysis14.  Programming models frequently are

superficially validated.  However, validation is necessary for both predictive and prescriptive model use15.

Validation exercises almost always improve model performance and problem insight.

This chapter presents procedures for programming model validation and cites examples.  The

discussion will be most relevant to predictive model validation, however, the procedures may also be used

with prescriptive models.

18.1 Background

Before beginning the presentation, a model structure is needed.  Let the model contain demand(X),

production(Y) and input purchase variables( Z) with the following structure.

Let us denote the optimal values of these variables as X*, Y*, Z*.  Now suppose these variables are

assumed to correspond to real world observations . The model also has associated shadow X, Y, and Z

prices, U, V, and W which at optimality are U*, V*, and W* and correspond to real world observations

.Ū ,V̄, and W̄

18.2 General Approaches to Validation

Validation approaches vary widely. The overall purpose is to test how well a model serves its

intended purpose. For predictive models, validation tests can involve comparing model predictions to real

world results.  For prescriptive models, decision maker reliance is the ultimate validation test.

Unfortunately, these tests can rarely be used because they are expensive and time-consuming (this is often

the reason for modeling in the first place). Thus, models are frequently validated using historical events.

Although a model may have a broad range of potential uses, it may be valid only for a few of those uses.

The validation process usually results in identification of valid applications.
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 Model validation is fundamentally subjective. Modelers choose the validity tests, the criteria for

passing those tests, what model outputs to validate, what setting to test in, what data to use, etc. Thus, the

assertion "the model was judged valid" can mean almost anything (See Anderson; and House and Ball for

elaboration).  Nonetheless, a model validation effort will reveal model strengths and weaknesses which is

valuable to users and those who extract information from model results.

 Two validation approaches may be used: validation by construct and validation by results.

Validation by construct asserts the model was built properly therefore it is valid. Validation by results

refers to exercises where the model outputs are systematically compared against real world observations. 

18.3 Validation by Construct

Validation by construct is always used in modeling, but it is also the end of most of the

programming model validation exercises. Validation by construct, as the sole method of validation, is

justified by one of several assertions about modeling . 

The right procedures were used by the model builder.  Usually this involves the assertion that the

approach is consistent with industry, previous research and/or theory; and that the data were

specified using reasonable scientific estimation or accounting procedures (deducing the model data

from real world observations).

Trial results indicate the model is behaving satisfactorily.  This arises from a nominal examination

of model results which indicates they do not contradict the modeler's, user's, and/or associated

"experts" perceptions of reality. 

Constraints were imposed which restrict the model to realistic solutions.  Some exercises use

constraints to limit adjustment possibilities and force the model to give results very close to

historically observed outcomes. The application of "flexibility" constraints (Day and Cigno; Sahi

and Craddock [1975, 1974]) as in the recursive programming example is such an approach.

 The data were set up in a manner so that the real world outcome had to be replicated.  In some

models one can assure replication of a real world outcome through the model structure and data

calculation procedures. This approach is manifest in input-output modeling (Leontief, 1936) where

procedures insure that the base solution will always arise. A similar approach has appeared in

price endogenous programming applications (see Miller and Millar; Fajardo et al.).

Fundamentally, validation by construct suffers from the shortcoming that validation of a particular

model is assumed, not tested. If a model plays an integral part in a study, going forth with a model that is

only assumed valid does not appear to be totally satisfying. However, validation by construct is a necessary

precursor to any validation by results testing.



     16 We do not recommend imposing constraints or model structure to force validation unless they are
absolutely necessary and certainly not until initial testing has been done
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Y'Ȳ

Z'Z̄

18.4 Validation by Results

Validation by results involves comparison of model solutions with real world outcomes. Models

used in such a comparison will always have been built relying on experience, precedence, theory,

appropriate data estimation and measurement procedures.  Thus, validation by construct will always

precede validation by results16.  Testing whether the model output reasonably reproduces real world results

is the next validation step.  That determination involves five phases: first, a set of real world outcomes and

the data causing that outcome is gathered; second, a validation experiment is selected; third, the model is

set up with the appropriate data, the experiment is implemented and a solution is generated; fourth, the

degree of association between model output and the real world outcome is tested; and, finally, a decision is

made regarding model validity.  Comments relative to these steps appear below. 

18.4.1 Parameter Outcome Sets

Data describing a real world observation contain both the values for the model input parameters

and model output measures.  Thus, when predicting corn acreage one needs the prices, costs and resource

endowments that led to the acreage decision.  Tests of the model beyond the original data set will generally

be more representative of model accuracy in applications (Anderson and Shannon).  While complete input

parameter-outcome sets are most desirable, partial sets giving aggregate measures (giving total corn

acreage - not acreage by planting date) can be useful.

18.4.2 Validation Experiments

A set of validation experiments is described below.  These experiments are not mutually exclusive;

rather they are a set of sequential experiments which should be performed (or at least considered) in a given

order. Five general validation experiments will be presented: a feasibility experiment, a quantity

experiment, a price experiment, a prediction experiment, and a change experiment. 

18.4.2.1 Feasibility Experiment

The feasibility experiment has primal and dual forms.  The basic idea involves setting up the model

equations with the variables held at their observed levels, then examining solution feasibility.

The primal test involves addition of the constraints: 

This experiment tests internal model consistency. Often, the feasibility experiment is neglected in favor of,



     17      Note the ' sign of f(x) denotes the first derivative.
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for example, seeing if the model can replicate .  However such a solution can never be( X̄, Ȳ, Z̄ )

replicated if it is not feasible.  The feasibility experiment often determines needed data, data calculation or

model structure revisions. Such an experiment also finds errors arising due to faulty model equation

specification.

The dual feasibility experiment involves testing whether the observed shadow prices are feasible in

the dual or the Kuhn-Tucker conditions.  For the example above this involves seeing whether:

is feasible17.  This procedure tests whether the solution is dual feasible and therefore primal optimal.

Non-zero variables in the observed outcome should, because of complementary slackness, lead to equality

Kuhn-Tucker conditions.  Zero variables should ordinarily be associated with strict inequalities. Careful

execution of this experiment quite often reveals inadequacies in structure, data, or the objective function. 

Again, there is the attendant possibility of an inconsistent "real world outcome" which requires correction.

The data requirements of these feasibility conditions are rather strong -- they assume knowledge of

a complete solution.  Often, one may know output and input levels ( X, Z ) and aggregate sums of

production variables (sums within Y) but not individual variable values.  Thus, tests involving totals may

be in order.  Second, the experiments may require artificial variables to both allow and help find

infeasibilities as discussed in the last chapter.

18.4.2.2 Quantity Experiment

The quantity experiment involves constraining the outputs supplied or inputs demanded at their

actual levels and removing f(X) or g(Z) then observing the shadow prices. The output variant (developed

by Kutcher) involves adding the constraint

X ' X̄

with the objective function term f(X) dropped. The correspondence of  and the shadowȲ, Z̄, Ū, V̄, W̄

prices on the equation pegging the X value can then be tested.

Such a test examines the consistency between the optimal and observed levels of the production (Y)
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and input supply (Z). In addition, the imputed values of the resources (V and W) may be examined for

consistency with the observed values. Further, the dual values associated with the quantity constraints

(  ) should be sufficiently close to the market price for the outputs.X ' X̄

These shadow prices give an indication of the marginal cost of production at the observed

quantities (Figure 18.1). This procedure is a test of the economic assumption of perfect competition

(Kutcher) since, under perfect competition, the shadow price should equal the market price.

 The input version of the test is essentially identical. The model is augmented by the constraint

 with the g(Z) term dropped from the objective function. In this case, the experiment shouldZ ' Z̄

generate dual variables which can be compared to prevailing market prices of inputs (Figure 18.2).

18.4.2.3 Price Experiment

A third type of model validation experiment is the price experiment. This type of experiment is

relevant in price endogenous models or models with fixed demand requirements. This experiment involves

fixing the objective function coefficients at existing real world prices (U, W), then observing quantities (the

dual of the quantity experiment).  The optimal quantities (X*, Z*) are then compared to the observed levels

(X, Z). The output price experiment is illustrated in Figure 18.3 where the fixed output price is equated

with the model supply schedule to get a value of X*.  One may also examine how implicit fixed resource

values are influenced in the experiment.

18.4.2.4 Prediction Experiment

The prediction experiment is the most common validation by results test. Examples can be found in

Barnett, et al. (1982); Brink and McCarl (1979); and Hazell and Pomareda.  The prediction experiment

involves fixing the problem data at real world values and solving to get X, Y, Z.  In turn we test whether

the linear programming model output is close enough to the real world outcomes.

18.4.2.5 Change Experiment

The prediction experiment is to some degree the ultimate validation experiment in that it tests

whether a model can replicate reality. However, most programming models are used for comparative statics

analysis. This implies a need for an experiment which tests whether models accurately predict change.

To test a model's ability to predict change, one must have data on two real world situations and the

resultant model solutions. Then, a comparison is made between the change in the model solution variables

(e.g.,X1
*, X2

*) and the change observed in the real world solution  as done in Hazell et al. (1981).(X̄l, X̄2)

18.4.2.6 Tracking Experiment

Even a model which satisfactorily predicts a one time change may not be adequate. One may wish

to track adjustments through time. For validation of such applications the model can be solved using a

series of parameter sets. The focus of the validation would then be on how well the model "tracks" over
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time with respect to the corresponding observed adjustments in the system. Again, comparisons are made

between changes in the model solution and observed changes in the real world solution (for example, see

Pieri et al.).

