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Preface

In this second edition, Chap. 15 (Risk and Uncertainty) has been extended and

includes now more on the theory of modelling risk and uncertainty. Further, a new

Chap. 21 (Modelling Supply Functions Using Linear Programming) has been

added, which includes a new example of using Linear Programming for production

economic modelling. Finally, a number of misprints in the first edition have been

corrected.

Copenhagen

April 2012 Svend Rasmussen

Preface to the first edition

This book has been written as a textbook for the course Production Economics and

is as such aimed at students of economics and other students who are interested in

studying production economic theory at the undergraduate level. It is recommended

that the student has taken prior introductory courses in economics and has, there-

fore, obtained a sound initiation to economic thinking including graphic illustration

and the analysis of (micro) economic issues. However, reading the book does not

require knowledge of any specific economic theory.

The book adds to the existing literature in the sense that compared to the general

microeconomic textbooks, which normally include a few chapters on production,

cost, product supply, input demand and production under uncertainty, this book

focuses on these subjects and treats them both graphically and mathematically in

more detail. At the same time, it focuses on the application of the theory to solving

illustrative problems related to production optimisation, and in this context it

includes subjects which are normally not included in microeconomic textbooks

like for instance optimisation of production over time and the use of linear pro-

gramming for production optimisation.

v

http://dx.doi.org/10.1007/978-3-642-30200-8_15
http://dx.doi.org/10.1007/978-3-642-30200-8_21


Readers are encouraged to contact the author with any suggestions for potential

improvement or regarding possible errors for the next edition, preferably by way of

e-mail: sr@foi.ku.dk

Copenhagen

April 2010 Svend Rasmussen
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Introduction 1

This book is concerned with production and related economic issues.

Generally speaking, production consists of the transformation of factors of

production into products. The way in which the production is carried out – the

production process – is outlined in Fig. 1.1.

Firstly, the factors of production (also called inputs) are taken to a production
plant, which is where the actual production is carried out by way of a production
process, the result of which being one or more products (also called outputs).

An example: Producing the product cereal involves adding the factors of production seeds,

fertiliser, pesticides, labour, and machinery to the production plant land. The production
process then takes place which includes the cultivation of the land, sowing, spraying, the

waiting time required for the cereal crops to grow, and subsequent harvesting. The final

result is two products: cereal (grain) and straw.

The economic issues related to production are based on the assumption that

production takes place within the framework of what we call a firm (or company).

The firm, in the classical sense, is an entity made up of production facilities (assets)

owned by a physical person or a legal person (stockholder company), the owner,
employer or entrepreneur who:
(a) Enters into a contract with each of the individuals who supply productive

services. The contract specifies the nature and duration of these services and

the remuneration required for them;

(b) Either makes decisions, or has the right to insist that decisions are made, in her
interest, subject to her contractual obligations;

(c) Has the right to the residual income from production, i.e. the excess of revenue

over payments to suppliers of productive services made under the terms of their

contracts;

(d) Can transfer the right in the residual income, and her rights and obligations

under the contracts with suppliers of productive services, to another individual;
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(e) Has the power to direct the activities of the suppliers of productive services,

subject to the terms and conditions of their contracts;

(f) Can change the membership of the producing group not only by terminating

contracts but also by entering into new contracts and adding to the group.

(Gravelle and Rees (2004), p. 93)

When talking about the producer in the following, it is this person (physical or

legal) that is being referred to. It is the decision maker, who has the legal rights to

the production facilities (because he owns or leases them), who is able to buy inputs

and to decide what to produce, and who also carries the economic responsibility,

in the sense that this person has the right to the residual income, i.e. the money

remaining after all expenditures have been paid according to contracts with

suppliers and other external parties.

The basic assumption is that it is the objective of the producer to maximise the

gain (maximise the profit). The gain (the profit) is calculated as being the difference

between the value of the produced products (the product value) and the value of the

factors of production (costs) used. This objective is often called simply profit
maximisation.

Based on the assumption of profit maximisation, three classical economic issues

related to the act of producing can be identified:

1. What to produce? The producer usually has the option of producing alternative

products with the available production plant. The farmer may grow e.g. barley or

potatoes or oats on his/her land. He/she may either choose to grow all three

crops, or choose to grow only one of them. However, what products would it be

optimal to grow, i.e. what products would yield the highest profit?

2. How much to produce? A production process can be carried out more or less

intensively. Crops can be grown using a larger or smaller amount of fertiliser,

and when feeding livestock, a larger or smaller amount of fodder can be used.

The size of the production will depend on this. But what is optimal? To add more

fertiliser, which would result in a large production, or to add less fertiliser, which

would result in reduced costs?

3. How to produce? A product can often be produced in several ways. When

growing potatoes, for example, it is possible to fight weeds by the use of labour,

herbicides or machinery. But what choice would be optimal? What kind of input

would result in the lowest costs? Time is also an important factor. Should the

farmer terminate fattening his slaughter pigs and send them to the slaughter

house this week, or should he wait until next week?

Factors of
production

(input)
Production

plant

Products
(output)

Fig. 1.1 Illustration of production
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When speaking of production and related economic issues it is often assumed

that the production plant itself is given. If this was the case, the key economic issues

concerning production would be related to the question of how to best utilise the

given production plant. Should the gardener use the greenhouse to grow tomatoes or

cucumbers? Should the farmer use his machinery and fixed family labour to grow

potatoes or to produce Christmas trees?

However, in practice the economic issues concerning production are not that

well-defined. In practice, it is of course possible to make changes to the given

production plant, either by investing in new production facilities, or by renting

(leasing) production facilities. A greenhouse can be viewed along the same lines as

other factors of production, and the issue of how much “greenhouse” it would be

optimal to apply, is in principal also an entirely ordinary production economic

issue.

Whilst the answer is yes in principle, when it comes to decisions which have

long term implications and concern the production framework, such issues are

traditionally discussed within the discipline of investment and financial planning.

This division is maintained in this book. However, there is no clear-cut distinction,

and this book also includes theory for when the fixed asset and the related fixed

costs become variable.

The description of the theory of optimisation of production is, in the majority of

the book, based on the assumption that the price of inputs and outputs are deter-

mined by external factors and cannot be influenced by the producer. We say that the

producer is a price taker. The book does, however, include a generalisation of the

theory to account for conditions in which prices are not constant but dependent on

the size of the production. Generally, there are no real problems in deriving

principles for the optimisation under conditions in which prices are not fixed, i.e.

they depend on the quantity produced. However, in this context, the problem of the

pricing of output becomes an important subject. Problems relating to pricing,
marketing and the sale of products are not discussed in this book. This comprehen-

sive and for many companies important problem area, belongs to the subject area of

market economics (industrial organisation). The reader is referred to other relevant

textbooks to study this subject.

The theories and methods that are discussed in this book presuppose, in princi-

ple, complete certainty. It is important to be aware of the basic “building blocks”

that a theory based on complete certainty entails before addressing the decision

problems under risk and uncertainty. The subject of planning under risk and

uncertainty is comprehensive and important, and the related methodological basis

for this subject area is at present undergoing rapid development. A short introduction

to the subject ‘decision-making under risk and uncertainty’ is given in Chap. 15,

but students who want a more comprehensive treatment are referred to the extensive

literature on this subject. It is relatively easy to derive criteria for optimal produc-

tion decisions under uncertainty when the producer is assumed to be risk neutral.
Under conditions in which the producer has risk aversion, it is difficult to derive

useful criteria for the optimisation of production because it presupposes knowledge

of the producer’s preferences (utility function).
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The content of the book is organised as follows:

Chapters 2, 3, 4, and 5 introduce the basic production economic tools. Chapter 2

begins with a description of the production function. Although Chap. 2 is purely

technical and includes no discussion of behaviour/economics, it is the most

important part of the book. The reason for this is that production economics, as

presented in this book, is about how to maximise profit under the given

circumstances. The given circumstances are the technical opportunities that the

firm has, and the input and output prices it faces. Therefore, the three basic

elements of production economics are behaviour (profit maximisation), techno-
logy (technical opportunities) and prices (input and output prices). The subject

behaviour is not treated in this book, as we just assume profit maximising

behaviour. Prices are assumed to be given from the outside (except in Chap. 13).

This leaves technology, the form of which determines the economic results

derived in the following chapters, and it is therefore important to carefully

study the production function and its various forms.

Chapter 6 deals with the measurement of production. Although this is relevant

only in a descriptive context, the subject is included here because it describes how

to model changes in technology over time, and how to measure the production

performance of firms. Therefore, this chapter is an important link to the descriptive

approach to production economics, which is treated in more detail in other

textbooks e.g. Chambers (1988).

Chapters 7, 8, and 9 show how it is possible to use the tools developed in the

previous chapters to derive the firm’s demand function for input, and its supply

function for output. The chapter thus provides the microeconomic foundation for

the analysis of demand and supply at the industry level.

Chapter 10 derives criteria for optimising production under restrictions and the

mathematical tool used is the Lagrange function. The chapter describes how to use

the concept of the pseudo scale line, introduced in Chap. 4, to analyse the adjust-

ment of production when different types of production regulation are introduced.

The chapter presents a number of different examples of production regulation and

how the firm may adjust production in each case.

Chapter 11 introduces the concepts of economies of scale and economies of size.

Whilst the two concepts are related, it is important to understand the difference

between the two; economies of scale is a purely technical description of the

production function, while economies of size is an economic concept which is

useful for the discussion of the optimal firm size.

Chapter 12 returns to the concept of fixed production factors. It provides a

formal definition of fixed production factors and describes why some production

factors become fixed.

Chapter 13 relaxes the assumption of perfectly competitive markets, and it

derives how firms facing a downward sloping demand curve (sales curve) for

their products should optimise production. The chapter includes a description of

perfect competition as the benchmark and the two cases of pure monopoly and

monopolistic competition.
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Chapter 14 gives an extensive introduction to the theory of how to optimise the

production period. In this chapter, we introduce time as a new dimension of produc-

tion, which may be dealt with by introducing time dated inputs and outputs to the

previous models. However, to avoid the dimension problem in practical planning and

to get operational solutions, it is often necessary to introduce simplifying

assumptions when dealing with the optimisation of production over time.

Chapter 15 introduces risk and uncertainty and describes how to model these

within a state-contingent framework. The expected utility model, which is a special

case of the state-contingent model, is also described. Although risk and uncertainty

is present in almost all production planning, it is often difficult to apply the

theoretical models in practical planning because the decision maker’s utility func-

tion is not known. Some of the ad hoc models used in practical planning under

uncertainty are presented, but for a more thorough treatment of this subject the

student is referred to other textbooks, for instance Rasmussen (2011).

Chapter 16 focuses on natural production factors such as agricultural land, and

discusses the concept of economic rent. Although fixed factors of production

provide the owner economic rent, the economic rent is often capitalised, meaning

that producers who want to acquire some of these production factors from other

producers pay a price, which passes on some, or all, of the economic rent to the

seller, such that the net gain to the new owner is zero. The economic rent model is

an important tool to describe the pricing of scarce resources such as land and

production permits. Therefore, this model is also relevant when analysing the

consequences of production regulation.

Chapter 17 can be considered as an introduction to the subsequent three chapters.

It describes how producers should allocate fixed resources to various products when

the producer has the opportunity to produce more products, or to produce products

in different ways. The chapter generalises the theory of optimal use of input and

output to the multi-input, multi-output case.

Chapters 18, 19, 20, and 21 introduce Linear Programming (LP) as a useful,

operational tool for production planning. While the results in the preceding chapters

have been presented in a general and sometimes abstract form, the Linear Program-

ming model introduced in Chaps. 18 and 19, and demonstrated in Chaps. 20 and 21,

is a powerful tool developed after the Second World War and used for practical

planning in many contexts. Linear Programming is the linear version of the more

general tool Mathematical Programming. Even though Linear Programming is

based on linear functions, it is even able to handle non-linear cases, especially

when combined with the facility of integer programming. To the applied production

economist, the material in these three chapters is essential. In order to

operationalize Linear Programming, one needs appropriate software. However,

I have decided not to present any specific software in this book as there are so many,

and so it is up to the individual to choose appropriate software for the task. There is

a lot of good software available on the market, including the programme which

probably everybody knows, Microsoft Excel. Specialised software such as LINDO

is excellent for beginners, whilst more advanced users probably prefer GAMS.
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The book includes an appendix on profit concepts. Although calculation of profit

may seem straight forward, it is often not as simple as one may think. Students who

have studied accounting will already know how to calculate profit in an accounting

context. However, accounting is concerned with the past, whilst production eco-

nomics is about planning for the future, and in this context the relevant cost concept
is opportunity costs, which may be quite different from the costs registered in

accounts.

I think that it is appropriate to conclude this chapter with reference to the

following two rules, borrowed from Reekie and Crook (1995), which summarise

the essence of this book:

1. A course of action should be pursued until its marginal benefits equal its

marginal costs, that is, where marginal net benefits equal zero.

2. If no action can be pursued to the optimum extent, each different action should

be pursued until they all yield the same marginal benefits per unit of cost.
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The Production Function 2

2.1 Introduction

Economic theory is, to a large extent, about money – about costs, prices, markets,

return on investment, profit and similar economic concepts. This is also the case

with the theory of production economics. However, the theory of production

economics is special in that the limits of economic behaviour are defined by the

technical production possibilities. Production technology is the decisive factor

regarding the quantity produced and how it may be produced. Therefore, a very

important part of the theory of production economics consists of describing the

production technology which defines the framework for the economic behaviour.