18.4.2.7 Partial Tests

The above experiments are discussed for a model as a whole. Obviously, in any particular

validation exercise, it may be desirable to perform experiments with some of the variables fixed at real

world levels with other variables left unconstrained -- an attempt to validate portions of the model. Often,

this type of experiment will be necessary with large models because observations on all decision variables

and/or shadow prices may not be readily available. Validation experiments may then be performed to

require sums of variables to equal observed real world levels, for example.

18.4.3 Employing a Validation Test

There are several identifiable stages for conducting one of the experiments given the model.

Step 1. Alter the model variables, equations and data to reflect the validation experiment.

Step 2. Solve the model(s).

Step 3. Evaluate the solution(s). Is it infeasible, unbounded, or optimal?

 (a) If the model solution is infeasible, examine the results to find the cause of infeasibility.

Use the artificial variable based method in the last chapter. Once the cause is found, go

to Step 5.

(b) If the model is unbounded, use the large upper bound method from the last chapter.

Once the cause is found, go to Step 6.

(c) If the solution is optimal, perform association tests (as discussed below) to discover

the degree of correspondence between the "real world" and the model solutions (except

for the feasibility experiment). These tests should be conducted upon both the primal

and dual variables.

Step 4. If the model variables exhibit a sufficient degree of association, then:

(a) do higher level validation experiments, or 

(b) determine the model is valid and proceed to use it.

Step 5. If the model does not pass the validation tests, consider whether: 

(a) the data are consistent and correctly calculated, 

(b) the model structure provides an adequate representation of the real world system, and 

(c) the objective function is correctly specified. 

Step 6. Fix the Model --Procedures for recalculating model parameters will be problem specific.

If, for example, all the variables have been fixed at "real world" levels and infeasibilities
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occur, then the units of the observed input parameters and outputs may be inconsistent. If

the data are accurate and model structure problems are suspected, one should consider

whether:  errors have been made in constructing the matrix; additional constraints are

needed; or such factors as risk and/or willingness to adjust (i.e., flexibility constraints)

should be entered into the model. If the model has been respecified either structurally or

through its data, proceed back to Step 3 and repeat the validation test.  If not, go to Step 7.

 Step 7. If the preceding steps do not lead to a valid model, one must decide whether to: 

(a) do demonstrations with an invalid model -- assuming this is an approximately correct

structure,

(b) abandon the project, or 

(c) limit the scope of validation to a lesser set of variables (aiming at a less strict level of

validation), subsequently qualifying model use. This may happen in many cases due to

some considerations discussed subsequently.

18.4.4 Evaluation Criteria for Validation

Association tests can be used to measure whether a set of model results are similar to observed

results. Quite a number of association tests are available as reviewed by Shannon; Anderson; Gass (1983);

or Johnson and Rausser, for example. These tests have been well presented elsewhere and their theoretical

roots are well outside our scope, so only a brief discussion will be given.

Regression techniques have been used to measure the association of model solutions with observed

values (for examples see Nugent; Rodriguez and Kunkel). In that case, model results are regressed on

observed values with perfect association indicated by an intercept of zero and a slope of one. The Theil U

test has also been used (Leuthold; Pieri, et al.). This is a nonparametric "goodness of fit" test. Garret and

Woodworth suggest the use of the G Index for validation -- a procedure for comparing sets of basic

variables (an example can be found in Keith). Simple measures such as means, sums, mean absolute

deviations, and correlation coefficients, have been used (Nugent; Kutcher; Hazell, et al., 1981). The

authors have not found applications of Kolmogrow-Smirnov, Chi Squared or various other "goodness of

fit" tests in a programming context. However, these techniques have been applied in simulation settings (see

Anderson; Johnson and Rausser; Shannon; and Gass).

18.5 What if the Model Does not Validate

From a practical standpoint, models do not always pass validation tests. Since models always

involve many assumptions, failure to validate, likely indicates that improper assumptions have been used.

Consequently, when models fail validation tests, modelers often ask: What assumptions should be

corrected?
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 As discussed above, programming models embody assumptions about both mathematical structure

and the model structure.  The mathematical structure assumptions involve additivity, divisibility, certainty,

and proportionality.  These assumptions, when severely violated, will cause validation tests to fail.  The

model designer then must consider whether these are the cause of failure.  If so, the use of techniques such

as separable, integer, nonlinear, or stochastic programming may be desirable to construct a new model.

Modeling assumptions may also lead to validation test failure. These assumptions embody the

correctness of the objective function, variables, equations included, coefficients, and equation specification.

Programming algorithms are quite useful in discovering assumption violations. Given an optimal solution,

one may easily discover what resources were used, how they were used, and their marginal values.  Thus,

when presented with an invalid solution, resource usage and resource valuation should be investigated.

Models are most often invalid because of inconsistent data, bad coefficient calculation, bad equation

specification, or an incorrect objective function.  Thus, common fixes for a model failing validation involve

data respecification and/or structural corrections.

When dealing with linear programming, there are several other properties which can lead to

validation failures. An optimal LP solution is characterized by the term basic, i.e., no more activities can be

in the model than the number of constraints. For example, if a disaggregated regional model is constructed

with a single constraint in each region, at most one activity will be produced in each region (if other

constraints are not present in the model). This is ordinarily inconsistent with real world performance.

Models then may be judged invalid because they overspecialize in production due to the nature of basic

solutions. Several approaches may be taken when faced with this sort of inadequacy in a model solution.

First, one may be satisfied with validating only aggregate results and not worrying about individual

production results. Second, one may constrain the model to the observed solution and investigate whether

this solution is an alternative optimal solution (which, as argued by Paris, may commonly occur). Third,

one may recognize that a basic solution will not validate and enter constraints that limit the adjustment

process of the activities within the model (flexibility constraints (Day) or aggregation procedures (Onal and

McCarl [1991, 1989]) as discussed in the price endogenous chapter).  Fourth, the model may be expanded

by including risk considerations. Fifth, one may feel the model is structurally inadequate in that many of the

factors that constrain production may be inadequately portrayed in the model (see the arguments in Baker

and McCarl). Such a situation leads to either one of two fixes: more constraints can be added or the

activities within the model may be respecified so they represent feasible solutions within omitted constraints

as in the price endogenous chapter (Onal and McCarl [1991, 1989]).

Models may also fail validation because of the objective function. Specification of the constraints

identifies the set of possible solutions, while the objective function determines the single optimal solution.
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Thus, the objective function must be carefully specified and reviewed (with the dual feasibility test used if

possible). Finally, the objective function may generate alternative optimal solutions, one of which is the

desired solution (see Paris or Burton et al. for discussion).

Another phenomena may cause models to fail validation tests. Operations, quite often, are

performed over several time periods. An annual model depicting operations of this type may well be invalid

because it ignores initial conditions or does not recognize that parameter expectations may change over

time. Thus, unless the model has initial conditions identical to those in the "real world," it may be very

difficult to validate.

18.6 Comments

Validation is an important concern within any programming exercise. A well validated model will

have gone through both validation by construct and validation by results phases. Unfortunately, true

validation will never occur as models can only be proved invalid. However, through satisfactory completion

of the above experiments, the level of satisfaction may be increased.

The ultimate test of validity deals with adoption of the model by the decision maker. Satisfactory

validation via the procedure given may not be sufficient for acceptance. A numerically valid model may

solve the wrong problem and thus, will never be valid from the decision maker's viewpoint.  Clearly, under

these circumstances, validation in the broadest sense is only achievable by redefining the model so it takes

into account the true problem.
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CHAPTER XIX:  COMPUTERIZED AIDS FOR PROGRAMMING STUDIES

Data manipulation, model specification, debugging, validation and experimentation within moderate

sized programming models can be complex.  Computerized procedures may facilitate these tasks.  This chapter

reviews ways computerized procedures may facilitate programming studies.  In addition, material on modeling

with GAMS will be presented.

Given the model structure and data, computerized procedures may be used to retrieve necessary data

items;  calculate coefficients; prepare equations for solver input; check numerical formulations for errors; 

summarize solution content;  debug the model;  predict implications of data alterations; and execute model

validation tests.  Many of these options are available within modeling systems such as GAMS,  but some are not

and a more general discussion is in order.

Before discussing computerized approaches, three caveats are pertinent:

1) This chapter assumes that a programming formulation is the appropriate analysis tool.

2) The chapter is based upon the authors' experience and does not reflect experience with packages
such as OSL or ANALYZE (Greenberg, 1991).

3) The chapter is oriented toward solving moderate to large models (more than 100 rows and/or
columns).

19.1 Model Generation Tools

Numerical programming models must be constructed in a form consistent with solver input

requirements.  Construction of the numeric formulation is commonly called matrix generation. Problems of the

size dealt with herein virtually require a computerized matrix generator (MG).  Williams (1978a, pg. 35) argues

that "the clerical problems (of building moderate to large models by hand) almost always become prohibitive."  

Different types of MGs can be employed.  These run the continuum from simple specific model MGs to

MGs designed to facilitate direct model use by decision makers (see McCarl and Nuthall or McCarl, et al.) on to

general purpose matrix generators as in modeling systems (i.e., GAMS-Brooke, et al.).  The fundamental

distinction made here is between custom, problem specific and general purpose modeling system based MGs.  

19.1.1 Potential Functions of a Matrix Generator

Potentially there are several functions MGs can perform.  We group these into input preparation,

formulation manipulation, documentation and analysis facilitation.

19.1.1.1 Input Preparation

Fundamentally MGs prepare solver input from data and equation specifications.  Programming models

usually permit a large model to be generated from a smaller set of input (e.g., Kutcher and Meeraus state that

400 lines of data and a 1000 statement FORTRAN matrix generator yielded an 80,000 line numerical  model

file).  Matrix generators calculate and place coefficients avoiding clerical errors.  
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19.1.1.2 Formulation Manipulation

Initial formulations are almost always different from final formulations due to omissions, errors,

improper data or oversights.  Model based analysis usually involves new and altered equations and variables, as

well as data changes.  MGs enable rapid, efficient modification of model structure and/or data usually requiring

modification of a few commands or input tables.

19.1.1.3 Documentation

Often, it is very hard for someone other than the model author to use a model.  Documentation is often

inadequate.  MG use can partially solve the documentation problem.  MGs utilize specific data, carry out data

transformations, and place the coefficients.  This contributes to documentation.   Nevertheless, accompanying

documentation is still important.

19.1.1.4 Analysis Facilitation

MGs may facilitate analysis reducing the time to do a run and correct errors.  Thus, a more extensive

analysis may be done (since it is easier to do individual runs).  Other possible MG functions include: suggesting

an advanced basis (Dillon); resolving degeneracies (McCarl, 1977); resolving alternative optimals (McCarl et

al., 1977); checking for inconsistent or improper data -- when the modeler codes in such checks; aiding in the

discovery of causes of infeasibility (adding artificial variables) or unboundedness (by adding large upper

bounds); and automatically setting up approximations of nonlinear phenomena (i.e., generating a separable

programming approximation).

19.1.2 When not to use a Matrix Generator

MGs are not always appropriate.  MGs should only be used when the time required to do all analysis

with the MG is less than or equal to the time to do the analysis without it.  (This is an elusive criterion since

many uncertain factors enter.)  Thus, if the analysis may be done efficiently without a MG, don't use one.  This

criterion also applies to the choice between a generalized (e.g., GAMS) and a problem tailored MG.  Problem

specific MGs are more time consuming to construct and can be difficult to change because of accompanying

documentation and complexity of the implementation.  This situation could well lead to an analysis done with

the wrong model.  A matrix generator should be used with the attitude that it will change to accommodate the

problem rather than vice versa.

19.2 Pre-Solution Formulation Analysis Tools

The first problem formulation is rarely the final formulation used in the study.  Computerized tools may

facilitate the identification of formulation difficulties.  Unfortunately, GAMS does not contain much in the way

of such tools although GAMSCHK (McCarl 1994) does contain such tools.  The primary aid in verification is a

"picture" routine which generates a schematic of a programming problem  (Orchard-Hays).  A page of "picture"



     18 For example, see the GAMS report writing example above, or McCarl et al.
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output (e.g., Figure 19.1) typically represents 50-60 columns and 40-50 rows.  Characters on the page indicate

the location, sign and magnitude of a coefficient.  A picture thereby allows verification of whether coefficients

with proper sign and magnitude are in their proper places. 

Preanalysis routines may also generate data on problem scaling, and check for obvious structural

defects.  Finally, presolution formulation analysis may use redundancy identification techniques (Luenberger,

Ch. 6) which are an integral part of some large commercial packages (e.g., OSL automatically reduces the

problem).

19.3 Solution Interpretation Aids

Computerized techniques can be developed to aid solution interpretation.  They can be used to

summarize solutions, aid in solution debugging, or augment solution information.

19.3.1 Solution Summarization 

The primary solution summarization tool is the report writer (RW).  A RW takes solution information

and reformats it into tables for decision makers.18   Linear programming solver output is usually an inadequate

description of a solution. Substantive summary reports are usually necessary and may be the only effective way

to involve nontechnical decision makers in model use.  Report writers are frequently based upon rudimentary

accounting procedures involving data tabulation, labeling and organization.  (McCarl and Nuthall discuss report

writers at length.) 

 RWs may be either problem specific or general purpose. The arguments for a problem specific report

writer are weaker than those for a matrix generator. This is due to both the ability to add accounting equations

summing up variables of interest and the report writing features of modeling systems like GAMS (see the

discussion of GAMS report writing later in this chapter).  The proper trade-off in selecting whether to develop a

problem specific report writer is between time required to do the whole analysis with the report writer versus

other methods (hand and/or generalized report writers). 

19.3.2 Solution Debugging 

Post-solution computational aids may also help in debugging "bad" solutions.  Often, the analyst has

doubts about the validity of an LP solution.  Specifically, three potential questions are asked: 1) Why is a

particular variable in (or not in) the solution?; 2) Why is a particular shadow price so large?; and 3) Why does a

particular row exhibit slack resources? The resolution of these questions revolves around the budgeting and row

summing procedures discussed above.  These items are easily computerized and have been in GAMSCHK

(McCarl 1994).
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19.3.3 Solution Interpretation

Post solution computational aids can enhance or augment solution information.  Linear programming

solver output typically consists of solution levels, shadow prices, reduced costs and slacks.  Less often, cost and

right hand side ranges are obtained.  Post optimality routines (or programs which request parametric analysis)

may provide additional information (e.g., the impact of ranging a number of right hand sides simultaneously). 

Similarly, calculations may be done on, or requests generated for, information from the final tableau.  (In larger

problems this information is virtually never available and may be difficult to calculate.  Although, it is

sometimes quite useful.)

19.4 Getting the most from GAMS

There are a number of GAMS features which can facilitate a programming exercise.  These features

will be discussed under the topics: setting up data, changing model structure, providing an advanced basis,

report writing, debugging models, conducting a comparative model analysis, sensitivity analysis, speeding up

GAMS, minimizing model size, and avoiding GAMS failures.

19.4.1 Setting Up Data

GAMS has excellent facilities for data entry and computation as well as the ability to document data. 

We recommend that users enter primary data with comments on data sources and long labels.  In turn, one

should then calculate the needed data. External calculations are usually inadvisable as they are difficult to trace

at a future time.  For example, in the transportation example the distance and the formula relating distance to

cost were entered with the costs computed.  Users following such a strategy would find it easy to alter raw data

assumptions and reanalyze the problem.

19.4.2 Changing Model Structure

One of the big advantages of using a modeling system is the ability to add constraints or variables and

reanalyze the problem.  However with large models or comparative studies, it may be desirable to make

equations or terms in equations temporarily active or inactive.  This can be achieved with $ controls.  For

example if the following lines were put in a GAMS problem

SCALAR   ISITACTIVE   tells whether items are active /0/
CONDEQ$ISITACTIVE..  sum(stuff,x(stuff)) =L= 1;
EQNOTH(index)..    sum(stuff,r(index,stuff)*x(stuff)) +

   4*sum(stuff,Y(stuff))$ISITACTIVE =L= 50;

they would cause the CONDEQ equation and the Y term in the EQNOTH equations to only appear in the

empirical model when the ISITACTIVE parameter was nonzero.  Thus, the sequence

ISITACTIVE = 0;
SOLVE MODELNAME USING LP MAXIMIZING OBJ;
ISITACTIVE =1;
SOLVE MODELNAME USING LP MAXIMIZING OBJ;
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would cause the model to be solved with and without the constraint and term.

19.4.3 Providing an Advanced Basis

The importance of an advanced basis has long been recognized in mathematical programming.  Models

which take more than 24 hours to solve from scratch, can be solved in less than 3 hours from a good basis. 

GAMS can accept an advanced basis under certain conditions.  In any model involving a sequence of solves,

GAMS automatically uses the basis from the first solve to restart the second and later solves.  But this does not

carry over to models solved from scratch.

So what can you do when solving a model from scratch?  Three possibilities are available.  1.

One can let GAMS solve without worrying with the basis.  This should certainly be done for small

models. 

2. One can try to suggest a basis by setting the levels and marginals for the variables and the marginals

for the equations.  For example the statements

X.L("VAR1") = 10;
X.L("VAR2") = 0;
X.M("VAR1") = 0;
X.M("VAR2") = 10;

      CONSTRAINT.M("RES1")=20;
      CONSTRAINT.M("RES2")=0;

would result in a basis being suggested with the first variable and the slack from the second

constraint.

3. One can save the variable and equation information from previous solves and restart including that

information by setting the levels and marginals as above (a small example is given in the context of

the Chapter  5 DIET problem in the files SAVBASIS and ADVBASIS) GAMSBAS (McCarl

1994a) does this automatically.  

19.4.4 Report Writing

GAMS report writing has been discussed before in this text.  However, a few additional comments are

relevant.  The normal GAMS output format is not always desirable.  All *.lst files have the GAMS instructions

listed first and may be followed by: a cross reference map; output from pre-solution displays; the equation and

variable listings; the solver output; and post-solution displays.  Several methods may be employed to manage

this output.  One may

1. Suppress the cross reference map by using the command 

$OFFSYMLIST OFFSYMXREF

2. Suppress the variable and equation listings by using 

OPTION LIMROW = 0;
 OPTION LIMCOL = 0;

3. Limit the amount of GAMS code echoed back by restarting the job with a very short file containing
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display statements only.  For example the batch file (REDUCED.BAT)

GAMS MAINPART S=SAVED
GAMS FINALOUT R=SAVED

does this where MAINPART contains all the model statements ( in the example on the disc these are

from the file EVPORTFO) and FINALOUT is just a display of the relevant output.  This generates a

much smaller FINALOUT.LST file.