This chapter is concerned with the description of production technology, which

is traditionally based on the production function. Apart from the production func-

tion, the chapter also introduces a number of other concepts related to the descrip-

tion of production technology.

2.2 Production Technology

Production technology is, in its most general form, a description of the relationship

between input and produced output. The description of production technical

relationships is based on empirical observation of relationships between inputs

and outputs, as e.g. described in Table 2.1 which shows the relationship between

the addition of nitrogen fertiliser (N) and the cereal yield.

The specified relationship can be illustrated graphically, as shown in Fig. 2.1

next to the table. It is this curve, as shown in Fig. 2.1 that was first referred to as a
production function.

Later, in line with the development of mathematical and statistical tools for the

description of production technical and economic relationships, the production

function was described by means of mathematical function relationships. The

choice of the functional form to illustrate the empirically observed relationships
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as a nice curve which would pass through the observed points, as shown in Fig. 2.1,

and the subsequent estimation of the parameters of the function itself, came to be an

important discipline in production economics.

However, to describe production technology based solely on observations of

relationships between inputs and outputs, as shown in Fig. 2.1, is inadequate.

Firstly, it should be noted that the curve in Fig. 2.1 only describes the quantity of
produced output as the function of one input. However, what about the other inputs
used in the production? Apart from nitrogen fertiliser, the use of labour, seeds, fuel,

machinery etc. is also required when growing cereal crops. Generally, production

always includes at least two, and often more, inputs. A complete description of the

production technology for a given product will therefore presuppose a multi-

dimensional illustration providing a simultaneous illustration of the relationship

between output and all inputs. With a certain level of drawing skill, such a graphical

illustration is possible for productions with only two inputs. However, this is not

possible if there are three or more inputs. The solution could be to describe the

production technology as partial production functions, i.e. functions with only one

variable input, while the remaining ones are presumed to be fixed at a given level.

With e.g. eight inputs, this would require that the production technology should be

Table 2.1 Yield with increased N addition

Kg of nitrogen (N) per hectare Cereal yield, units per hectare

0 15

30 25

60 45

90 70

120 85

150 85

180 75

units

Kg N90

100

50

Fig. 2.1 Production function
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illustrated as eight figures similar to Fig. 2.1. Such an illustration is, however,

insufficient since the interaction between the various inputs is unclear from these

partial figures.

Secondly, it is not possible to be certain that the described relationships between
inputs and outputs, as shown in Table 2.1, constitute a complete description of the

production technology. Can one, for instance, be certain that there are no other

ways to produce 45 units of cereal crops than by the exact application of 60 kg of

nitrogen fertiliser? What if the observations in Table 2.1 originate from a producer,

who is not technically efficient, i.e. produces less for a given input level than that

which is technically possible? In such a case, there would be other possible points

above the curve in Fig. 2.1, which should therefore also be included to give a

complete description of the production technology. The same would be true for the

points below the curve. For example, is it not technically possible to produce 45

units of cereal crops through the use of 90 kg of nitrogen? Thus, the points below

the curve should also be included to give a complete description of the production

technology.

This shows that the act of describing the production function solely as a curve

interlinking empirical observations of relationships between inputs and outputs may

be much too incomplete and too imprecise a description of the production technol-

ogy for a given product. The correct approach must be to describe the production

technology as the complete set of all the actual possibilities at the producer’s

disposal.

However, how can the complete set be described in a precise and unambiguous

way? How can a production technology be described in a way which leaves all

possibilities open to the producer to put his/her production together in a way that is

optimal for the person in question? And furthermore, how can the production

technology be described in a way that makes it possible to explain empirical

observations which are outside the production function in Fig. 2.1?

The strictly general point of reference would be to describe the actual possible

combinations of inputs and outputs. If this set is called T, then T can be defined as:

T x; yð Þ � x; yð Þ : x can produce yf g (2.1)

in which T is the technology set, x is the amount of input and y is the amount of

output. In this strictly general formulation, both x and y could be scalars or vectors.
However, for now, both x and y should be considered as scalars (one input and one

output, as in Fig. 2.1).

Looking at the production as described in Table 2.1 and Fig. 2.1, it is evident that

the points (x, y) ¼ (0, 15), (30, 25), (60, 45), (90, 70), (120, 85), (150, 85), and (180,

75) all belong to T as it has in fact been observed that, for these combinations of

x and y, x can produce y. Furthermore, the individual points in Fig. 2.1 are

connected as a smooth curve indicating that these intermediate points are also

possible and therefore belong to T. By doing this, it is presumed that x can be

applied in any amount (x is infinitely divisible) and that the actual observations

between the already plotted points will be distributed on an even curve through the

points.
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However, are there other points in Fig. 2.1 that belong to T? Yes, if it is possible

to produce 70 units of cereal crops with 90 kg of nitrogen (which it is according to

Table 2.1), then it ought also to be possible to produce less – e.g. 45 units of cereal

crops – with 90 kg of nitrogen. The reason is that under all circumstances it is

possible to take the 90 kg of nitrogen and dispose of the 30 kg so that the amount

actually added would be 60 kg. And with 60 kg it would of course be possible to

produce 45 units of cereal crops, according to the table. A more realistic description

would be to imagine an inefficient producer who, even with an addition of 90 kg of

nitrogen, only achieves a yield of 45 units, exactly because the producer does not

produce efficiently.

In a similar way it can be argued that all the points below the curve (but above
the abscissa) in Fig. 2.1 also belong to T. The premise behind this argument is the

possibility of free disposability of input or – which is a reference to the same – that

there are producers who are not as efficient regarding their production as the most

efficient producers on the actual production function.

What about the points above the curve? Do any of these belong to T? No, if the

data used in Table 2.1 derives from an efficient producer there will be no possibility –
with the technology under consideration – of achieving yields above the curve in

Fig. 2.1. However, if the data used in Table 2.1 derives from a “poor” producer – a

producer who, if he had been a little more meticulous with his production, would

have produced a higher yield at each of the indicated input levels – then there would

have been points above the curve in Fig. 2.1 belonging to T, as T includes the points

where x can produce y. And if this is a matter of only having received data from a

“poor” producer, and a “good” producer would have been able to achieve a higher

yield, then there would in fact be points above the curve in Fig. 2.1 belonging to T.

The problem is not insignificant and may give rise to considerable problems and

challenges in connection with production economic research that makes use of

empirical data (data from the real world). As it is, such data come from producers

who are different, some of whom are “good” while others are “poor”. This being the

case, the challenge is to establish which of these data do in fact make up the

“border” of T (efficient producers) and which data derive from producers below

the curve. The extent of the problem grows when the number of inputs (and outputs)

increases to more than one.

This concludes the discussion of this issue. Notice that if the upper limit of T

should be identical with the production function as illustrated in Fig. 2.1, then it

presupposes that the data for the description of this function derives from an

efficient producer.

2.3 The Input Set

The technology set T illustrates all the possible combinations of input and output.

However, the production technology can also be defined in another way, i.e. as the

input set X(y) which is defined as:
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XðyÞ ¼ x : x can produce yf g (2.2)

The input set X(y) attaches to each value of y the amounts of input x that can

produce y. If Fig. 2.1 is used again with the choice of a y value, e.g. y ¼ 70, it is

obvious that the input amount of 90 kg N can produce 70 units of cereal crops, i.e.

90∈X(70). However, if 90 kg N can produce 70 units of cereal crops then a larger

amount of N can also produce 70 units of cereal crops when the precondition of free

disposability of input is applied. Hence, the set of x0s which can produce 70 units of
cereal crops consists of those amounts where x � 90, i.e. X(70) ¼ {x: x � 90}. If

all values of y are considered it would result in an illustration of the same

technology sets as described in T.

The input set can also be illustrated graphically when there are two inputs.

Figure 2.2 shows an isoquant for production of the product y in the amount y1

using the two inputs x1 and x2. An isoquant consists of those combinations of x1 and
x2 that can produce the given product amount y1. Hence, the point A illustrates an

input combination which can in fact produce the amount y1.
However, if such amounts of x1 and x2 – for instance corresponding to point A in

Fig. 2.2 – can produce y1 then larger amounts of x1 and x2 will also be able to

produce the amount y1 on the precondition of the existence of free disposability of

input. Hence, the amounts that can produce y1 (X(y1)) are equal to the x0s that are
placed on and north-east of the isoquant in the figure.

2.4 The Output Set

The production technology can also be described by considering the product

amounts which may be produced by a given input amount x ¼ x1. The output set
Y(x) is defined as:

A

x2

x1

y1

X(y1)

Fig. 2.2 Isoquant and

input set
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YðxÞ ¼ y : x can produce yf g (2.3)

The output set Y(x) attaches to each value of x the amount of outputs that can be

produced by use of the given amount of inputs. In Fig. 2.1, the amount of outputs

that can be produced using 60 kg of nitrogen equals 45 units of cereal crops, i.e.

45∈Y(60) in any case. However, if it is possible to produce 45 units of cereal crops
with 60 kg of nitrogen, then it is also possible to produce smaller amounts of output

with 60 kg of nitrogen. It would under all circumstances still be possible to produce

the 45 units of cereal crops and then subsequently dispose of a part of the produced

amount! Hence, on the precondition of free disposability of output, the set of y’s that
can be produced with 60 kg of nitrogen consists of those amounts where y � 45, i.e.

Y(60) ¼ {y: y �45}.

The output set can also be illustrated graphically when there are two outputs.

Figure 2.3 shows a production possibility curve for the production of the two

products y1 and y2 with a given input amount x1. The production possibility curve

consists of those combinations of y1 and y2 that can be produced with a given input

amount x1. Hence, point B illustrates the output combination that can be produced

with the input amount x1.
However, if the amounts of y1 and y2 corresponding to point B can be produced by

x1, then smaller amounts of y1 and y2 could also be produced by the input amount x1 on
the precondition of the existence of free disposability of output. Hence, the amounts

that can be produced by x1 (Y(x1)) are equal to the y’s that are placed on and south-

west of the production possibility curve and limited by the coordinate system axes.

2.5 The Production Function

With the definitions of the technology set, input set and output set presented in the

above section in place, it is now possible to give a more formal and precise

definition of a production function than the definition associated with the

B

x1

y2

y1

Y(x1)

Fig. 2.3 Production

possibility curve and the

output set
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“empirical” production function described in Fig. 2.1. The following definition

presupposes that y is a scalar (an output), while x is a scalar or a vector of input:

Definition. A production function f is defined as:

f ðxÞ ¼ maxfy : y 2 YðxÞg (2.4)

The production function could also be defined as:

f ðxÞ ¼ maxfy : y 2 T x; yð Þg (2.5)

Hence, a production function is defined as the maximum amount of output that
can be produced (through the use of a given production technology) with a given
amount of input.

Similarly, isoquants and production possibility curves can be given formal

definitions. An isoquant is defined as “the border” of the input set, i.e. as the x0s
for which the following is true:

GðyÞ ¼ fx : x 2 XðyÞ j xk=2XðyÞ for xkbxg (2.6)

in which xk � x is to be understood as: None of the elements (xi) in the vector x
k are

greater than the corresponding elements in the vector x, and at least one of the

elements in xk is smaller than the similar element in x.
If the possibility of production of multiple outputs exists, then the production

possibility curve is defined similarly as:

PðxÞ ¼ fy : y 2 YðxÞ j yk=2YðxÞ for ykryg (2.7)

in which yk � y is to be understood as: None of the elements (yi) in the vector y
k are

smaller than the corresponding elements in the vector y, and at least one of the

elements in yk is greater than the similar element in y.

2.6 Diminishing Marginal Returns

Following this strictly formal definition of the production technology and produc-

tion function, we shall now return to the graphical illustration of the production

function which was the point of reference in Fig. 2.1 at the beginning of the chapter.

But what would a purely graphical version of the production function look like?

And what about the mathematical representation of the production function? What

kinds of functions are used to represent production functions?

2.6 Diminishing Marginal Returns 13



2.6.1 The Law of Diminishing Marginal Returns

First we will have a look at the graphical representation of a production function.

Recall that a production function can only be drawn on a piece of paper if there is

one or at the most two inputs. As more than two inputs are normally used in a

production, (almost) all graphical illustrations of production functions presuppose

the presence of one or more underlying inputs (part of the production) with given

fixed amounts (fixed input). The curve illustrating the relationship between added

nitrogen fertiliser and the yield of cereal crops in Fig. 2.1, therefore, presupposes

that all the other inputs used in the production of cereal crops (seeds, pesticides,

land, labour, machinery, etc.) are present in given fixed amounts.

An essential precondition related to a production function is the assumption of

diminishing marginal returns. The precondition, which is based on empirical

observations of how the production is carried out in practice, is universally

acknowledged as a basic condition within production economics referred to as the

Law of diminishing marginal returns. Briefly explained,

The Law of diminishing marginal returns states that by adding increasing amounts of input

to a production with at least one fixed input, the additional returns resulting from the

addition of increasing amounts of input will gradually diminish, and eventually become

negative.

The concept of marginal returns is used here to refer to the increase in production

arising from the addition of an extra unit of input. Normally, this increase is

expressed by the slope of the production function, i.e. as the value of the derivative,

i.e. df(x)/dx, if x is a scalar, or the partial derivative, ∂f(x)/∂xi, if x is a vector.