4. Suppress the solution information using 

OPTION SOLPRINT=OFF;

5. Suppress the listing of lines between $OFFLISTING and $ONLISTING commands

One may also wish to control the GAMS output ordering and format.  In this context one should be

aware that

a. The order in which things appear in terms of elements of sets, variables etc. is determined by the

order in which GAMS saw those items.  In particular the order that the variables appear in the

equation, variable and solution listings depends on the ordering of the VARIABLES declarations. 

Thus, if you want the TRANSPORT variable to proceed the DEMAND and OBJ variables you need

to declare them in that order.  The same holds for the equations.  

The ordering of set elements is somewhat more tricky and depends on the order in which the set

elements were seen across all sets.  Thus the set statements

SETS ONE / SALT, PROTEIN , TOTAL/
TWO / INDUSTRIAL , MUNICIPAL, TOTAL/

  would result in any listing over data indexed by the set TWO appearing with the TOTAL element

first since that word appeared first in set definitions before the other words. 

The ordering of items in a parameter defined over multiple sets is also an issue.  GAMS output is

ordered with the sets varied from left to right.  Thus, when displaying X(A,B,C) A will vary the

slowest.  The sets should be ordered in the pattern desired.  

b. The page width and page length are at the users control.  Both can be specified in the GAMS

initiation command. For example, the command 

GAMS FILE PW=130 PS=9999 

would result in 130 character wide output arrayed in 9,999 line long pages. 

c. One can control the formatting of output from a display statement using two option commands. The

command

OPTION DECIMALS = 0;

would result in all displayed numbers being rounded to zero decimals (although GAMS still insists



     19 One can overcome this using the command OUTPUTITEM$(OUTPUTITEM GE 0.5)
=OUTPUTITEM before the display statement.

     20 Moves are now afoot to correct that situation with the development of a GAMS interfaced version
of ANALYZE (Greenberg, 1991) and GAMSCHECK (McCarl, 1994).
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on reporting all decimals for numbers less than one).19  The command 

                         OPTION TRADE:3:2:1;DISPLAY "TRADE FLOWS", TRADE; 

would result in the data in the TRADE array being displayed with three indices displayed in the

rows, two in the column headings, and the data would appear with one decimal place.  Further, the

label TRADE FLOWS would precede the display in the output.

d. Users may create much more customized output files using the GAMS "PUT" command.  This is a

rather extensive feature (GAMS Development Corporation, 1992) but can generate output such as in

Table 19.1 which constitutes a reformatting of the Report Writer output as tabled in chapter 6 (this

is generated by the file PUTEXPL) 

19.4.5 Debugging Models

GAMS allows one to work with large models.  PC based GAMS can be used to solve problems with

hundreds of thousands of variables and tens of thousands of equations.  However, debugging formulations that

big is not easy.  The debugging aids in most commercial systems are not available within GAMS.20   However,

the algebraic structure of GAMS does provide one with the ability to work from small to large.  This should

always be exploited.  For example, the full structure of a GAMS transportation problem implementation for a

problem with N destinations and M sources can be worked out on a 2x2 problem. Data calculations, model

equations, report writing tables, comparative model analysis procedures etc. can be worked out in a fast turn

around limited output situation.  Later the full data set can be entered.  

 GAMS supports several other debugging techniques:

1. One may examine the individual rows or equations within the model using the option statements for

variable and equation listing.  For example, the commands: 

OPTION LIMROW=10;
OPTION LIMCOL=10;

would result in the print out of the first 10 elements in each equation and variable block whenever a

SOLVE is executed.  One may control the ordering of these items so the proper items appear first by

ordering the set elements and variable/equation names as discussed in the output control section

above.

2. One may hand generate versions of the tests in the FIXING MODELS chapter using GAMS

calculations.  For example, in a resource allocation model the lines below could be used to test for
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unbounded variables.

                        PARAMETER UNBOUN(J)  equals 1 if variable j is unbounded;
                  UNBOUN(J)=1$(C(J) GT 0 AND SUM(I,1$(A(I,J) GT O) LE 0);
  DISPLAY UNBOUN;

Similarly, after solution, the following code would provide a budget analysis

PARAMETER BUDGET(J,*,*)  BUDGET OF COLUMN J;
BUDGET(J,I,"AIJ")=A(I,J);
BUDGET(J,I,"SHADOWPRIC")=CONSTRAINT.M(I);
BUDGET(J,I,"PRODUCT")=A(I,J)*CONSTRAINT.M(I);

             BUDGET(J,"SUMINDIRCT","PRODUCT")=
SUM(I,BUDGET(J,I,"PRODUCT"));

BUDGET(J,"OBJECTIVE","PRODUCT")=C(J);
       BUDGET(J,"REDUCECOST,"PRODUCT")=

BUDGET(J,"SUMINDIRCT","PRODUCT")-
BUDGET(J,"OBJECTIVE","PRODUCT");

DISPLAY BUDGET;

However, such coding is specific to a structure and is easier done using auxiliary aids such as those in

McCarl (1994b); and Greenberg.

19.4.6 Conducting a Comparative Model Analysis

Models, once setup, are usually employed in a comparative statics analysis.  Such an exercise involves

repeated solutions of the same problem.  There are several GAMS features which are relevant in such a setting.

1. More than one model can be solved in a run.  Thus, one can stack solve statements or loop over

solves as in the LP modeling DIET and risk EVPORTFO example models.  

2. When solving multiple model versions one needs to be careful with data revisions as the values in the

model once changed remain so.  For example the commands

SCALAR LAND /100/
PARAMETER SAVELAND;
SAVELAND = LAND;

            SET LANDCHANGE    SCENARIOS FOR CHANGES IN LAND 
                                             /R1,R2,R3/
   PARAMETER VALUE(LANDCHANGE) PERCENT CHANGE IN LAND
 /R1 10 , R2  20 , R3 30/

LOOP ( LANDCHANGE,
LAND = LAND * (1 + VALUE ( LANDCHANGE ) / 100. ) );

results in land equalling 110, 132 and 171.6 during the loop. However, alteration of the calculation

statement, so it operated from a saved parameter value

LAND = SAVELAND * (1 + VALUE ( LANDCHANGE ) / 100. )

result in values of 110 , 120, and 130.

3. The development of a comparative report writer may be attractive when doing multiple runs.  Such a

report writer is illustrated in the Risk chapter EVPORTFO example and is in TABLE 19.2.   In that

case a parameter is defined over the loop set - OUTPUT(*,RAPS).  In turn, during loop execution

the OUTPUT array is saved with scenario dependent values of variables, shadow prices, data etc. 

Finally, when the output is displayed a comparison across scenarios appears.



     21 Such a modification reduced run time for a report writer from 2 hours to 10 minutes.

     22 This is invoked by including the OPTION PROFILE=1, or including PROFILE=1 on the GAMS
call.
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19.4.7 Sensitivity Analysis

A number of users are interested in getting sensitivity analysis information from GAMS usually in the

form of LP ranging analysis results.  Unfortunately, the base version of GAMS does not yield such information. 

The user wishing for such information has two alternatives.  First, one may cause the model to be repeatedly

solved varying a parameter and examine the results (as in Table 19.2).  Second, one can use solver dependent

features of GAMS (which currently work with OSL or CPLEX) and  retrieve the ranging information (GAMS

Development Corporation , 1993)

19.4.8 Speeding up GAMS

One can speed up GAMS execution time.  Models with a lot of subscripts and a lot of dimensions to

those subscripts can be quite slow in performance.  The use of $ conditions in such models is essential.  For

example the report writing equation

Y=SUM((A,B,C,D,E,F,G), (DAT(A)+IT(B,C)+Y(D,E)+W(F,G))*X.L(A,B,C,D,E,F,G))

will perform much faster with the addition of a $ condition as follows

Y=SUM((A,B,C,D,E,F,G$X.L(A,B,C,D,E,F,G),

(DAT(A)+IT(B,C)+Y(D,E)+W(F,G))*X.L(A,B,C,D,E,F,G));

this will result in the calculation only being done when nonzero values are involved and will avoid excess work.21 

  The ordering of subscripts is also important where the data arrays should be referenced in an order consistent

with their definition.  For example, summing the above in the order F,D,A,C,E,B,G would be much slower. 

Also one should compute intermediate products to avoid repetitive and complex calculations (i.e., one could add

the DAT and IT items into another parameter ahead of time if they were frequently added). GAMS also gives

help in reporting particularly slow statements.  During execution, a report appears on the screen giving the line

being executed, and one can observe progress making notes of statements which are computed for a long time to

see if they can be streamlined.  Also one may use the undocumented PROFILE feature which produces a report

of the time spent on code segments22.