Expressed this way, the concept of marginal returns or marginal product is

normally used to express the additional returns per input unit in connection with

marginal changes in the amount of input.

If the function expression of the production function is unknown, the marginal

product can be approximated by the use of the difference product expressed asDy/Dx.
Using data from the example in Table 2.1, the difference product in the interval

from 30 to 60 kg of nitrogen equals (45–25)/(60–30) ¼ 0.67, and in the interval

from 90 to 120 kg of nitrogen equals (85–70)/(120–90) ¼ 0.50. These difference

products are approximated expressions of the derivative (and thereby the marginal

product) at the centre of the relevant intervals.

The Law of diminishing marginal returns is nicely illustrated in the production

function shown in Fig. 2.1. When adding small amounts of nitrogen fertiliser, the

marginal product increases (the slope of the production function increases). At

some point, the marginal product is diminishing, and when adding approximately

135 kg of nitrogen, the marginal product becomes zero and subsequently becomes

negative with further additions. In this example, the precondition of at least one

fixed input is satisfied as land and other inputs used in the production of cereal crops

are presupposed to be present in given fixed amounts.
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2.6.2 Graphical Illustration of the Production Function

When production functions are represented graphically (and it is thereby pre-

supposed that a number of underlying production factors are fixed inputs), such a

representation will look the same as, or similar to, the curve in Fig. 2.1. These

“similar” representations are produced by observing only parts of the shape of the

total production function in Fig. 2.1.

Figure 2.4 illustrates four different (sub) shapes of the production function which

are all contained in the production function outlined in Fig. 2.1. Example A outlines

the progressively increasing shape with positive and increasing marginal returns.

This shape corresponds to the first part of the production function in Fig. 2.1.

Example B outlines a linear shape with positive and constant marginal returns,

corresponding to the area between 60 and 90 kg N in Fig. 2.1. Example C outlines a

digressively increasing shape with positive and diminishing marginal returns

corresponding to the area between 90 and 130 kg N in Fig. 2.1. Finally, example

D outlines a progressively diminishing shape with negative and diminishing mar-

ginal returns. This shape corresponds to the last part of the production function in

Fig. 2.1.

A production function with all four “shape” types in the described order, like the

one in Fig. 2.1, is referred to as the neoclassical production function. This type of
production function has especially been used to describe production relationships

within agriculture.

If you are not interested in the overall shape of the production function, but

solely in the local areas of the production function, it is sufficient to plot the part of
the production function that is of interest. As mentioned later on, the part of the

production function that is of special interest in connection with production eco-

nomics is the one that is illustrated in example C in Fig. 2.4 (the digressively

increasing shape). Therefore, production functions are often illustrated graphically

with a shape similar to example C in Fig. 2.4. However, this does not necessarily

mean that this shape is present throughout the entire domain of the production

function, i.e. globally. It might also solely be an issue of a description of a local

shape.

y y y y

x x x

A B C D

x

Fig. 2.4 Alternative production function shapes
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If we consider production with more than one input, the graphical illustration of

the production function is a bit more complicated. If there are two variable inputs,

the production function is often described by means of so-called isoquants which
are defined formally (for any number of inputs) in Eq. 2.6 and illustrated

graphically as in Fig. 2.2 for two inputs. Isoquants can be interpreted as level

curves for the production function. As the issue of interest regarding production

economics is normally solely the area of the production function which corresponds

to example C in Fig. 2.4, the similar areas of the isoquant will in fact consist of

diminishing, convex curves, as illustrated in Fig. 2.2 (it is up to the reader to

demonstrate why).

Figure 2.5 shows alternative sets of four isoquants. The number on each of the

isoquants expresses the size of the production. In set A, the amount 1 can be

produced with either input x1 or with input x2 or with a combination of x1 and x2.
Hence, none of the inputs are necessary inputs. To produce amounts of 2, 3, or 4,

both inputs are however necessary. The production function has a maximum of 4. In

set B, both inputs are necessary and the production function does not have a

maximum (this could e.g. be a Cobb-Douglas production function (discussed

later)). Set C shows L-shaped isoquants on which only the corner points are

efficient. This is a so-called Leontief production function (discussed later).

2.6.3 Mathematical Representation of the Production Function

The formal mathematical representation of the production function for the produc-

tion of one output has previously been shown as in Eq. 2.4. Alternatively, Eq. 2.4

could be written as:

y ¼ f ðxÞ (2.8)

in which y is a scalar (the amount of the product y), f is the production function,

and x is a vector of inputs.

1

2

3

4

x1 x1x1

2

3

4

1

2

3

4

x2 x2x2
A B C

1

Fig. 2.5 Alternative sets of isoquants
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The production function:

y ¼ f x1ð Þ (2.9)

expresses the production of y only as a function of the variable input x1. If it is
appropriate to explicitly express that the production of output y is a function of the

variable input x1 and the fixed inputs x2, . . ., xn , then the function (2.9) should be

written as y ¼ f(x1 j x2, . . ., xn). Normally, fixed inputs are not included when

writing the production function. It is however important to keep in mind that the

production may depend on considerably more inputs than specified in the actual

production function. Write y ¼ f(x1, x2) or y ¼ f(x1, x2, j x3,. . ., xn) if you want to

express that the production is a function of two variable inputs.

There is no given mathematical functional form for a production function. All

the functional forms that have been used to describe the production have histori-

cally been based on more or less subjective choices. The best known of these

function forms is the so-called Cobb-Douglas production function which, with two

variable inputs, has the form:

y ¼ Axb11 x
b2
2 (2.10)

in which A, b1, and b2 are predetermined parameters (constants).

Evidently, the choice of functional form depends on the areas of the production

function which are to be described. Is it a global description which should cover the

entire function shape as outlined in Fig. 2.1, or is it a matter of functions which

should only illustrate local areas of the production shape, as e.g. illustrated by the

four examples in Fig. 2.4? Hence, the Cobb-Douglas function is only capable of

illustrating shapes such as the one shown in example C in Fig. 2.4. An alternative

functional form, which also seems to be able to work here, is the simple quadratic

function. In case of a linear shape as shown in example B in Fig. 2.4, it is possible to

choose a simple linear function as the functional form.

The choice of functional form and the subsequent estimation of the parameters

of the function is a comprehensive science in itself, which is not discussed in any

further detail here. Anyone with a particular interest in this is referred to studies

within the subject area of Econometrics.

2.6.4 The Production Elasticity

Apart from describing the production technology as a table with numerical

relationships between inputs and outputs (Table 2.1), as a graph illustrating these

numerical relationships (Fig. 2.1), or mathematically as an actual production

function (Eqs. 2.9 and 2.10), it is possible to express these relationships between

inputs and outputs locally by means of the so-called production elasticity.
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The production elasticity expresses the relative change in production through a

relative change in the addition of input. If e.g. 5 % more input is added and 4 %

more output is achieved, then the production elasticity is 4/5 ¼ 0.80.

If there are multiple inputs, it is possible to calculate the production elasticity for

each input. Formally, the production elasticity ei for input i is calculated as:

ei �
@f ðxÞ
f ðxÞ
@xi
xi

¼
@f ðxÞ
@xi
f ðxÞ
xi

¼ MPPi

APPi
(2.11)

in which MPP and APP represent the marginal product (Marginal Physical Prod-
uct) and the average product (Average Physical Product), respectively.

If the function expression for the production function is not known, then the

production elasticity can be approximated by replacing marginal change (∂) in
Eq. 2.11 by small, numerical change (D). Hence, an approximated expression for

the production elasticity in the centre of the interval is achieved by calculating the

following:

ei ffi
Dy
y

Dxi
xi

If the data from the example in Table 2.1 is used, the production elasticity in the

interval 30–60 kg N is approximated using the calculation ei ¼ [(45–25)/25]/

[(60–30)/30] ¼ 0.80. As the centre of the interval 30–60 kg is 45 kg, this elasticity

(0.80) will be used as the approximated elasticity at the point where the 45 kg N are

applied. Similarly, the elasticity at the point where the 105 kg N are applied is

expressed as ei ¼ [(85–70)/70]/[(120–90)/90] ¼ 0.64. As shown by this example,

the production elasticity (normally) depends on the point of reference, and the

elasticity declines with the addition of input.

Some production functions have constant production elasticities. This is the case

for the Cobb-Douglas production function shown in Eq. 2.10 in which the produc-

tion elasticity for the input i (i ¼ 1,2) is bi (the reader is encouraged to verify this

himself/herself using the expression after the second equal sign in Eq. 2.11 for the

calculation).
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Optimisation with One Input 3

3.1 Introduction

This chapter discusses the optimisation of production under the simplest precon-

ditions: The production of one product (output) using one input. The amount of the

other inputs is presumed given as fixed amounts. The prices of inputs and outputs

are presumed given externally (the producer is a price taker) and these prices are

presumed to be constant, no matter how much the producer buys and sells.1

The optimisation of the production takes place in two ways: Either by deciding

how much input it is optimal to add, or by deciding how much output it is optimal to

produce. The result (optimal values of x and y) is of course the same and the choice

of one or the other method is a matter of preference.

The relationship between input and output is shown as a neoclassical production

function in the upper half of Fig. 3.1. The lower half of Fig. 3.1 shows the

corresponding curves representing the marginal product (MPP) and the average

product (APP), respectively, as the function of the addition of the input x. The
marginal product is equal to the slope of the production function and is formally

defined as:

MPP ¼ df ðxÞ=dx;

while the average physical product equals the slope of a straight line through the

zero point up to the production function and is formally defined as:

APP ¼ f ðxÞ=x ¼ y=x:

1We refer to this as a competitive market. The non-competitive market case is discussed at the end

of Chap. 7 (input) and in Chap. 13 (output).
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Based on this, we will first look at the optimisation of production from the

input side.

3.2 Optimisation from the Input Side

When the optimal supply of input x is to be determined, it must initially be noticed

that it will never be profitable (regardless of the input and output prices) to add

larger amounts of input than the amount indicated by x3 in Fig. 3.1. Larger amounts

would result in decreasing output which would never be profitable with positive

input and output prices.

Would it be possible in a similar way to determine a certain minimum amount of

input x that should always (regardless of the input and output prices) be applied? –

Yes, it would indeed. When the prices, as here, are presumed to be constant, it will –

if it is at all profitable to produce the product in question – be optimal to apply an

input amount that, as a minimum, corresponds to x2 in Fig. 3.1.

x3x2x1

y1

y2

y3

MPP

y = f(x) 

y

x

y

x

APP
a

Fig. 3.1 The production

function and MPP and APP
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To see why, presume that the price p of y is used as monetary unit so that the

product price p equals 1. In this case, the production function in Fig. 3.1 is at

the same time the measure of the total product value or total revenue TR (TR ¼
py ¼ 1y ¼ y). Presume furthermore – as the point of reference – that the price of

input (w) is such that the total costs of buying input (total factor costs (TFC))
(TFC ¼ wx) are given by the dotted line, which is in fact tangent to the production

function in Fig. 3.1. Under such circumstances, the use of the input amount x2
would indeed result in a profit of 0 (nil) (total product value (TR) minus the total

factor costs (TFC) equal to zero at y2).
Now presume that the input price w is somewhat higher, so that the total factor

cost follows a line with a larger slope than the dotted line in Fig. 3.1. If this is the

case, it will not be profitable to produce anything at all as there will be no input

amounts for which there is a positive profit (TR-TFC < 0).

Presume, on the other hand, that the input price is somewhat lower so that the

total factor costs follow a line with a smaller slope than the dotted line in Fig. 3.1.

and therefore intersects the production function (in two places). If this is the case, it

will be profitable to produce as there are input amounts around x2 where there is a
positive profit (TR-TFC > 0). The input amount with the highest profit (largest

distance between the production function and the line showing the total factor costs)

is found in the area to the right of x2.
Hence, it has been shown that with constant output prices, the optimal input

supply is always to be found in the area of the production function corresponding to

input amounts of between x2 and x3 in Fig. 3.1. It is with this observation as the

basis that analyses of production economic issues are almost always limited to

observing the part of the production function which corresponds to example C in

Fig. 2.4.

After these introductory descriptions it is possible to analyse how the optimal

input amount of input is formally determined.

The profit equals the difference between the total product value (or total revenue,

TR) and the total factor costs (TFC). Hence, if the profit is referred to as p the profit is:

p ¼ TR� TFC ¼ py� wx ¼ pf ðxÞ � wx (3.1)

in which p is the output price and w is the input price.

The maximum of p with respect to x is found when the derivative of p with

respect to x is zero. If the right hand side of Eq. 3.1 is differentiated with respect to x
and set equal to zero, this will result in the following equation for the determination

of the optimal x:

p df ðxÞ=dxð Þ � pMPP � VMP ¼ w (3.2)

in which VMP is the value of the marginal product defined as the marginal product

MPP multiplied by the product price p.
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The condition (3.2) states that to achieve an optimal input supply x, the value of
the marginal product VMP (the increased value of the production at the marginal

supply of one more input unit) must be equal to the input price w. This ratio is

illustrated graphically in Fig. 3.2 in which x0 is the optimal input supply.

The procedure is illustrated by the following example:

Example 3.1

The production function, y ¼ f(x) ¼ 16 + 0.8x�0.005x2

The product price, p ¼ 90. The input price, w ¼ 5.

The marginal product, MPP ¼ df(x)/dx ¼ 0.8�0.01x
The value of the marginal product, VMP ¼ MPP � p ¼ (0.8�0.01x)

� 90 ¼ 72�0.90x
Optimal application of x when VMP ¼ w, i.e. when: 72�0.90x ¼ 5, i.e. when

x ¼ 74.44
Optimal production of y ¼ 16 + 0.8 � 74.44�0.005 � 74.442 ¼ 47.84.

By re-writing Eq. 3.2 the optimal condition can also be written as:

MPP ¼ w=p (3.3)

As MPP is the slope of the production function, the optimal input supply x may

therefore be found by drawing a line with the slope w/p and by letting this line be

tangent to the production function. The input amount at this tangent point equals the

optimal application of x.
The condition of optimality illustrated by the form Eq. 3.3 is expedient for use in

a graphical analysis of what happens with the optimal addition of one input when

the relations between prices change. It appears directly from Eq. 3.3 that if the input

price increases compared to the output price, then the optimal input amount is found

at a lower input amount as the slope of the production function is steeper here. This

is illustrated in Fig. 3.3 in which the slope (the ratio w/p) in point A is relatively

low, which results in an optimal input supply corresponding to the amount a.

At point B, the slope is higher, which results in a lower optimal supply (b) of input.

w

x0

VMP

MU

x

Fig. 3.2 Optimal input

supply
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The condition (3.2) stipulates only the necessary condition (the first order

condition) for optimal input. The sufficient condition is found by adding the second
order condition, as the maximum of a function presupposes that the second deriva-
tive is negative. If Eq. 3.1 is differentiated two times with regard to x and the

condition is formulated so that the second derivative must be negative, this will

generate the condition (3.4) which, together with Eq. 3.2, results in the sufficient

condition for optimal input supply.

dMPP=dx< 0 (3.4)

According to Eq. 3.4, the optimal input supply is therefore to be found for values

of x when the marginal product is diminishing, i.e. for values of x which are higher

than x1 in Fig. 3.1.

When it comes to optimisation in practice, the mathematical form for the

production function is often unknown. The production function exists solely as a

table showing relationships between discrete values of input (x) and output (y) (e.g.
similar to Table 2.1). If this is the case, the derivative, and therefore the marginal

product (MPP), cannot be derived and hence it is not possible to use the condition of
optimality 3.2.

Under such circumstances, the difference product is used as an approximated

expression for the marginal product. The difference product is calculated as Dy/Dx,
where Dx expresses the change in x (the difference between two “adjacent values”

of x) and Dy expresses the corresponding change of y (the difference between the

corresponding “adjacent values” of y).

A

y

x

Production function

B

b a

Fig. 3.3 Optimisation of

input
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Example 3.2

The following empirical example illustrates a situation in which the underlying

production function corresponds to the production function in Example 3.1, but

where only the discrete numbers in the first two columns are given. The exact

marginal product (calculated as shown in Example 3.1) is included in the third

column. The fourth column shows the difference product which is an approximated

expression of the marginal product at the centre of the interval (hence, the number

0.55 is an estimate of the marginal product when x equals 25) etc.

MPP (exact) MPP (approximated) VMP (approximated)

x y (¼f(x)) df(x)/dx Dy/Dx MPP � p

10 23.5 0.7

0.65 58.5

20 30.0 0.6

0.55 49.5

30 35.5 0.5

0.45 40.5

40 40.0 0.4

0.35 31.5

50 43.5 0.3

0.25 22.5

60 46.0 0.2

0.15 13.5

70 47.5 0.1

0.05 4.5

80 48.0 0

With the information available, it is not possible to identify the exact opti-

mum (x ¼ 74.44 as shown in Example 3.1). The closest approximation achiev-

able is that the optimal solution is to be found within the interval 70 < x < 80,

because it is in this interval that VMP (4.5) is closest to the input price w (5). The

production in this interval is 47.5 < y < 48.0.

3.3 Optimisation from the Output Side

When optimising the production as seen from the output side, the equation for the

profit p is formulated as a function of y, and not as a function of x as in Eq. 3.1.

p ¼ TR� TFC ¼ py� wx ¼ py� wf�1ðyÞ (3.5)

in which f�1 is the inverse production function.

The inverse to a function only exists if the function is monotonous, i.e. either

increasing or decreasing. The production function f in Fig. 3.1 has an increasing, as
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well as a decreasing shape, which is why the condition for the existence of a unique

inverse function is not fulfilled. However, as illustrated in Sect. 3.2, the optimal

production is always to be found for input amounts smaller than less x3 in Fig. 3.1,

i.e. on the increasing part of the production function. It will, therefore, be sufficient

to observe the production function for values of x less than x3. And in this area, the

inverse to the production function is uniquely defined.

The expression wf�1(y) can be expressed more generally as the function c, such
that:

c w; yð Þ ¼ wf�1ðyÞ (3.6)

The function c in Eq. 3.6 is referred to as the cost function. Basically, a cost

function is defined as a function expressing the lowest costs by which the product

amount y can be produced when the input price is w. As illustrated in the following
sections, this definition is also true when it comes to multiple inputs and outputs, i.e.

when y and w are vectors, and not just scalars.

Is it possible to be certain that c, as expressed in Eq. 3.6, does in fact express the
lowest costs of production of y? Yes, it is. The production function f is in fact

defined as a function which produces the maximum of y for each value of x.
Therefore, the inverse function expresses the smallest amount of input whereby

the product amount y can be produced.

The profit p in Eq. 3.5 can now be expressed as:

p ¼ TR� VC ¼ py� c w; yð Þ (3.7)

in which VC expresses the variable costs involved in the production of y.
The maximum of pwith regard to y is found when the derivative of pwith regard

to y is zero. If the right hand side of Eq. 3.7 is differentiated with regard to y and set
equal to zero it will result in the following equation for the determination of the

optimal y:

p ¼ dc w; yð Þ=dy � MC (3.8)

in whichMC is the abbreviation for the marginal costs, i.e. the incremental costs for

the production of one additional unit of y.
Hence, the condition (3.8) states that optimal production is characterised by the

product price p being equal to the marginal costsMC. The condition of optimality is

outlined graphically in Fig. 3.4, in which yo is the optimal production.

The shape of the marginal costs curve as a progressively increasing function of y
is strictly related to the shape of the production function. In Chap. 5, we will return

to this issue again through a thorough analysis of the cost function. For now, it

should merely be established that, concerning the relevant area of the production

function (C in Fig. 2.4), the shape of the marginal costs curve is progressively

increasing as illustrated in Fig. 3.4.
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For the sake of completeness, it should be noted that the optimal production as

calculated in Fig. 3.4 corresponds to the production achieved by the use of the

optimal input amount as determined from the input side in Fig. 3.2.

Example 3.3

We use the same numerical example as in Example 3.2. This point of reference is

now the production y and the corresponding (variable) costs c. The cost c is the
result of multiplying the input price w and the applied input amount x. If the
applied input amount is presumed to be the lowest amount of input x for the

production of the relevant amount of y, then the lowest input amount is a unique

function of y when production is carried out within the rational production area

(x < x3 in Fig. 3.1). This function is referred to as x*(y), where the asterisk (*)

refers to the use of an optimised expression. With the assumption mentioned, the

cost c can be expressed as c ¼ w � x*(y).
In this example, the marginal cost cannot be calculated directly, as the

functional form of c(w,y) is not known (it could, in principle, be derived based

on the inverse of the production function (see the Eq. 3.6), if desired). Therefore,

the marginal cost must be approximated by the calculation of differences. The
difference cost equals Dc/Dy, i.e. the change in costs divided by the

corresponding change in production. The marginal costs (MC) approximated

in this way are shown in the right hand column of the table below.

Costs MC (approximated)

y c (w � x*(y)) Dc/Dy

23.5 50

7.69

30.0 100

9.09

35.5 150

11.11

(continued)

p

y0

MC

MU

y

Fig. 3.4 Optimal production

of y
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Costs MC (approximated)

y c (w � x*(y)) Dc/Dy

40.0 200

14.29

43.5 250

20.00

46.0 300

33.33

47.5 350

100.00

48.0 400

The information presented is insufficient to identify the optimum (y ¼ 47.84

as shown in Example 3.1). The closest approximation achievable is that the

optimal solution is to be found within the interval 47.5 < y < 48.0, in that this is

where MC (100.00) is closest to the output price (90). The cost in this interval is

350 < c < 400.

As illustrated by a comparison of Examples 3.2 and 3.3, optimisation from the

input side and from the output side generates the same result.

The relationship between the optimisation from the input side and from the

output side is relatively simple in cases with only one input and one output. The

relationship becomes more complicated as soon as multiple inputs or outputs are

introduced.

With multiple inputs (and one output), one can think of two possible cases:

1. One possibility is that a cost function is known. Either in the form of an actual

function expression for c(w, y), or in the form of a table with numerical

relationships between the output y and the costs c, as in Example 3.3. Here

optimisation is carried out by identifying the value of y, where the marginal costs

MC equal the output price p (optimisation as in Example 3.3)

2. The other possibility is that a production function, y ¼ f(x1,x2,. . .) and the input

(w1, w2,. . .) and output (p) prices have been given. The optimisation is now a two
step procedure: Firstly, it is decided – for each possible value of y – how the
selected output amount y is produced with the lowest costs. This corresponds to
determining the cost function. Then production is optimised as under item 1 by
finding the value for y when MC ¼ p.
In Chap. 4 below, the first of the two steps mentioned under item 2 is discussed.

Next, in Chap. 5, the second of the two steps mentioned under item 2 is discussed.

Hence, Chap. 5 is a continuation of Sect. 3.3 of this chapter.
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Production and Optimisation with Two
or More Inputs 4

4.1 Introduction

In the real world, no production is carried out using only one input. Normally,

several (controllable) inputs are used. Hence, when growing cereal crops, land,

seeds, labour, fertiliser, pesticides, machinery, etc. are used. A car manufacturer

uses steel, labour, leather, plastic, paint, tyres, fuel, etc. Various inputs can often

replace each other so that it is possible to replace some of the expensive ones with

cheaper alternatives if the price of one input increases. For example, if the price of

pesticides, which are used to chemically control weeds in the field, rises, then the

use of labour might be considered as an alternative to control the weeds. If the price

of fuel used for heating factory or office buildings increases, it may be cheaper to

use electricity for heating instead. The question as to the extent to which the various

inputs can replace each other becomes the key question in this connection. This

chapter deals with the instruments which can be used to address such issues. As in

Chap. 3, we assume competitive input and output markets.1

The chapter primarily discusses issues concerning production optimisation with

two (variable) inputs. Results concerning two variable inputs can easily be generali-

sed to cover more inputs, and such a generalisation will be undertaken as part of this

chapter.

When one of the two (variable) inputs becomes a fixed input, special conditions

apply. The discussion of such conditions will, among other things, be relevant when

issues concerning production adjustment under restrictions are discussed later on.

Issues concerning production optimisation with input quotas are addressed in Chap. 10.

The basic foundation for such analyses of production adjustment under production

regulation is presented in this chapter.

1 The non-competitive case is treated in Chap. 13.
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4.2 Cost Minimisation

The underlying basis for the following analysis is the production function y ¼ f(x1,x2)
as illustrated by a set of isoquants. Figure 4.1 shows such a set of isoquants with

three yield levels y1, y2, and y3, when y1 < y2 < y3.
The expansion path is defined as the curve connecting the points of the isoquants

with the slope �w1/w2, where w1 and w2 are the prices of input 1 and input 2,

respectively.

The expansion path is found by addressing the following formal problem:

minfw1x1 þ w2x2g
x1; x2

(4.1a)

under the constraint that:

y ¼ f x1; x2ð Þ (4.1b)

The problem Eqs. 4.1a and 4.1b consists of minimising the variable costs

Eq. 4.1a under the constraint that the amount y (4.1b) is being produced. The

solution is found by using the Lagrange method (see Chiang (1984) p. 372). Firstly,

the Lagrange function L is created:

L ¼ w1x1 þ w2x2 þ l y� f x1; x2ð Þð Þ (4.2)

and minimised with regard to the two variables x1 and x2 and the Lagrange multiplier

l by taking the partial derivatives and setting them equal to zero. This will produce

the following three conditions for an optimal solution to Eqs. 4.1a and 4.1b:

w1 ¼ l �MPP1 (4.3a)

w2 ¼ l �MPP2 (4.3b)

y ¼ f x1; x2ð Þ (4.3c)

Dividing Eq. 4.3a by Eq. 4.3b produces the necessary condition for the

minimisation of Eq. 4.1a for the given y:

w1

w2

¼ MPP1

MPP2

(4.4)

This condition can be interpreted graphically as the tangent point between the

so-called budget line and the isoquant for the production y. To find out why,

consider the variable costs:

C ¼ w1x1 þ w2x2 (4.5)
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which should be minimised for the given production y according to Eq. 4.1a.

Finding the solution to Eq. 4.5 for x2 produces:

x2 ¼ �w1

w2

x1 þ C

w2

(4.6)

which is a straight line in the x1�x2 plane with the slope � w1

w2
and intersection point

with the x2 axis corresponding to
C
w2
. This type of line is called the isocost line, as it

presents combinations of x1 and x2 which all have the same costs, C. The concept,
budget line, can also be used as this line presents a budget constraint in cases where
there is only a limited amount of money (budget) C available to buy input. (You

will learn more about the use of the isocost line and its interpretation in the section

on optimisation under constraints in Chap. 10).