19.4.9 Minimizing Model Size

GAMS can generate very large problems when models contain a lot of sets with many elements.  The

statements above on speeding up GAMS are also relevant when setting up models.  It is usually highly desirable

to define $ conditions on equations and the sums leading to generation of variables to avoid unneeded model

features.  
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19.4.10 Avoiding GAMS Failures

Finally we need to mention strategies for avoiding GAMS solver failures.  Solver failures generally

happen because of numerical difficulties caused by scaling, degeneracy, or nonlinearities.  Cycling without

making progress can often be resolved by adding small numbers to the right hand sides and/or scaling.  Both of

these procedures are explained in the fixing models chapter.  Gradient problems or a lack of progress may

require separable approximation of nonlinear problems as explained in the LP approximation chapter.  Improved

starting values for the nonlinear variables can also help.
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Figure 19.1 Sample Picture of BLOCKDIAG Problem

 GAMSCHECK PICTURE -  COEFFICIENT CODES
   LOWER BOUND   CODE    UPPER BOUND
    (INCLUSIVE)           (LESS THAN)
     1000.00000     G     +INFINITY
      100.00000     F      1000.00000
       10.00000     E       100.00000
        1.00000     D        10.00000
        1.00000     C         1.00000
         .50000     B         1.00000
         .00000     A          .50000
         .00000     0          .00000
        -.50000     1          .00000
       -1.00000     2         -.50000
       -1.00000     3        -1.00000
      -10.00000     4        -1.00000
     -100.00000     5       -10.00000
    -1000.00000     6      -100.00000
    -INFINITY       7     -1000.00000

 
            |                         M M M M M M                                 N     H     O I   E I   O
            |                         A A A A A A T T T T T T                     E     S     S J   G J   W
            |                         K K K K K K R R R R R R                     T           I ,   A ,    
            |                         E E E E E E N N N N N N                     I     C     T S   T S   C
            |                         T T T T T T S S S S S S                     N     O     I     I     N
            | M A K E C H A I R M A K A A A A A A P P P P P P S E L L S E L L S E C     E     V     V     T
            |                         B B B B B B O O O O O O                     O     F     E     E     S
            |                         L L L L L L R R R R R R                     M     F                  
            |                         E E E E E E T T T T T T                     E     S                  
            |                   1 1 1                                           1                          
            | 1 2 3 4 5 6 7 8 9 0 1 2 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 7 8 9 0 1                        
             ----------------------------------------------------------------------------
      OBJT 1| E E E E E E E E E E E E E F     E F D D E E D D 6 6 6 7 5 6 6 6 5 6 C   = 0     2 3   1 0   3 3  
     R     1|                         D D                                             < F       2     0     2  
     E     2|                         C C                                             < E       2     0     2  
     S     3| B D A D D B                                                             < F       6     0     6  
     O     4| B A D B A D                                                             < E       6     0     6  
     U     5| A A A C C C                                                             < F       6     0     6  
     R     6| C D D B B B                 D D                                         < F       8     0     8  
     E     7|                             C C                                         < 0       2     0     2  
     Q     8|             B D A D D B                                                 < F       6     0     6  
     R     9|             B A D B A D                                                 < F       6     0     6  
     E    10|             A A A C C C                                                 < F       6     0     6  
     S    11|             C D D B B B         D D                                     < F       8     0     8  
     O    12|                                 C C                                     < E       2     0     2  
 LINKTABLE 1|                         3               3       C   C                   < 0       2     2     4  
 LINKTABLE 2|                           3               3       C   C                 < 0       2     2     4  
 LINKCHAIR 1|                                     3       3       D                   < 0       1     2     3  
 LINKCHAIR 2|                                       3       3       D                 < 0       1     2     3  
TRNCHAIREQ 1| 3 3 3                               C                   C               < 0       2     3     5  
TRNCHAIREQ 2|       3 3 3                           C                   C             < 0       2     3     5  
TRNCHAIREQ 3|             3 3 3                           C                   C       < 0       2     3     5  
TRNCHAIREQ 4|                   3 3 3                       C                   C     < 0       2     3     5  
TRNTABLEEQ 1|                                 3       C                   C           < 0       2     1     3  
TRNTABLEEQ 2|                                   3       C                   C         < 0       2     1     3  
            |----------------------------------------------------------------------------
POSITIVE    | 5   5   5   5   5   5   3   2   3   2   2   2   1   2   1   1   1   1
COLUMN CTS  |   5   5   5   5   5   5   3   2   3   2   2   2   1   2   1   1   1
NEGATIVE    | 1   1   1   1   1   1   1   0   1   1   1   1   1   1   1   1   1   0
COLUMN CTS  |   1   1   1   1   1   1   1   0   1   1   1   1   1   1   1   1   1
COLUMN      | 6   6   6   6   6   6   4   2   4   3   3   3   2   3   2   2   2   1
COUNTS      |   6   6   6   6   6   6   4   2   4   3   3   3   2   3   2   2   2
             ----------------------------------------------------------------------------
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Figure 19.1. Sample Picture of BLOCKDIAG Problem(continued)

  #### Dictionary of Variables
           M   1: MAKECHAIR(PLANT2,FUNCTIONAL,NORMAL)
           A   2: MAKECHAIR(PLANT2,FUNCTIONAL,MAXSML)
           K   3: MAKECHAIR(PLANT2,FUNCTIONAL,MAXLRG)
           E   4: MAKECHAIR(PLANT2,FANCY,NORMAL)     
           C   5: MAKECHAIR(PLANT2,FANCY,MAXSML)     
           H   6: MAKECHAIR(PLANT2,FANCY,MAXLRG)     
           A   7: MAKECHAIR(PLANT3,FUNCTIONAL,NORMAL)
           I   8: MAKECHAIR(PLANT3,FUNCTIONAL,MAXSML)
           R   9: MAKECHAIR(PLANT3,FUNCTIONAL,MAXLRG)
           M  10: MAKECHAIR(PLANT3,FANCY,NORMAL)     
           A  11: MAKECHAIR(PLANT3,FANCY,MAXSML
           K  12: MAKECHAIR(PLANT3,FANCY,MAXLRG)
  MAKETABLE    1: MAKETABLE(PLANT1,FUNCTIONAL)  
  MAKETABLE    2: MAKETABLE(PLANT1,FANCY)       
  MAKETABLE    3: MAKETABLE(PLANT2,FUNCTIONAL)  
  MAKETABLE    4: MAKETABLE(PLANT2,FANCY)       
  MAKETABLE    5: MAKETABLE(PLANT3,FUNCTIONAL)  
  MAKETABLE    6: MAKETABLE(PLANT3,FANCY)
  TRNSPORT     1: TRNSPORT(PLANT2,CHAIRS,FUNCTIONAL)
  TRNSPORT     2: TRNSPORT(PLANT2,CHAIRS,FANCY)     
  TRNSPORT     3: TRNSPORT(PLANT3,TABLES,FUNCTIONAL)
  TRNSPORT     4: TRNSPORT(PLANT3,TABLES,FANCY)     
  TRNSPORT     5: TRNSPORT(PLANT3,CHAIRS,FUNCTIONAL)
  TRNSPORT     6: TRNSPORT(PLANT3,CHAIRS,FANCY)     
           S   1: SELL(PLANT1,TABLES,FUNCTIONAL)    
           E   2: SELL(PLANT1,TABLES,FANCY)         
           L   3: SELL(PLANT1,DINSETS,FUNCTIONAL)   
           L   4: SELL(PLANT1,DINSETS,FANCY)        
           S   5: SELL(PLANT2,CHAIRS,FUNCTIONAL)    
           E   6: SELL(PLANT2,CHAIRS,FANCY)         
           L   7: SELL(PLANT3,TABLES,FUNCTIONAL)    
           L   8: SELL(PLANT3,TABLES,FANCY)         
           S   9: SELL(PLANT3,CHAIRS,FUNCTIONAL)    
           E  10: SELL(PLANT3,CHAIRS,FANCY)         
  NETINCOME    1: NETINCOME                         
 
  #### Dictionary of Equations
  OBJT         1: OBJT                              
           R   1: RESOUREQ(PLANT1,LABOR)            
           E   2: RESOUREQ(PLANT1,TOP)              
           S   3: RESOUREQ(PLANT2,SMLLATHE)         
           O   4: RESOUREQ(PLANT2,LRGLATHE)         
           U   5: RESOUREQ(PLANT2,CARVER)           
           R   6: RESOUREQ(PLANT2,LABOR)            
           E   7: RESOUREQ(PLANT2,TOP)              
           Q   8: RESOUREQ(PLANT3,SMLLATHE)         
           R   9: RESOUREQ(PLANT3,LRGLATHE)         
           E  10: RESOUREQ(PLANT3,CARVER)           
           S  11: RESOUREQ(PLANT3,LABOR)            
           O  12: RESOUREQ(PLANT3,TOP)              
  LINKTABLE    1: LINKTABLE(FUNCTIONAL)             
  LINKTABLE    2: LINKTABLE(FANCY)                  
  LINKCHAIR    1: LINKCHAIR(FUNCTIONAL)             
  LINKCHAIR    2: LINKCHAIR(FANCY)                  
  TRNCHAIREQ   1: TRNCHAIREQ(PLANT2,FUNCTIONAL)     
  TRNCHAIREQ   2: TRNCHAIREQ(PLANT2,FANCY)          
  TRNCHAIREQ   3: TRNCHAIREQ(PLANT3,FUNCTIONAL)     
  TRNCHAIREQ   4: TRNCHAIREQ(PLANT3,FANCY)          
  TRNTABLEEQ   1: TRNTABLEEQ(PLANT3,FUNCTIONAL)     
  TRNTABLEEQ   2: TRNTABLEEQ(PLANT3,FANCY)          
 
Table 19.1  PUT file Output for TRANSPRT example used in Chapter 6. 
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              Report of Output from Solve of Transport Model
                   Run Done on 01/18/94 at 10:01:13

                   Commodity Movements Between Cities
                             all units in tons

Origin                                 Destination City
 City                MIAMI       HOUSTON     MINEPLIS    PORTLAND    Total

NEWYORK                30          35          15           0          80
CHICAGO                 0           0          75           0          75
LOSANGLS                0          40           0          50          90
                     ----        ----        ----        ----        ----
Total                  30          75          90          50         245

                   Cost of Commodity Movements Between Cities

  Origin      Destination          Quantity                  Cost
   City          City              Shipped    Cost/unit    Incurred
                                    tons         $/ton         $