If the isoquant for a given production y ¼ f(x1,x2) is considered, the total

differential of this function can be written as:

dy ¼ @f

@x1
dx1 þ @f

@x2
dx2 ¼ MPP1dx1 þMPP2dx2 (4.7)

The formal representation of the isoquant is achieved by considering the changes

in x1 and x2 for which dy is equal to zero. (Hence, when dy is zero there are no

changes in the production y which is in fact the characteristic feature of points on

the isoquant for y). If dy in Eq. 4.7 is set equal to zero and solved with regard to

dx2/dx1 the following result is generated:

dx2
dx1

¼ �MPP1

MPP2

¼ �MRS12 (4.8)

which is in fact the ratio between changes in x1 and x2 when producing the constant
product amount y. According to Eq. 4.8, the slope of the isoquant (dx2/dx1) can thus

x2

x1

e

e

y3

y2

y1

a = -½

Fig. 4.1 Isoquants and

expansion path
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be expressed by the negative ratio between the marginal products for the two inputs

MPP1 and MPP2. This ratio is called Marginal Rate of Technical Substitution
(MRTS), or simply MRS (Marginal Rate of Substitution). This is simply an expres-

sion of the amount of one input needed to compensate for a reduction in the other

input under the condition that an unchanged amount of y is produced.
In Fig. 4.2, the isoquant for the production of y has been drawn. The minimisation

of the costs C in Eq. 4.5 for the given production y can now be illustrated graphically,

as shown in Fig. 4.2. According to Eq. 4.6, the result of a minimisation ofC is that the

isocost line is shifted as far to the south-west as possible, since the intersection point

with the x2 axis will then be placed as far down as possible. And as the input price w2

is a constant, this will result in the lowest possible costs of C. At the same time, it is

important to make sure that the amount y is produced, i.e. that production takes place
somewhere on the isoquant for y. The optimal point is in fact the tangent point

between the isocost line and the isoquant as shown in the figure. In this case, the

slope of the isocost line (�w1/w2) is in fact equal to the slope of the isoquant

(�MPP1/MPP2 ¼ �MRS12) while at the same time producing y. This in fact

corresponds to the condition (4.4) as derived previously.

In Fig. 4.1, the expansion path ee was drawn under the assumption that

�w1/w2 ¼ �½ which corresponds to the slope a of the three straight lines that

are tangent to the three isoquants.

Example 4.1

Assume a production function y ¼ f x1; x2ð Þ ¼ 6x0:31 x0:52 . The price of input x1 is
8 (w1 ¼ 8), and the price of input x2 is 12 (w2 ¼ 12). The Lagrange function L
therefore equals:

L ¼ 8x1 þ 12x2 þ l y� 6x0:31 x0:52

� �
:

Differentiating L with regard to x1 and x2 and setting the derivatives equal to

zero will result in the following necessary conditions for an optimal production:

x2

x1

C /w2

y

a = -w1/w2

Fig. 4.2 Isoquant and isocost

line
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1. 8 ¼ l 1:8x�0:7
1 x0:52

2. 12 ¼ l 3x0:31 x�0:5
2

Dividing 1. by 2. results in:

3.
8
12
¼ 1:8

3
x2
x1

which can be written as:

x2
x1

¼ 24

21:6

Hence, to achieve optimal production in this example the inputs should be

applied in the ratio 24/21.6. This means that a given product amount y is

produced in the cheapest possible way by using x2 and x1 in the ratio 24/21.6.

Hence, the points satisfying this condition are the points where the isocost line is

tangent to an isoquant. As the collection of such points at the same time makes

up the definition of the expansion path, then the expansion path in this example is

given by the straight line through the zero point: x2 ¼ 24
21:6 x1.

4.3 The Expansion Path and the Form of the Production
Function

The expansion path in Fig. 4.1 is deliberately drawn as an arbitrary (non-linear)

curve. The reason for this is that it is in fact not possible to say anything about the

shape of the expansion path, unless the form of the production function is known.

If the expansion path constitutes a straight line through the origin, then the

production technology is homothetic and in this case the production function

f(x1, x2) is called a homothetic production function (hence, the production function

in Example 4.1. is a homothetic production function as it entails a linear expan-

sion path). Hence, what makes a homothetic production technology special is that

the variable inputs should always be used in the same ratio regardless of the level of

production. Points on a straight expansion path through the zero point do in fact

constitute a constant ratio between the inputs corresponding to the slope of the line.

If the production function is homothetic, the economic issues related to the

adjustment of the production to changes in price ratios are simplified. If the

product price py increases and production therefore should be expanded, there is

no need to consider the ratio between the inputs when using a homothetic produc-

tion technology. The inputs should simply be used in the same ratio as before. The

same is true when reducing production in the case of falling prices.

A Cobb-Douglas production function has an expansion path which is a straight

line through the origin. A Cobb-Douglas production function with two variable

inputs has the form:

y ¼ Axb11 x
b2
2 :
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Differentiating this production function with regard to x1 and x2, respectively,
produces:

MPP1 ¼ Ab1x
b1�1
1 xb22

and

MPP2 ¼ Ab2x
b1
1 x

b2�1
2

The equation for the expansion path is produced by using the general condition

for the expansion path derived in Eq. 4.4. IfMPP1 is divided byMPP2 and inserted

in Eq. 4.4, the following result is generated:

w1

w2

¼ b1x2
b2x1

;

which can also be expressed as:

x2 ¼ w1

w2

b2
b1

x1;

which is the equation describing the expansion path as a straight line in the x1�x2-
plane (see also Example 4.1).

Whether an assumption of production functions being homothetic is realistic or

not will not be discussed here. It should merely be established that the precondition

of a homothetic production technology demands that the optimal ratio between

inputs does not depend on the scale of production. For instance, the optimal ratio

between the consumption of the four inputs labour, acreage, fertiliser, and machinery

used for the production of cereal crops is the same regardless of whether one is

talking about a farm with 5 ha or 100 ha. This precondition can also be expressed as

demanding that the optimal consumption of labour, machinery, and fertiliser per

hectare will be the same regardless of the number of hectares cultivated.

Concerning car manufacturing, the precondition of a homothetic production tech-

nology would imply that steel, labour, paint, fuel, plastic, tyres, etc. are used in the

same proportion no matter how many cars are produced. Please take a moment to

consider whether these assumptions are realistic. Could empirical observations

provide a basis for the acceptance of such assumptions?

Homogeneous production functions are a particular class of homothetic

functions. A homogeneous production function is characterised by the fact that –

apart from being homothetic – it can be expressed as the production function:

f tx1; tx2ð Þ ¼ tnf ðx1; x2Þ;

in which t is a positive number (t > 0) and n is the degree of homogeneity.
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Illustrating that such a production function is in fact homothetic is easy. If the

following is true for a given set of x’s (x1, x2):

w1

w2

¼ MPP1

MPP2

i.e. that production takes place on the expansion path, then – if the production

function is homogeneous – the following will be true for another set of x’s (tx1, tx2):

w1

w2

¼ tnMPP1

tnMPP2

which can be reduced to:

w1

w2

¼ MPP1

MPP2

If all inputs are increased by a factor t (movement along the line through

the zero point), the isoquants along this line will then have the same slope

�MPP1/MPP2, which corresponds to the expansion path being a straight line

through the zero point. However, this is in fact the definition of a homothetic

production function.

Apart from being homothetic, homogeneous production functions are special in

the sense that if all inputs are multiplied by a factor t, then production increases by

t n independent of the present production level.

We will now have a look at the Cobb-Douglas production function as introduced

above. As previously discussed, this function is homothetic. However, it is actually also

homogeneous. Firstly, all inputs are multiplied by the factor t producing the following:

y ¼ f ðtx1; tx2Þ ¼ Aðtx1Þb1ðtx2Þb2

which can be written as:

y ¼ tðb1þb2ÞAxb11 x
b2
2 ¼ t nf ðx1; x2Þ:

Hence, a Cobb-Douglas production function is shown to be homogeneous of the

degree (b1 þ b2). Thus, if all inputs are doubled, then production will increase by a
factor of 2(b1+b2). If e.g. (b1 þ b2) equals 1, the doubling of all inputs means that the

production will actually be doubled.

A production function where the degree of homogeneity n is precisely 1 is

homogeneous of degree one, or linear homogeneous. If a production function

which includes all inputs (all inputs are variable) is linear homogeneous, then it is

said to have constant returns to scale. This concept is derived from the observation

that if the scale increases (all inputs increase with a given factor) for such

4.3 The Expansion Path and the Form of the Production Function 35



production functions, then production increases with the same factor (discussed in

further detail in Chap. 11).

Historically, the Cobb-Douglas production function has been much used as the

functional form describing production – within both farming and industry. The

popularity of this function is due to a number of mathematical advantages and

advantages in connection with empirical analyses which will not be discussed further

here. It must however be emphasised that this functional form demands a number of

relatively stringent assumptions concerning the production technology. It is first and

foremost the assumption that the expansion path is linear – i.e. that input – with given

input prices – should always be used in the same ratio, regardless of the size of the

production. In addition to this, there is the homogeneity assumption which demands

that the degree of homogeneity is the same everywhere, i.e. globally.

As mentioned, the Cobb-Douglas production function is a homogeneous func-

tion with a degree of homogeneity n that equals the sum of the exponents b1 and b2.
Other production functions are not necessarily homogeneous functions. For

instance, a quadratic production function:

y ¼ f x1; x2ð Þ ¼ a0 þ a1x1 þ a2x2 � a11x
2
1 � a22x

2
2 þ a12x1x2

is generally neither homogeneous nor homothetic (the reader is encouraged to find

out under which preconditions the mentioned quadratic production function is in

fact (1) homothetic or (2) homogeneous). However, for the given values of x1 and x2
it is of course possible to calculate how much the production y will rise if all inputs
were increased by the same factor t.

Example 4.2

Presume that the parameters in the above mentioned quadratic production function

have the values a0 equal to 2, that a1 and a2 are both equal to 1, that a11 is equal to
0.10, that a22 is equal to 0.01, and that a12 is equal to 0.50. Based on this, calculate
how much the production y increases when all inputs are increased by 10%

compared to the present consumption of 1 unit of x1 and 1 unit of x2.
Initially, the production is:

y ¼ 2þ 1þ 1� 0:10� 0:01þ 0:5 ¼ 4:39

If all inputs are increased by 10% the production will be:

y ¼ 2þ 1:1þ 1:1� 0:121� 0:0121þ 0:605 ¼ 4:6719

which is an increase of (4.6719�4.3900)/4.3900 ¼ 0.064, corresponding to 6.4%.

When, as in this case, production increases by a percentage that is smaller than the

increase in all inputs (the factor t), this is referred to as decreasing returns to scale.
If, on the other hand, production increases more than the increase in inputs, this is
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referred to as increasing returns to scale. Finally, it is possible to talk about constant
returns to scale, if production increases with the same percentage as (all) inputs.

If the effect of a 10% change in the amount of input is measured compared to

another point of reference, this example will produce another production change

percentage. (The reader is encouraged to calculate the effect of a 10% increase

when the reference point is e.g. 5 units of x1 and 5 units of x2). A production

function where this is the case is called a production function with a variable degree

of homogeneity.

Homothetic production functions are, as mentioned, characterised by the optimal

combination of inputs being constant, regardless of the level of the production. The

reason is that the isoquants are parallel. Figure 4.3 shows a homothetic production

function. Here it is illustrated that the optimal production of 1 unit of y takes place
by the use of A units of x1 and B units of x2. As the production function is

homothetic, the mentioned input prices demand that x1 and x2 must always be

used in the ratio A/B.

Now presume that an input basket with A units of x1 and B units of x2 is created.
With such a “basket” of inputs it is in fact possible to produce one unit of y. This
basket is referred to as

N
.

The production of y can now be illustrated in a figure similar to the one used for

the analysis of one input. The input basket
N
, which has just been created, can in

fact be considered as being the input unit and, based on this, the production of y can
be illustrated as shown in Fig. 4.4.

The concept of returns to scale in a multi-input context can now be illustrated

graphically. As long as the application of input
N

is lower than P, returns to

scale are increasing. The returns to scale are constant exactly at the input

application P. And when the input application is greater than P, returns to scale

are decreasing.

x1
A

B

y=1

x2

a = -w1/w2

Fig. 4.3 Homothetic

production function
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4.4 Maximisation of Production Under Budget Constraint

The expansion path can also be derived as the solution to the following problem:

maxf f x1; x2ð Þg (4.9a)

x1; x2

under the constraint that:

C ¼ w1x1 þ w2x2 (4.9b)

The problem (4.9a)–(4.9b) consists of maximising the production Eq. 4.9a under

the constraint that it is not possible to buy variable input for more than MU C (The

budget constraint Eq. 4.9b. Here and in the following MU means Monetary Units).

The solution is found by using the Lagrange method (see Chiang (1984) p. 372).

The Lagrange function L is expressed as:

L ¼ f x1; x2ð Þ þ y C � w1x1 þ w2x2ð Þð Þ (4.10)

and maximised with regard to the two variables x1 and x2 as well as the Lagrange
multiplier y by taking the partial derivatives and setting them equal to zero. This

produces the following three conditions for the optimal solution (4.11a)–(4.11b):

w1 ¼ MPP1=y (4.11a)

w2 ¼ MPP2=y (4.11b)

y

P Ä

Fig. 4.4 Homothetic

production function

38 4 Production and Optimisation with Two or More Inputs



C ¼ w1x1 þ w2x2 (4.11c)

Dividing Eq. 4.11a by Eq. 4.11b produces the necessary condition for the

maximisation of Eq. 4.9a for the given C:

w1

w2

¼ MPP1

MPP2

(4.12)

which turns out to be identical to the condition (4.4). Hence, the desire to minimise

the costs for a given production or to maximise production for a given cost (budget)

requires the use of the same criterion.