  NEWYORK      MIAMI                  30          20          600
  NEWYORK      HOUSTON                35          40         1400
  NEWYORK      MINEPLIS               15          35          525
  CHICAGO      MINEPLIS               75          20         1500
  LOSANGLS     HOUSTON                40          35         1400
  LOSANGLS     PORTLAND               50          40         2000
                                                             ----
Total Cost of Shipping                                       7425

                   Report on Status of Commodity Usage by Plant

Plant              Quantity Available  Quantity Shipped  Value of More Supply
                        in tons            in tons            in $ / ton

NEWYORK                    100               80                  0.00
CHICAGO                     75               75                 15.00
LOSANGLS                    90               90                  5.00

                   Report on Status of Supply By Market

Market             Quantity Needed  Quantity Received  Cost of Meeting Demand
                       in tons          in tons             in $ / ton

MIAMI                      30             30                  20.00
HOUSTON                    75             75                  40.00
MINEPLIS                   90             90                  35.00
PORTLAND                   50             50                  45.00

                   Cost of Altering Commodity Movements Between Cities
                                  all units in $/ton

Origin                            Destination City
 City             MIAMI       HOUSTON     MINEPLIS    PORTLAND

NEWYORK              0.00        0.00        0.00       75.00
CHICAGO             45.00       35.00        0.00       40.00
LOSANGLS            75.00        0.00       40.00        0.00
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Table 19.2 Comparative Report Writer Code from EVPORTFO File

PARAMETER RISKAVER(RAPS) RISK AVERSION COEFFICIENTS
/ R0   0.00000, R1   0.00025, R2   0.00050, R3   0.00075,
    R4   0.00100, R5   0.00150, R6   0.00200, R7   0.00300,
    R8   0.00500, R9   0.01000, R10  0.01100, R11  0.01250,
    R12  0.01500, R13  0.02500, R14  0.05000, R15  0.10000,
    R16  0.30000, R17  0.50000, R18  1.00000, R19  2.50000,
    R20  5.00000, R21  10.0000, R22  15.    ,  R23  20. 
    R24  40.    ,  R25  80./  

 PARAMETER OUTPUT(*,RAPS) RESULTS FROM MODEL RUNS WITH VARYING RAP

 OPTION SOLPRINT = OFF;
 LOOP (RAPS,RAP=RISKAVER(RAPS);
     SOLVE EVPORTFOL USING NLP MAXIMIZING OBJ ; 
        VAR = SUM(STOCK, SUM(STOCKS,
  INVEST.L(STOCK)* COVAR(STOCK,STOCKS) * INVEST.L(STOCKS))) ;
     OUTPUT("OBJ",RAPS)=OBJ.L;
      OUTPUT("RAP",RAPS)=RAP;
     OUTPUT(STOCKS,RAPS)=INVEST.L(STOCKS);
      OUTPUT("MEAN",RAPS)=SUM(STOCKS, MEAN(STOCKS) *
INVEST.L(STOCKS));
      OUTPUT("VAR",RAPS) = VAR;
       OUTPUT("STD",RAPS)=SQRT(VAR);
     OUTPUT("SHADPRICE",RAPS)=INVESTAV.M;
     OUTPUT("IDLE",RAPS)=FUNDS-INVESTAV.L
         );
 DISPLAY OUTPUT;



copyright Bruce A. McCarl and Thomas H. Spreen 19-16

Appendix I:  Using Summation Notation With GAMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . AI-1
AI.1 Summation Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AI-1

AI.1.1 Sum of an Item. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AI-1
AI.1.2 Multiple Sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AI-2
AI.1.3 Sum of Two Items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AI-2

AI.2 Summation Notation Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AI-3
AI.2.1 For a Scalar Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AI-3
AI.2.2. For a Family of Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AI-4

AI.4 Defining and Using Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AI-7
AI.5 Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AI-8
AI.6 Cautions and Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AI-9



copyright Bruce A. McCarl and Thomas H. Spreen

Appendix I:  Using Summation Notation With GAMS 

Summation notation is difficult for some students to use and follow.  Here we present notes on the

mechanics of summation notation usage and some rules for proper use.  This discussion is cast within the

GAMS framework with presentation equivalents of common summation expressions and error messages

caused by improper summation.  All of the GAMS statements used herein are shown in Table 1 and are in

file NOTATION.

AI.1 Summation Mechanics

Summation notation is a short hand way of expressing sums of algebraic terms involving

subscripted items. In order to cover the mechanics of summation notation it is useful to have a set of

subscripted items and associated numerical values.  Thus, let us define some data

x1 = 1 y11 = 2 y12 = 3
x2 = 2 y21 = 4 y22 = 1
x3 = 3 y31 = 1 y32 = 4.

Now let us define a variety of summation expressions.

AI.1.1 Sum of an Item.

Suppose we wished to sum all values of x.  This would be written as 

 = 1 + 2 + 3 = 6'3
i'1

xi ' x1 % x2 %x3

or in GAMS

SUM1 = SUM(I, X(I));

For short hand purposes if i was to be summed over all possible values, we would write this as 

.'
i

xi

We might also express a sum as follows which indicates all of the i are summed over except i=3

.'
i

i…3

xi ' 3

In GAMS, this is more difficult to express where one has to write a conditional ($) operation or define a

subset as follows  

SUM1 = SUM(I$(ORD(I.NE.3)), X(I));

or

SET SUBSETI(I)      /1, 2/;
SUM1 = SUM(SUBSETI, X(SUBSETI(I)));

AI.1.2 Multiple Sums

Sums over two indices consider all combinations of those items

 yij  =  y11 + y12 + y21 + y22 + y31 + y32 = 15.'
i
'
j

The equivalent GAMS expression is 
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B1 ' '
i
'
j
'
k

pijk % '
m
'
n

qmn.

SUM2 = SUM((I,J), Y(I,J));

AI.1.3 Sum of Two Items

Suppose we wished to sum over two items completely where they shared a subscript

'3
i'1

( xi % '2
j'1

yij ) ' '
i

( xi % '
j

yij ) ' '
i

xi % '
i
'
j

yij

= x1 + y11 + y12 + x2 + y21 + y22 + x3 + y31 + y32 =   21.

The equivalent GAMS expression is as follows

SUM3 = SUM(I, X(I)+SUM(J, Y(I, J)));

or

SUM3 = SUM(I, X(I)) + SUM((I,J), Y(I,J));

On the other hand, if we wished to sum the results only for the ith element and call it Ai then

Ai ' xi % '
j

yij ' xi % yi1 % yi2

or in GAMS

A(I) = X(I) + SUM(J, Y(I,J));

which would yield a vector [ 6 , 7 , 8 ] of results.

Sums over common subscripts can be collapsed or taken apart

'
i

(xi % zi) ' '
i

xi % '
i

zior

SUM4 = SUM(I, X(I) +Z(I));

or 

SUM4 = SUM(I, X(I)) + SUM(I, Z(I));

AI.2 Summation Notation Rules

Certain rules apply when writing summation notation equations.  The applicable rules depend on

whether the final result is an unsubscripted scalar or a subscripted family of results determined by multiple

equations.

AI.2.1 For a Scalar Equation

All subscripts must be dealt with in each term. Thus, it is proper to define the equation

However, the following equations are wrong
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B2 ' pijk % qmn

B3 ' '
j
'
i

pijk % '
m
'
n

qmn.

In the case of the first equation, the result would really have the subscripts i,j,k,m,n,

while the second equation result would have to have a k subscript on B3 or a sum over k to be proper.  

Equivalent GAMS commands for the above equation expressions are

EQB1.. B1 =E= SUM((I,J,K),P(I,J,K)) + SUM((M,N), Q(M,N));
EQB2.. B2 =E= P(I,J,K) + Q(M,N);
EQB3.. B3 =E= SUM((I,J), P(I,J,K)) + SUM((M,N), Q(M,N));

Here, the first equation expression is correct, while the last two equation expressions are incorrect.  If you

run GAMS with the above commands, you would encounter GAMS error messages $149 which says

"UNCONTROLLED SET ENTERED AS CONSTANT" meaning that you have not somehow dealt with

all the subscripts in the equation.

AI.2.2. For a Family of Equations

Several rules apply when one is working with a family of equations.

1. The members of the family must be specified with an indication of the subscripts which define

each equation.  This is done by indicating all the conditions for which the equations exist in a

"for" condition.  For example, suppose we define an equation which sets all C's equal to 2.  This

is done by saying

Ci = 2 for all i   or Ci = 2     for i = 1,2, ... n.

Similarly, if we wish to set a 2 dimensional variable equal to a constant, we would state 

Dij = 2 for all i and j,

while stating that for each row of the matrix Eij  we have the same values Fi is defined by 

E1ij = Fi for all i and j.

The equivalent GAMS commands for the above expressions are 

EQUATIONS
EQC(I) EQUATION C
EQD(I,J) EQUATION D
EQE1(I,J) EQUATION E1;

EQC(I).. C(I) =E= 2;
EQD(I,J).. D(I,J) =E= 2;
EQE1(I,J).. E1(I,J) =E= F(I);

On the other hand, it is wrong to state

E2ij = 2

without conditions on i and j.  The equivalent GAMS commands for the above incorrect

expressions are

EQUATION
EQE2 EQUATION E2;
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'
j
'
k

pijk ' G1i for all i

'
k

pijk ' H1i for all i and j

'
j
'
k

pijk ' L1 for all i

'
j
'
k

rijkm % '
j

sijm ' Nim for all i and m

EQE2.. E2(I,J) =E= 2;

Here you would get error message $149 which says "UNCONTROLLED SET 

ENTERED AS CONSTANT."

2. When writing an equation with a for statement, all subscripts which are not in the for statement

must be summed over.  Consequently, it is proper to write 

but improper to write pijk ' G2i for all i

'
k

pijk ' H2i for all i.

The equivalent GAMS commands for the above equations are

EQUATIONS
EQG1(I) EQUATION G1
EQH1(I,J) EQUATION H1
EQG2(I) EQUATION G2
EQH2(I) EQUATION H2;

EQG1(I).. G1(I)   =E= SUM((J,K), P(I,J,K));
EQH1(I,J).. H1(I,J) =E= SUM(K, P(I,J,K));
EQG2(I).. G2(I)   =E= P(I,J,K);
EQH2(I).. H2(I)   =E= SUM(K, P(I,J,K));

in which the first two equations are correct, while the last two equations are wrong and error

messages $149 "UNCONTROLLED SET ENTERED AS CONSTANT" would again be

realized.

3. In any term of an equation, the result after executing the mathematical operations in that term

must be of a dimension less than or equal to the family definition in the for statement.  For

example, it is proper to write

but wrong to write

pijk = L2 for all i.

Thus, for the following expressions, the first two equations are appropriate but the last

equation would give you error message $149 "UNCONTROLLED SET ENTERED AS

CONSTANT."



copyright Bruce A. McCarl and Thomas H. Spreen AI-5

EQUATION
EQLI(I)... LI(I) =E= SUM((J,K), P(IJK));
EQN(I,M)... N(I,M) =E= SUM((J,K), R(I,J,K,M))

+ SUM (J,S(I,J,M));
EQL2(I)... L2 =E= P(I,J,K);

4. When the dimension is less than the family definition this implies the same term appears in

multiple equations.  For example, in the equation

2 +  pijk +  sijm = Oim for all i and m,'
j
'
k

'
j

the 2 term appears in every equation and the sum involving p is common when m varies. Equivalent GAMS commands are as follows

EQUATION
      EQO(I,M) EQUATION O;
EQO(I,M)..     2 + SUM((J,K), P(I,J,K)) + SUM(J, S(I,J,M)) =E= O(I,M);

5. In an equation you can never sum over the parameter that determines the family of equations.  It

is certainly wrong to write

 pijk = Wi      for all i.'
k
'
j
'
i

      Or, equivalently, the following expressions are wrong and will result in error message $125 which says "SET IS UNDER CONTROL ALREADY."

EQW(I)... W(I) =E= SUM(I,J,K), P(I,J,K));

AI.3 Defining Subscripts

In setting up a set of equations and variables use the following principles.  Define a subscript for

each physical phenomena set which has multiple members, i.e.,

Let i denote production processes of which there are I
j denote locations of which there are J
k denote products of which there are K
m denote sales locations of which there are M.

Equivalent GAMS commands are

SET I /1*20/
J /1*30/
K /1*5/
M /CHICAGO, BOSTON/; 

Define different subscripts when you are either considering subsets of the subscript set or different physical

phenomena.

AI.4 Defining and Using Variables

1. Define a unique symbol with a subscript for each manipulatable item.

For example:

pijk = production using process i at location j while producing good k.

Or, equivalently,

PARAMETER P(I,J,K)
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or

PARAMETER PRODUCTION(PROCESS, LOCATION, GOOD)

Here, for documentation purposes, the second expression is preferred. 

2. Make sure that variable has the same subscript in each place it occurs.

Thus it is proper to write 

Max  tijk'
i
'
j
'
k

 tijk = 3 for all k'
i
'
j

but wrong to write

Max  tij'
i
'
j
 tijk = 3 for all k'

i
'
j

tijk  $   0.

The second model would cause error message $148 indicating "DIMENSION 

DIFFERENT."

3. The authors feel it is a bad practice to define different items with the same symbol but varying

subscripts.  We think you should never use the same symbol for two different items as follows

uij = amount of tires transported from i to j and

ukj = amount of chickens transported from k to j.

GAMS would not permit this, giving error $150 "Symbolic Equations 

Redefined." 

AI.5 Equations

Modelers should carefully identify the conditions under which each equation exists and use

subscripts to identify those conditions.  We do not think modelers should try to overly compact the families

of equations.  For example, it is OK to define

 aij xj # bi'
j

for all i, where aij is use of water by period and labor by period, where i denotes water periods and labor

periods and bi simultaneously contains water and labor availability by period.  But we find it is better to

define

 dij xj # ei'
j

 fij xj # hi'
j

where i denotes period,

dij denotes water use and ei water availability,
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fij denotes labor use and hi labor availability.

AI.6 Cautions and Extensions

1. Be careful when you sum over terms which do not contain the subscript you are summing

over.  This is equivalent to multiplying a term by the number of items in the sum.

 xi = Nxi'N
j'1'3

j ' 1
X2 ' 3(2) ' 6

Or, in GAMS

SUM5A = SUM(J, X("2"));

2. Be careful when you have a term in a family of equations which is of a lesser dimension

than the family, this term will occur in each equation.  For example, the expression

 xj = zi for i = 1,2,3'
j

implies that simultaneously

 xj = z1'
j

 xj = z2'
j

 xj = z3.'
j

3. The same rules as outlined above apply to product cases

 xi = x1*x2*x3.A
3

i'1
Or, equivalently,

 PRODUCTX = PROD(I, X(I));

4. The following relationships also hold for summation

a. '
i

Kxi'K '
i
xi

b. 'n
i'1

KP ' K 'n
i'1

P ' KnP

c. '
i
'
j

(vij%yij) ' '
i
'
j
vij%'

i
'
j
yij

d. '
i
'
j

(xi%yij)' n '
i
xi%'

i
'
j
yij when j ' 1,2,...n
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Table 1. Sample GAMS Commands for Summation Notation Expressions

    1  *************************************************
   2  ** THIS FILE CONTAINS GAMS EXAMPLES IN SUPPORT **
   3  ** OF THE NOTES USING THE SUMMATION NOTATION   **
   4  *************************************************
   5  
   6  SETS
   7      I /1*3/
   8      J /1*2/
   9      K /1*2/
  10      M /1*2/
  11      N /1*3/
  12  
  13  PARAMETERS
  14  
  15      X(I) /1 1,2 2,3 3/
  16      Z(I) /1 2,2 4,3 6/
  17  
  18  TABLE Y(I,J)
  19  
  20             1    2
  21    1        2    3
  22    2        4    1
  23    3        1    4;
  24  
  25  TABLE V(I,J)
  26  
  27             1    2
  28    1        2    3
  29    2        4    1
  30    3        1    4;
  31  
  32  TABLE P(I, J, K)
  33  
  34        1.1  1.2  2.1  2.2
  35    1     1    3    5    7
  36    2     2    4    6    8
  37    3     1    2    3    4 ;
  38  
  39  TABLE Q(M, N)
  40  
  41        1   2   3
  42    1   1   5  10
  43    2   10  5   1;
  44  
  45  ***************************
  46  ** AI.1.1 SUM OF AN ITEM **
  47  ***************************
  48  
  49  PARAMETER
  50   SUM1      SUM OF AN ITEM;
  51   SUM1     = SUM(I, X(I));
  52   DISPLAY SUM1;
  53  
  54  **************************
  55  ** AI.1.2 MULTIPLE SUMS **
  56  **************************
  57  
  58  PARAMETER
  59   SUM2      MULTIPLE SUMS;
  60   SUM2     = SUM((I,J), Y(I,J));
  61   DISPLAY SUM2;
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Table 1.   Sample GAMS Commands for Summation Notation Expressions (continued)

  62  
  63  *****************************
  64  ** AI.1.3 SUM OF TWO ITEMS **
  65  *****************************
  66  
  67  PARAMETERS
  68   SUM3A     SUM OF TWO ITEMS-1
  69   SUM3B     SUM OF TWO ITEMS-1
  70   A(I)      SUM OF TWO ITEMS-2
  71   SUM4A     SUM OF TWO ITEMS-3
  72   SUM4B     SUM OF TWO ITEMS-3;
  73   SUM3A    = SUM(I, X(I)+SUM(J, Y(I, J)));
  74   SUM3B    = SUM(I, X(I)) + SUM ((I,J), Y(I,J));
  75   A(I)     = X(I) + SUM(J, Y(I,J));
  76   SUM4A    = SUM(I, X(I)+Z(I));
  77   SUM4B    = SUM(I, X(I)) + SUM(I, Z(I));
  78   DISPLAY SUM3A, SUM3B, A, SUM4A, SUM4B;
  79  
  80  **********************************
  81  ** AI.2.1 FOR A SCALER EQUATION **
  82  **********************************
  83  
  84  PARAMETERS
  85   B1   SUM FOR A SCALER EQUATION-1;
  86   B1 = SUM((I,J,K), P(I,J,K)) + SUM((M,N), Q(M,N));
  87   DISPLAY B1;
  88  
  89  * $ONTEXT
  90  * THE FOLLOWING SUMMATION NOTATIONS ARE INCORRECT
  91  * IF YOU TURN THESE COMMANDS ON, YOU WILL ENCOUNTER
  92  * ERROR MESSAGES
  93  * PARAMETERS
  94  *  B2   SUM FOR A SCALER EQUATION-2
  95  *  B3   SUM FOR A SCALER EQUATION-3;
  96  *  B2 = P(I,J,K) + Q(M,N);
  97  *  B3 = SUM((I,J), P(I,J,K)) + SUM((M,N), Q(M,N));
  98  *  DISPLAY B2, B3;
  99  * $OFFTEXT
 100  
 101  ***************************************
 102  ** A.I.2.2 FOR A FAMILY OF EQUATIONS **
 103  ***************************************
 104  
 105  VARIABLES      C(I), D(I,J), E1(I,J), F(J);
 106  EQUATIONS
 107                 EQC(I)    EQUATION C
 108                 EQD(I,J)  EQUATION D
 109                 EQE1(I,J) EQUATION E1;
 110       EQC(I)..       C(I) =E= 2;
 111       EQD(I,J)..     D(I,J) =E= 2;
 112       EQE1(I,J)..    E1(I,J) =E= F(J);
 113  
 114  * $ONTEXT
 115  * THE FOLLOWING EXPRESSION IS INCORRECT
 116  * ERROR MESSAGES WILL BE ENCOUNTERED
 117  * VARIABLES E2(I,J);