4.5 Profit Maximisation

The points on the expansion path are interesting as the company on the expansion

path is in fact producing the given amount in the cheapest possible way (or

producing the highest amount within the framework of a given budget constraint).

The concept of “the expansion path” refers to the “path” along which to “expand”

the production.2

If there are no constraints attached to the purchase or use of the two inputs x1 and
x2, the rational producer will, in such a case, increase production by increasing the

application of input along the expansion path. Presume that the optimal application

of two inputs (corresponding to profit maximisation) corresponds to the point A in

Fig. 4.5.

Point A is, as the other points on the expansion path, characterised by:

w1

w2

¼ MPP1

MPP2

(4.13)

which can be also written as:

MPP2

w2

¼ MPP1

w1

(4.14)

2 Please note in this connection that the expansion path as presented here is a stationary image as,
in reality, the (relative) input prices are presumed to be constant, and the production function is

presumed to be unchanged. In the real world, an expansion of production will take time (it takes

e.g. time to build a new building), and when the expansion at a later point in time has actually been

carried out, then the prices w1 and w2 might have changed, and the production function f(x1, x2)
might also have changed due to the technological development.
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Furthermore, (as it will soon turn out) precisely at the profit maximising point A,

the two fractions in Eq. 4.14 equal 1 divided by the price of output y, i.e. 1/py.
Hence, what makes the profit maximising point A special is that:

MPP2

w2

¼ MPP1

w1

¼ 1

py
(4.15)

or that:

VMP2

w2

¼ VMP1

w1

¼ 1 (4.16)

in which VMPi (the value of the marginal product for input i) is MPPipy.
The criterion for profit maximisation with two inputs in Eq. 4.16 can be derived

by maximising the profit as the function of the two inputs:

maxff x1; x2ð Þpy � w1x1 � w2x2g
x1; x2

(4.17)

Differentiating the profit in Eq. 4.17 with regard to x1 and x2 and setting the

partial derivatives equal to zero results in the following conditions for profit
maximisation:

w1 ¼ MPP1py � VMP1ð Þ (4.18a)

w2 ¼ MPP2py � VMP2ð Þ (4.18b)

which in fact corresponds to the criteria in Eqs. 4.15 and 4.16. Hence, the previ-

ously derived result regarding one input is (naturally) also true for two inputs, i.e.

so that the value of the last unit (VMPi) corresponds to the price wi of this unit

B E

C

D

A
e

x2

b1

b2

x1

e

y3

y2

y1

y4Fig. 4.5 Isoquants and profit

maximisation
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(i ¼ 1, 2). This result can be easily generalised to cover more inputs so that the

criterion for profit maximisation with n variable input is:

VMP1

w1

¼ VMP2

w2

¼ ::: ¼ VMPn

wn
¼ 1 (4.19)

Generally, it is presumed that producers maximise profit and in so doing in fact

seek to satisfy the condition (4.19) when purchasing or adding variable input.

However, there might be situations in which producers cannot, or do not wish to

maximise profit. This might e.g. be the case under budget constraints where the

producer does not have sufficient funds to buy the amount of variable input needed

to satisfy the condition (4.19).

In the previous it has been shown that under budget constraints inputs should be

combined to satisfy Eq. 4.4. Please note that Eq. 4.4 can also be written as:

MPP1py
w1

¼ MPP2py
w2

(4.4a)

as multiplication with a constant py on both sides of the equal sign does not change

the ratio. Therefore, Eq. 4.4a can also be written as:

VMP1

w1

¼ VMP2

w2

(4.4b)

Comparing Eq. 4.4b with Eq. 4.16, which expresses the criterion for profit

maximisation, shows that the characteristic feature of the profit maximum, com-

pared to other points along the expansion line, is that precisely at the point of profit

maximum, the ratio of VMPi/wi equals 1. However, what is the ratio for the points

on the expansion path that are placed before the profit maximum?

The answer is that under the assumption of diminishing marginal productivity,

the ratio stated is greater than 1. The reason is that when MPPi is diminishing with

increasing x, then the numerator of the fraction in Eq. 4.4a is higher than for the

corresponding fractions in Eq. 4.19 when the input supply is smaller than that which

corresponds to the profit maximum. A more general criterion for the combination of

input is therefore:

VMP1

w1

¼ VMP2

w2

¼ � � � ¼ VMPn

wn
� 1 (4.20)

as the profit maximum thereby represents the special case in which the ratio stated

is equal to 1.

The optimisation criterion in Eq. 4.20 is one of the key results in the theory of

production economics and should therefore be pointed out here. Expressed in

words, the criterion could be described as follows:
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Key Result

" Multiple variable inputs must always be combined so that the ratio between the

value of the marginal product and the input price is the same for all inputs. If there

are no budget constraints or other restrictions, the supply of all inputs should be

increased to the point where the ratio between the value of the marginal product

and the input price equals 1.

4.6 The Pseudo Scale Line and Optimisation with Fixed Inputs

What happens if one of the inputs that used to be variable becomes fixed? Presume

e.g. that input x2, which used to be a variable input, becomes a fixed input because it

is – for some reason or another – only available in a given fixed amount b1, which is
less than the optimal amount when x2 was a variable input. How can the input

supply, and thereby the production, be adjusted optimally? Should the adjustment

take place along the “old” expansion path, i.e. should production be reduced to

point B in Fig. 4.5? (Point A in Fig. 4.5 illustrates the profit-maximising production

when both x1 and x2 are variable inputs).
No, point B is in fact not optimal. This is easy to see because under the

assumption of a diminishing marginal product everywhere, the following is true

for point B:

MPP1py
w1

¼ VMP1

w1

> 1 (4.21)

as MPP1 is larger at point B than at point A (also cf. (4.20))

The inequality in Eq. 4.21 entails that it pays to increase the supply of x1 at

point B. And there is nothing to prevent that from being done, as x1 is a variable
input. By how much should the application of x1 be increased? Well, according to

the general rules for the optimisation of one variable input, supply should be

increased as long as the value of the marginal product (VMP1) is greater than the

input price (w1) and stopped when the two expressions are the same, i.e. when:

VMP1

w1

¼ 1 (4.22)

which is true for a point to the right of B, e.g. at point C in Fig. 4.5.

Now presume instead that the producer had a fixed amount b2 of the input x2 at
his/her disposal. Applying the same arguments as just used shows that point D on

the original expansion path is not optimal. It would be optimal to increase the

supply of x1, for instance to point E where the value of the marginal product of input

x1 is equal to the input price w1 corresponding to Eq. 4.22.

If the same analysis is carried out for all possible fixed levels of the input x2,
Fig. 4.5 illustrates a curve of optimal points through the points C, E, and A (as A also
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satisfies the condition (4.22) cf. (4.20)). This curve is called the pseudo scale line.
Hence, the pseudo scale line describes the relationship between the various levels of
a fixed input x2 and the corresponding optimal application of a variable input x1.

This pseudo scale line will prove useful in Chap. 10 where we will be looking at

the optimisation of production under restrictions.

4.7 Substitution Between Inputs

The fact that two inputs can replace each other in connection with the production of

a given amount of output has been graphically illustrated by means of the so-called

isoquants in the above. The shape of such isoquants is an indication of how easy it is

to replace one input for another. In Fig. 4.6 below, three different degrees of input

substitution are illustrated.

Part A in Fig. 4.6 shows a production with full substitution between the two

inputs and a constant substitution rate (dx2/dx1 (�MRS12) – see Eq. 4.8)

corresponding to the slope of the straight line. Part B and C illustrate a decreasing
substitution rate as an increasing amount of one input replaces a continuously

diminishing amount of the other input. The substitution possibility is, however,

larger in B than in C. Finally, in part D there is no substitution possibility (more of

one input cannot replace part of the other input, if a product amount corresponding

to the isoquant should still be produced).

The mathematical expression for the substitution rate (MRS) can be used to

describe the degree of substitution. However, the so-called elasticity of substitution
is often used, as the elasticity of substitution is a unit-free concept which – as is

always the case with elasticities – expresses the relative change in one expression

divided by the relative change in another expression. The input elasticity of
substitution (esh) originally proposed by Earl O. Heady (1952) can be approximated

for small changes (Dx) by:

eSh ¼ Dx2
x2

Dx1
x1

�
(4.23)

but is more formally defined as:

eSh ¼ dx2
x2

.
dx1
x1

¼ dx2
dx1

x1
x2

(4.24)

i.e. as the slope of the isoquant multiplied by the ratio between x1 and x2 at the point
where the elasticity is measured.

As can be seen, the elasticity of substitution has the same sign as the slope of the

isoquant (i.e. negative at the relevant part of the isoquant). When talking about the

value of the elasticity of substitution it is, however, common to refer to its absolute

value. This is also the case in the following.
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The substitution elasticity will normally depend on the position on the isoquant.

The substitution elasticity of the linear isoquant (A) in Fig. 4.6 increases e.g. from

0 to infinity when the amount of x1 is increased from 0 to the maximum amount

(where the isoquant intersects the x1 axis).
Certain production functions have isoquants that are characterised by the substi-

tution elasticity being constant. This is e.g. true for the Cobb-Douglas production

function where the slope (dx2/dx1) of the isoquant (as shown in Sect. 4.3) is equal to
�b1x2/b2x1. Multiplying this by x1/x2 (see 4.24) results in the substitution elasticity
es ¼ �b1/b2 which is constant, i.e. independent of the x’s. The isoquant in part B in

Fig. 4.6 could be illustrating such an isoquant.

Generally speaking, the substitution elasticity is a (local) expression of how well

the observed inputs replace each other. A high substitution elasticity (jesj > 1) is an

indication that it will be possible to save a relatively large amount of one input by

adding a relatively small extra amount of the other input. A small substitution

elasticity (jesj < 1) is an indication that it will only be possible to save a relatively

small amount of one input even though a relatively large extra amount of the other

input is added.

The substitution elasticity is a well-defined concept when talking about produc-

tion functions with only two inputs. However, if there are three or more inputs the

definition is not entirely unambiguous, as the substitution elasticity (between two

inputs) will often depend on how much has been added of the other input before-

hand. This issue will not be discussed any further here. Please refer to more

advanced textbooks (see e.g. Chambers 1988, p. 27ff.).

References

Chambers, R. G. (1988). Applied production analysis: A dual approach. New York: Cambridge

University Press.

Chiang, A. C. (1984). Fundamental methods of mathematical economics (3rd ed.). Singapore:

McGraw-Hill Book Company.

Heady, E. O. (1952). Economics of Agricultural Production and Resource Use. New York:

Prentice-Hall.

x2

x1 x1 x1 x1

x2 x2 x2

A B C D

Fig. 4.6 Alternative shapes of isoquants

44 4 Production and Optimisation with Two or More Inputs



Costs 5

5.1 One Variable Input

Costs are the monetary value of input used over a period of time. A company’s costs

can be derived from the production function.

The point of reference is a production function with one variable input x1 and an
output y, as shown in the left hand side of Fig. 5.1. If you imagine this figure

removed from the paper, lifted up, and then put down again with the front side down

and turned 90� clockwise, then you’ll get the figure – the cost function – in the right
hand side of Fig. 5.1.

The curve in the right hand side of Fig. 5.1 is not, of course, an entirely correct

cost function. Costs are measured in monetary terms (MU), and the unit of mea-

surement on the vertical axis on the figure in the right hand side is not MU, but units

of input x1. However, if the units on the vertical axis are multiplied by the price w1

of x1, and if x1 is furthermore measured in units having the exact price of w1 ¼ 1,

then the figure to the right does in fact measure the variable costs (VC(y) ¼ w1x1(y))
as a function of the production y, as the applied input amount x1is rendered as a

function of the production y.
The (dual) relationship between the production function and the cost function

illustrated here is essential to understanding the modern approach to the estimation

of the production function and other production-related relationships. It is impor-

tant to understand that with knowledge of the production function it is possible to

determine the cost function (move from left to right in Fig. 5.1), whilst conversely,

it is also possible – with knowledge of the cost function – to determine the

production function (move from right to left in Fig. 5.1). This so-called theory

of duality shall not be discussed in further detail here, as this is the subject of

descriptive production economics (see e.g. Chambers (1988) for a discussion of

duality in production theory).

The production function

y ¼ f x1ð Þ

S. Rasmussen, Production Economics, Springer Texts in Business and Economics,

DOI 10.1007/978-3-642-30200-8_5, # Springer-Verlag Berlin Heidelberg 2013
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in Fig. 5.1 expresses the production as a function of the variable input x1. Normally,

multiple inputs are used which can be explicitly expressed as y ¼ f(x1jx2, . . . , xn),
where the inputs x2, . . . , xn are fixed inputs. Similarly, the following:

VCðyÞ ¼ w1x1ðyÞ (5.1)

solely measures the variable costs. The use of fixed inputs also includes costs,

i.e. fixed costs expressed as:

FC ¼ w2x2 þ . . .þ wnxn (5.2)

As the amounts x2, . . . xn are presumed to be fixed, and as the input prices w2, . . . ,
wn are presumed to be given (and, hence, fixed), FC is a constant – independent of the

production y.
Adding up the variable and fixed costs gives the total costs TC expressed as:

TCðyÞ ¼ VCðyÞ þ FC (5.3)

The mentioned cost concepts are illustrated graphically in Fig. 5.2.

The average costs can be directly defined as:

Average variable costs:

AVCðyÞ ¼ VCðyÞ=y (5.4)

Average fixed costs:

AFCðyÞ ¼ FC=y (5.5)

A

A

y

x1
y

x1

Cost functionProduction function

Fig. 5.1 Cost function as a mirror reflection (dual) of the production function
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Average total costs:

ATCðyÞ ¼ TCðyÞ=y (5.6)

Graphically, the average variable costs equal the slope of a straight line through

the zero point up to the VC curve (see Fig. 5.2). Hence, the lowest variable average

costs are found at point A where the slope of the straight line through the zero point

to the variable cost curve is lowest. The average fixed costs equal the slope of a

straight line through the zero point up to the FC curve. And, finally, the average

total costs equal the slope of a straight line through the zero point up to the TC
curve. Hence, the lowest average total costs are found at point B.

Themarginal costs (the costs of producing one additional unit of y) are defined as:

MCðyÞ ¼ @TC

@y
¼ @VC

@y
(5.7)

which corresponds graphically to the slope of the cost curve – either the total costs

curve or the variable costs curve (for a given value of y, the slope of the two curves
is the same (see Fig. 5.2)). Figure 5.2 furthermore shows that the marginal costs

equal the average variable costs precisely where these are at their lowest (point A),
and that the marginal costs equal the average total costs precisely where these are at

their lowest (point B).
The relationships mentioned here are graphically illustrated in Fig. 5.3 where the

curves for the average and marginal costs are shown in the lower part of the figure.

B

MU

FC

VC

TC

A

y

Fig. 5.2 Fixed, variable, and

total costs
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5.2 Multiple Variable Inputs

With multiple variable inputs, the cost function cannot be directly derived from the

production function as illustrated in Fig. 5.1. The costs (or rather, the variable costs)

will not only depend on the produced amount y but also on the combination of

variable inputs used in the production. This again will depend on the prices of the

variable inputs.

In Chap. 4, it was demonstrated that the optimal combination of inputs is found

on the expansion path. With two variable inputs, the problem was formulated as

(see Eqs. 4.1a and 4.1b):

MU

y

AVC

ATC

MC

B

MU

FC

VC

TC

A

y

Fig. 5.3 Average costs and

marginal costs
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minfw1x1 þ w2x2g
x1; x2

under the constraint that:

y ¼ f x1; x2ð Þ

and the criteria for the optimal combination of the two inputs (the expansion path)

were derived based on this.

The same method can be used to determine the cost function, as the cost of the

production of y with two (or more) inputs is defined as being the lowest possible

cost by which the amount y can be produced. With two variable inputs, this results

in the following formal definition of the cost function:

VC y;w1;w2ð Þ ¼ minfw1x1 þ w2x2jy ¼ f ðx1; x2jx3; . . . ; xnÞg (5.8)
x1; x2

The variable costs are now a function of both the produced amount y and of the

prices of the variable inputs. The reason that it is the input prices and not the amount

of input that are the arguments in the cost function is that it is the input prices that

determine the optimal combination of input (the expansion path).

The definition of the variable costs in Eq. 5.8 can be directly generalised to cover

more (k) variable inputs, so that the general definition of the variable cost function is:

VC y;w1; . . . ;wkð Þ ¼ minfw1x1 þ . . .þ wkxk jy ¼ f ðx1; . . . ; xk jxkþ1; . . . ; xnÞg
(5.9)

x1; . . . ; xk

Example 5.1

In Chap. 4 (Sect. 4.3), the equation for the expansion path for a Cobb-Douglas

production function was shown to be:

x2 ¼ w1

w2

b2
b1

x1: (5.10)

Introducing the expression for x2 in the Cobb-Douglas production function

and solving it for x1 yields:

x1 ¼ y

A

� �1 ðb1þb2Þ= b1w2

b2w1

� �b2 ðb1þb2Þ=

(5.11)
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and similarly for x2:

x2 ¼ y

A

� �1 ðb1þb2Þ= b2w1

b1w2

� �b1 ðb1þb2Þ=

(5.12)

If these expressions for x1 and x2 are inserted in the formula for the calcula-

tion of the variable costs VC ¼ w1x1 þ w2x2 the following cost function is

generated:

VCðy;w1;w2Þ¼ðyA�1wb1
1 w

b2
2 Þ1 ðb1þb2Þ= b1

b2

� �b2 ðb1þb2Þ=

þ b2
b1

� �b1 ðb1þb2Þ=
 !

(5.13)

which in fact expresses the variable costs as the function of the production y and the
input prices w1 and w2.

Previously, in Chap. 4 (Sect. 4.3), it was mentioned that when a production

function is homothetic, then the expansion path is a straight line through the zero

point, and the optimal ratio between the two inputs x1 and x2 is thus constant. This
means that when the input prices are given, the ratio between the two inputs (and

thereby the expansion path) will also be given, and the costs will subsequently just

be a function of how far along the expansion path one moves. This means that the

cost function in this case is separable as it can be expressed as:

VC y;w1;w2ð Þ ¼ VC gðyÞ; h w1;w2ð Þ½ � (5.14)

A Cobb-Douglas production function is homothetic, and therefore Eq. 5.13 has

the form Eq. 5.14, where:

gðyÞ ¼ y1 ðb1þb2Þ= (5.15)

and h(w1, w2) is the remainder of Eq. 5.13. The function h(w1, w2) determines on

which expansion path the production takes place, while g(y) determines how far

along the expansion path to move to produce y.
For given values of the input prices w1, . . . , wk, the variable costs are solely a

function of the production y, and the cost concepts that have been developed for a

variable input (Eqs. 5.3–5.7) can therefore be directly applied to productions using

multiple inputs. This is also true for the graphical illustrations in Fig. 5.3, which in

turn is true for productions that are based on multiple inputs.

50 5 Costs

http://dx.doi.org/10.1007/978-3-642-30200-8_4
http://dx.doi.org/10.1007/978-3-642-30200-8_4


Example 5.2

In Example 4.1, it was demonstrated that the lowest costs of production of y are
achieved by combining x2 and x1 in the ratio 24:21.6. The table below shows

seven combinations of x1 and x2 and the corresponding costs C with input prices

as outlined in Example 4.1. The production y is furthermore calculated by

introducing the outlined values of x1 and x2 in the production function from

Example 4.1.

Costs Production

Approximated

marginal costs

x1 x2 C y DC/Dy

2 2.20 42.42 10.96

5.22

4 4.40 84.84 19.08

5.80

6 6.61 127.27 26.40

6.21

8 8.81 169.69 33.23

6.53

10 11.01 212.11 39.72

6.80

12 13.21 254.53 45.96

7.03

14 15.41 296.95 51.99

There is no actual cost function, and the marginal costs cannot therefore be

directly calculated. The marginal costs are therefore approximated by the calcu-

lation of incremental costs, DC/Dy. The marginal costs that are estimated in this

way are an approximated expression for the marginal costs in the centre of the

interval, i.e. that the marginal cost of 5.22 is an expression of the marginal cost

when y is 15.05, and 5.80 is an expression of the marginal cost when y is 22.74,
etc.

Based on the cost function, it is possible to develop an alternative criterion for
profit maximisation (compare with Eqs. 4.17–4.19).

The alternative criterion for profit maximisation (with one output and any

number of inputs) is derived by maximising the following expression for profit:

max fypy � VC y;w1; . . . ;wkð Þ � FCÞg
y

(5.16)

The formulation in Eq. 5.16 presupposes that the producer is the price taker, i.e.

that the product price py is independent of the produced amount of y. (In Sect. 13.4,
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a similar condition is derived with the product price being dependent on the

production y).
Differentiating the profit in Eq. 5.16 with regard to y and setting the derivative

equal to zero yields:

py �MCðyÞ ¼ 0 (5.17)

or:

py ¼ MCðyÞ (5.18)

in whichMC(y) are the marginal costs defined in Eq. 5.7. The criterion (5.18) states

that optimal production takes place when the output price is equal to the marginal
costs.

The criterion is illustrated graphically in Fig. 5.4, in which y* represents the

optimal production. The shape of the marginal cost curve as a progressively rising

curve has previously been derived in Fig. 5.3.

The criterion for profit maximisation in Eq. 5.18 generates the same result as

with profit maximisation from the input side (see Eq. 4.19). Please note in this

connection that the use of the cost function in Eq. 5.16 entails that a decision should

have already been made as to how (with what combination of inputs) a given

amount of output should be produced. The maximisation therefore only refers to

the production y.

y*

py

MC

y

MUFig. 5.4 Determination of

optimal production
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The optimisation criterion in Eq. 5.18 is one of the key results in the theory of

production economics and should therefore be pointed out here. Expressed in

words, the criterion could be described as follows:

Key Result

" Producers who want to maximise profit should continue to expand production as

long as the marginal costs are lower than the product price, and halt further

expansion of production at the exact point where the marginal costs are equal

to the product price.

Please note that the maximised function:

p py;w1; . . . ;wk

� � ¼ max fypy � VC y;w1; . . . ;wkð Þ � FCÞg
y

(5.19)

is referred to as the profit function.

Example 5.3

Example 5.2 included an example of the calculation of the marginal costs. If the

product price e.g. is MU 5.80, then it is optimal to produce somewhere between

19 and 26 product units, as the marginal cost in this interval is precisely MU

5.80. If the product price increases to MU 7 per unit, it will be profitable to

expand production to between 46 and 52 units of y, when the marginal cost is

around MU 7.

5.3 Short and Long Run Costs

The cost curves previously shown in Fig. 5.3 are expressions of the costs in the

short run. Short run means that part of the input factors are fixed factors giving rise

to fixed costs (FC).
A company’s production plant can often be considered as a fixed input factor in

the short run. This would be e.g. buildings, machinery, and land. In the short run,

these fixed assets entail fixed costs, as illustrated by FC in Fig. 5.3. The production

with precisely such fixed assets is reflected by the variable cost curve VC in Fig. 5.3.

In the long run, the nature of the fixed input factors changes. In the long run, it is
possible to change the company’s fixed assets, thereby making the factors, which

were previously fixed factors, variable input factors. The building facility, which

was previously a fixed factor, can in the long run be adjusted with regard to size, as

it is possible to invest in a new and possibly better building, or to expand the

existing building. It is also possible to refrain from erecting a new building, when

the existing one is run down.

These conditions are outlined in Fig. 5.5, in which the curve TC1 and FC1

correspond to the original cost curves in the upper part of Fig. 5.3.
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In the long run, it is possible to erect larger buildings. Building 2 has higher fixed

costs (FC2) but can produce larger amounts of output for the given amount of

variable input, as illustrated by the cost curve TC2.

Another possibility is to erect an even larger building – building 3 – which has

even higher fixed costs (FC3) but which can produce even greater quantities of the

product for given amounts of variable input.

If you imagine that the size of buildings can be varied continuously, then

the long run costs can be illustrated in a figure, in which the cost curve contains

the possibility of varying the size of the building. Such a curve is illustrated in the

upper part of Fig. 5.6, where the points A, B, C, and D correspond to the points with

the same designation in Fig. 5.5.

In the lower part of Fig. 5.6, the corresponding curves have been plotted for the

long run average costs (LRAC) and the long run marginal costs (LRMC).

5.4 Calculation of Costs in Practice

As stated in the beginning of this chapter, costs are defined as the monetary value of

input use over a period of time. As any monetary value is the product of quantity

and price, the calculation of costs in practice involves two problems: the estimation

of input quantities and the estimation of input prices.

For variable inputs traded at market prices, the calculation of costs is straight

forward. If one decides to buy and use q units of an input which has a market price

of w, then the cost is qw. But what if the firm already has the input in stock, because

TC2

TC3

C

D

A

FC3

FC2

B

MU

FC1

VC

TC1

y

Fig. 5.5 Short run costs at different plant sizes
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it has been bought at an earlier date? In this case, alternative prices may be used to

estimate costs: (1) The original purchase price (the price at which the input was

originally bought), (2) the present (actual) purchase price, (3) the present (actual)

selling price, (4) other “prices” (for instance the internal value of the input).

From an accounting perspective, the obvious choice is to use the original

purchase price. But this again depends on the accounting principle used. If the

accounting principles are based on actual payments, then the original purchase

price is the relevant price to use. However, if the accounting principles are based on

the replacement principle, then the cost of using input in stock is the expenditure of
replacing the input taken out of the stock, and the present (actual) purchase price

would then be the relevant price to use.1

From an economic (versus accounting) perspective, costs should be estimated

according to the opportunity cost principle, which means that costs are the value of

missed opportunities. If themissed opportunity is to sell the input, then the actual selling

pricewould be the relevant price to usewhen estimating costs. If themissed opportunity

MU
LRMC

LRAC

A

C

D

B

MU

FC

LRTC

y

y

Fig. 5.6 Long run costs

1 The accounting principles are further discussed in the Appendix on Profit concepts.
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is to carry out production A, instead of production B, then the relevant cost of using the

input in production A is the profit forgone by not using the input in production B.

Costs estimated using the accounting principle are also called explicit costs.Explicit
costs are those costs that involve actual payment to other parties. Costs estimated

according to the opportunity cost principle are also called implicit costs. Implicit costs
represent the value of forgone opportunities, but do not involve actual cash payment.