Table 1.   Sample GAMS Commands for Summation Notation Expressions (continued) 
 118  * EQUATION
 119  *         EQE2      EQUATION E2;
 120  *         EQE2..    E2(I,J) =E= 2;
 121  * $OFFTEXT
 122  
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 123  VARIABLES G1(I), H1(I,J);
 124  EQUATIONS
 125           EQG1(I)   EQUATION G1
 126           EQH1(I,J) EQUATION H1;
 127      EQG1(I)..      G1(I) =E= SUM((J,K), P(I,J,K));
 128      EQH1(I,J)..    H1(I,J) =E= SUM(K, P(I,J,K));
 129  
 130  * $ONTEXT
 131  * THE FOLLOWING EXPRESSIONS ARE INCORRECT
 132  * ERROR MESSAGES WILL BE ENCOUNTERED
 133  * VARIABLES G2(I), H2(I);
 134  * EQUATIONS
 135  *          EQG2(I)   EQUATION G2
 136  *          EQH2(I)   EQUATION H2;
 137  *     EQG2(I)..      G2(I) =E= P(I,J,K);
 138  *     EQH2(I)..      H2(I) =E= SUM(K, P(I,J,K));
 139  * $OFFTEXT
 140  
 141  VARIABLES L1(I), U(I,M), R(I,J,K,M), S(I,J,M);
 142  EQUATIONS
 143            EQL1(I)   EQUATION L1
 144            EQN(I,M)  EQUATION N;
 145       EQL1(I)..      L1(I) =E= SUM((J,K), P(I,J,K));
 146       EQN(I,M)..     U(I,M) =E= SUM((J,K),R(I,J,K,M)) + SUM(J, S(I,J,M));
 147  
 148  * $ONTEXT
 149  * THE FOLLOWING EXPRESSIONS ARE INCORRECT
 150  * ERROR MESSAGES WILL BE ENCOUNTERED
 151  * VARIABLES L2;
 152  * EQUATIONS
 153  *          EQL2(I)   EQUATION L2;
 154  *     EQL2(I)..      L2 =E= P(I,J,K);
 155  * OFFTEXT
 156  
 157  VARIABLE O(I,M);
 158  EQUATION
 159          EQO(I,M) EQUATION O;
 160     EQO(I,M)..     2 + SUM((J,K), P(I,J,K)) + SUM(J, S(I,J,M)) =E=
O(I,M);
 161  
 162  
 163  * $ONTEXT
 164  * THE FOLLOWING EXPRESSION IS INCORRECT
 165  * GAMS ERROR MESSAGES WILL BE ENCOUNTERED
 166  * VARIABLE W(I);
 167  * EQUATION
 168  *         EQW(I)    EQUATION W;
 169  *     EQW(I)..  W(I) =E= SUM((I,J,K), P(I,J,K));
 170  * $OFFTEXT
 171  

Table 1.   Sample GAMS Commands for Summation Notation Expressions (continued)

 172  ***************************************
 173  ** AI.4 DEFINING AND USING VARIABLES **
 174  ***************************************
 175  
 176  VARIABLES
 177    OBJ1        OBJECTIVE FUNCTION VALUE
 178    T(I,J,K)   DECISION VARIABLE;
 179  EQUATIONS
 180    OBJFUNC1    OBJECTIVE FUNCTION
 181    CONST(K)  CONSTRAINT;
 182    OBJFUNC1..    OBJ1 =E= SUM((I,J,K), T(I,J,K));
 183    CONST(K)..  SUM((I,J), T(I,J,K)) =E= 3;
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 184  MODEL EXAMPLE1 /ALL/;
 185  SOLVE EXAMPLE1 USING LP MAXIMIZING OBJ1;
 186  DISPLAY T.L;
 187  
 188  * $ONTEXT
 189  * THE FOLLOWING COMMANDS ARE INCORRECT
 190  * THEY WILL RESULT IN ERROR MESSAGES
 191  * VARIABLES
 192  *   OBJ2        OBJECTIVE FUNCTION VALUE
 193  *   TT(I,J,K)   DECISION VARAIBLE;
 194  * POSITIVE VARIABLE TT;
 195  * EQUATIONS
 196  *   OBJFUNC2    OBJECTIVE FUNCTION
 197  *   CONSTT(K)   CONSTRAINT;
 198  *   OBJFUNC2..   OBJ2 =E= SUM((I,J), TT(I,J));
 199  *   CONSTT(K)..  SUM((I,J), TT(I,J,K)) =E= 3;
 200  * MODEL EXAMPLE2 /ALL/;
 201  * SOLVE EXAMPLE2 USING LP MAXIMIZING OBJ2;
 202  * DISPLAY TT.L;
 203  * $OFFTEXT
 204  
 205  **********************************
 206  ** AI.6 CAUTIONS AND EXTENSIONS **
 207  **********************************
 208  
 209  PARAMETER
 210    SUM5A  CAUTIONS AND EXTENSIONS-1;
 211    SUM5A = SUM(J, X("2"));
 212    DISPLAY SUM5A;
 213  
 214  PARAMETER
 215    PRODUCT6 CAUTIONS AND EXTENSIONS-2;
 216    PRODUCT6 = PROD(I, X(I));
 217    DISPLAY PRODUCT6;
 218  
 219  PARAMETERS
 220    SUM7A    CAUTIONS AND EXTENSIONS-3
 221    SUM7B    CAUTIONS AND EXTENSIONS-3
 222    SUM8A    CAUTIONS AND EXTENSIONS-4
 223    SUM8B    CAUTIONS AND EXTENSIONS-4
 224    SUM8C    CAUTIONS AND EXTENSIONS-4
 225    SUM9A    CAUTIONS AND EXTENSIONS-5
 226    SUM9B    CAUTIONS AND EXTENSIONS-5

Table 1.   Sample GAMS Commands for Summation Notation Expressions (continued)

 227    SUM10A   CAUTIONS AND EXTENSIONS-6
 228    SUM10B   CAUTIONS AND EXTENSIONS-6;
 229    SUM7A =  SUM(I, 5*X(I));
 230    SUM7B =  5*SUM(I, X(I));
 231    SUM8A =  SUM(I, 5*10);
 232    SUM8B =  5*SUM(I, 10);
 233    SUM8C =  5*3*10;
 234    SUM9A = SUM((I,J), V(I,J)+Y(I,J));
 235    SUM9B = SUM((I,J), V(I,J)) + SUM((I,J), Y(I,J));
 236    SUM10A = SUM((I,J), X(I)+Y(I,J));
 237    SUM10B = 2*SUM(I, X(I)) + SUM((I,J), Y(I,J));
 238    DISPLAY SUM7A, SUM7B, SUM8A, SUM8B, SUM8C,
 239            SUM9A, SUM9B, SUM10A, SUM10B;
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     23 Users of different systems should consult the README file distributed with GAMS as well as any
release notes and Appendix A of the GAMS manual.

     24 There  are other variants of  these naming conventions.  Users on non-UNIX or PC machines
should consult  Appendix A of Brooke, Kendrick, and Meeraus or the GAMS installation guide for
the system to  be used. 

copyright Bruce A. McCarl and Thomas H. Spreen Appendix II-1

APPENDIX II:  EXECUTING GAMS

GAMS versions exist for many different computer platforms.  These authors have had experience

with micro computer versions for PC's, workstation versions for Sun and HP systems and mainframe

versions for IBM and CRAY machines.  The basic strategy is almost the same for all of these machines. 

Thus a simple overview discussion will be presented with particulars only drawn out for PC and UNIX

based machines.23

GAMS operates in a batch mode.  Thus, an ASCII file describing the problem must be created

with a text editor, word processor or other means.  In turn, assuming the GAMS input file is called

"filename",  the file is executed using the command

GAMS filename

In turn, program output appears on the file filename.lst.24

GAMS also allows the user control over a number of options involved with running the program. 

One may control page width, page length, saves and restarts among many other things.  The files

GAMSPARM.TXT and GAMSPARM.DOC details many of the other options.  The general PC version of

the call is

COMMAND \C  GAMS FILENAM PW=90 PS=80 S=NEWSAV R=OLDSAV O=DIVERT

where the items are:

COMMAND \C a line needed to make restarts work properly with DOS
FILENAM the name of the file of GAMS input instructions to be executed
PS=number specifies the page length be used in the output file
PW=number specifies the page width be used in the output file
S=name file name used for saved work files (no file name extension is allowed)
R=name file name used for work files the program resumes from (no file extension

is allowed)
O=filename name of file used for diverted output.

The equivalent UNIX command is

gams filenam -pw 90 -ps 80 -s newsav -r oldsav -o divert
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