In general, costs can be calculated according to the two principles: (1) The
opportunity cost principle (implicit costs) and (2) The accounting principle
(explicit costs) as follows:

1. The opportunity cost principle

Calculation of the costs according to the opportunity cost principle is based on

the alternative usage of the production factors. According to the opportunity cost

principle, the costs are equal to the earnings lost (lost opportunity) by not using
the production factors in question in the best alternative way. The opportunity

cost principle is the key basis for all economic planning (a cost concept pointing

to the future).

2. The accounting principle

Calculation of the costs according to the accounting principle is based on

re-acquisition of the production factors. Costs are calculated according to the

accounting principle as the amount that should be used to reacquire the produc-

tion factors used – or rather, the amount that should be used to restore the

original the situation. The accounting principle is used in connection with the

calculation of a financial profit and is, as such, directed towards the past (“history

writing”). The accounting principle and its alternative versions are further

discussed in the appendix Profit concepts.
The following overview provides some examples to illustrate these two principles:

Costs

Production

factor Opportunity cost principle Accounting principle

Machine Lost revenue by not letting the machine Repair/maintenance and

depreciation

Labour Lost revenue by not using the labour in an alternative

way, e.g. wage in connection with paid work

Food and beverages. But

what about

“depreciation”??

Buildings Could they be used for something else?? If not, then

the (implicit) cost is zero!

Repair/maintenance and

depreciation

Land Revenue in connection with leasing out the land.

Gross margin in connection with usage for other crops

Are there any costs??

Purchased

raw material

Purchase price Purchase price

Fertiliser in

stock

Lost revenue by not using the fertiliser for another

crop

Purchase price in

connection with refilling

the stock

Livestock Lost revenue by not selling the animal and depositing

the money in the bank at r � 100% in interest

Fodder, veterinary service,

“depreciation” (change of

value)
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These descriptions should be looked upon as examples only. Regarding the

opportunity costs, the best alternative could, after all, vary from one situation to

the other.

It should be noted that the fixed input factors, per definition, are input factors of

an amount which cannot (or will not as it is undesirable) be varied over the planning

period under consideration. Such (fixed) input factors which you cannot (or do not

want to) sell will, therefore, per definition have zero opportunity costs. This is why

the costs of such fixed factors are normally disregarded in connection with planning –

exactly because the alternative cost is zero!

It should, however, be noted that even in the case where the opportunity cost for

the company as a whole is zero, then there could, from an opportunity perspective,

be costs in connection with the usage of the production factor in question in a given

production. If the company, for instance, has several (alternative) production

branches, then the usage of a production factor in one of the production branches

will result in an (opportunity) cost if the same production factor could have been

used in another production branch. If e.g. land is a fixed factor for the company as a

whole (and the opportunity cost therefore is zero), then there are still costs in

connection with the usage of the land for growing barley, as it could alternatively

have been used for growing wheat. When calculating the costs of growing barley,

the costs of land should therefore be included as the amount (gross margin) which

could have been earned by growing wheat instead.
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Productivity, Efficiency and Technological
Changes 6

6.1 Introduction

The description of the production within an industry is often based on empirical

data. In Denmark, there is an abundance of data for the description of production

within farming. On the micro-economic level, this would be, for example, notes and

financial accounts from the individual farms, and on an industry level it would be

various kinds of statistical information describing production, factor consumption,

prices etc.

The development in production and input factor consumption over time is often of

considerable interest. The description of the increase or decrease in production can be

presented in various ways and can e.g. be related to the factor consumption. An

increase (or decrease) in production can be interesting in itself. However, changes in

the production will often be compared to changes in the factor consumption. If

production increases more than the factor consumption then this is referred to as

increased productivity. Other concepts are also used to discuss and evaluate changes in

production and factor consumption. Concepts such as productivity, efficiency, and

technological changes are often used. However, these concepts are often used without

the speaker being entirely aware of their precise meaning.

This chapter examines how these concepts are defined and how they are related.

It will also examine why it may be interesting to describe these measures and their

development over time.

6.2 Definitions

6.2.1 Productivity

Productivity can be briefly defined as production (output) divided by input. In a

production where only one input x is used to produce one output y, the description is
simple, as productivity will then be y/x, i.e.:

S. Rasmussen, Production Economics, Springer Texts in Business and Economics,

DOI 10.1007/978-3-642-30200-8_6, # Springer-Verlag Berlin Heidelberg 2013

59



Productivity ¼ P ¼ y=x (6.1)

If production and factor consumption in period t is yt and xt, respectively, and in
period t + 1 is yt+1 and xt+1, respectively, then the change in productivity from

period t to period t + 1 equals:

Change in productivity ¼ dP ¼
 

ytþ1

xtþ1
� yt

xt
yt
xt

!
¼
 

ytþ1

xtþ1

yt
xt

� 1

!
¼
 
ytþ1

yt

xt
xtþ1

� 1

!

(6.2)

The last parenthesis in Eq. 6.2 illustrates that productivity increases over time

can be achieved either by an increase in the production y, or by a decrease in the

consumption of input x.

Example 6.1

The consumption of input is 30 units in the year 2006 and 35 units in the year

2007. The production is 140 units in the year 2006 and 180 units in the year

2007. The increase in productivity from the year 2006–2007 therefore equals

(180/140)(30/35)�1 ¼ 0.102, or 10.2 %.

Productivity can be illustrated graphically as the slope of the line through point A
in Fig. 6.1, in which x1 is the amount of input and y1 is the amount of output.

If the production (of one output y) takes place by the use of multiple inputs

(x1. . .xn), multiple measurements of productivity can in principle be calculated.

Hence, for each of the n inputs it is possible to calculate a partial measurement of
productivity by simply introducing one of those n inputs in the above formulas. The

cereal crop yield per hectare and the number of pigs per sow are examples of such

partial measurement of productivity within farming.

x1

y1 A

Fig. 6.1 Illustration of

productivity
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It is also possible to aggregate all inputs using a formula to calculate an input

index. An input index is a number expressing the total consumption of input.

Awell-known index is the so-called Laspeyre’s quantity indexwhich is calculated as:

QI ¼ QItL ¼
Pn
k¼1

wtkxtþ1;k

Pn
k¼1

wtkxtk

in which xtk is the consumption of input k in the period t, wth is the input price of

input k in period t, and QItL is the Laspeyre’s quantity index of consumption of all

inputs in the period t + 1 when the consumption in the period t is set equal to 1.

There are many other methods for calculating quantity indices, but it will be too

comprehensive to discuss them here (If you want to know more about indices,

please refer to the vast literature on index theory, for instance Balk 1998).

If the input index is called QI, then the so-called Total Factor Productivity (TFP)
can be calculated as:

Total Factor Productivity ¼ TFP ¼ y=QI (6.3)

Finally, consider a production in which multiple (m) outputs are produced by

using multiple (n) inputs. In this situation, a total of n � m partial measurements of

productivity can be calculated. It would, however, be more interesting to estimate a

total measurement of productivity whereby all outputs are aggregated into an output

index QO, and all inputs into an input index QI, and where the Total Factor

Productivity (TFP) is then calculated as:

Total Factor Productivity ¼ TFP ¼ QO=QI (6.4)

In the following, x and y are mainly considered scalars (one input and one output),

but the results can be generalised to cover multiple inputs and multiple outputs, in

which case x and y are interpreted as aggregates (input and output indices).

6.2.2 Efficiency

Efficiency can be briefly defined as the achieved compared to what can be achieved.
If all the applied inputs could potentially produce 100 units, but only 80 units are

produced, then the efficiency is 0.8, or 80 %. Efficiency changes means that the

firm’s position relative to the current technological frontier changes.

A production function f(x) expresses per definition the maximum achievable

output y when applying a given amount of input x. If the actual achieved quantity of
output is called y0 and the actual used quantity of input is called x0, then efficiency

is expressed as:

Efficiency ¼ y0
f ðx0Þ (6.5)
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The efficiency can be illustrated graphically, as shown in Fig. 6.2. The points B
and C illustrate a production with an efficiency of 1 or 100 %. Points such as B and

C are also sometimes referred to as technical efficient (Coelli et al. 2005). Point A,
on the other hand, has an efficiency of less than 1 or less than 100 %. A production

as illustrated by point A is also referred to as technical inefficient.
The degree of efficiency can be measured in two ways: One way is to measure it

in the output dimension, i.e. express how much is produced compared to what could

be produced. At point A, this would correspond to a measure expressed as the

distance x1A divided by the distance x1B. Another way would be to measure the

efficiency in the input dimension, i.e. to express how much input could be saved

with the same produced output quantity. At point A, this would correspond to a

measure expressed as the distance y1C divided by the distance y1A.
Efficiency can also be illustrated when there are two (or more) inputs. In Fig. 6.3,

a production with two inputs has been illustrated. The points on the isoquant for the

product amount y0 are per definition an expression of a technically efficient produc-

tion (the efficiency is 100 %), as it is not possible to produce more than y0 with the

given input combination. Point A (where an amount of precisely y0 is produced) is,
however, an expression of a technically inefficient production, as the same amount

can be produced with less input. It is e.g. possible to produce the same amount in

point C. The distance AC, or the distance 0 C divided by the distance 0A, could be

used as the efficiency measurement. However, please note that there are other ways of

moving from point A to the isoquant than by going to point C. In practice, the

inefficient producer should of course move to the point on the isoquant that is

economically efficient, i.e. a point on the expansion path, which would depend on

the price ratio. The ratio 0C/0A is often used in the literature as an expression for

technical efficiency, as it is an entirely technical measure which can be established

without knowledge of the economic (price) ratio (see more in Coelli et al. 2005).

C
A

B f(x)

y1

y2

x2 x1

Fig. 6.2 Illustration of

efficiency
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6.2.3 Technological Changes

Technological (or technical) change is defined as a shift in the production function
over time, or alternatively, technological change means that the frontier of the

technology moves through time. If, at the point in time t, yt ¼ ft(xt) and at a later

point in time s, ys ¼ fs(xs) and if fs(x
0) ¼ t ft(x

0), then the technological change (for

the input amount x0) over the period from t to s is defined as (t-1) – or measured in

percentages, ðt� 1Þ � 100%:
Technological changes can be illustrated graphically, as shown in Fig. 6.4. As

can be seen, the production function for the period s produces a higher yield than the
production function for the previous period t for all input levels. For the input level
x0, this corresponds to a technological improvement of ðt� 1Þ, where t is y0s/y0t.

The technological changes can also be illustrated graphically when there are two

inputs. Described in a figure with isoquants (see e.g. Fig. 6.3), the technological

improvements could be illustrated by shifting the isoquant for a given output

amount y ¼ y0 in the direction towards the zero point.

6.2.4 The Scale of Production

The scale of production identifies the point on the production function where
production takes place. The essential issue in this context is whether production

takes place in an area of the production function where there are increasing returns
to scale, decreasing returns to scale or constant returns to scale (see also Fig. 4.4 in
Chap. 4). The concepts are illustrated in Fig. 6.5.

The returns to scale at point c are increasing, as the production elasticity at this

point is greater than one. As shown in Chap. 2 (Eq. 2.11), the production elasticity e
is calculated as:

y=y0

C

B 

x1

x2

A

Fig. 6.3 Illustration of

efficiency
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e ¼
@y
y

@x
x

¼ @y

@x

x

y
¼ MPP

APP
(6.6)

and the slope of the production function (MPP) around point c is greater than the

slope of the line from the zero point (APP). The returns to scale around point b are,
on the other hand, decreasing as the slope of the curve (MPP) here is less than the

y0s

y0t

x0

ft(x)

fs(x)

Fig. 6.4 Illustration of

technological changes

b

a

c

fs(x)

x0

y0

Fig. 6.5 Description of scale
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slope of the line from the zero point (APP). Finally, the returns to scale around point
a are constant and equal to 1 as MPP here is equal to APP.1

The highest productivity, and thereby the highest output per unit of input, is

achieved exactly at point a. Point a, or rather the input amount x0, is therefore

referred to as the technically optimal scale of production.

6.3 Changes in Productivity

With the already given definitions and descriptions, it is now possible to analyse

and describe the reasons for productivity changes. The objective is to be able to

explain and interpret changes in production of output and consumption of input, as

these are the “raw data” that will be available to the practitioner/analyst in connec-

tion with the analysis of production-related relationships within an industry.

It should be noted that productivity changes themselves are not what is of most

interest here. Rather it is the reasons for the productivity changes. Is an increasing

production per input unit due to improved efficiency? Is it due to technological
improvements? Or is it due to changes in the scale of production?

The point of reference is the original Fig. 6.1, and point A is assumed to describe

the production and input consumption (according to the statistics) in the period t. It
is, furthermore, assumed that the production in the subsequent period t + 1 is given

by point B in Fig. 6.6 below. As can be seen, productivity has increased from A to B

as the slope of a line through the zero point is larger for line 0B than line 0A.
However, the question is; what is the reason for this? The three different

possibilities are described in Figs. 6.7, 6.8, and 6.9.

In Fig. 6.7, the production function is assumed to be the same in period t and
t + 1. The increase in productivity is therefore primarily due to improved effi-

ciency. However, it should also be noted that the scale has changed so that both

conditions have an influence.

In Fig. 6.8, the production is assumed to be efficient for both period t and period
t + 1. The increase in productivity is primarily due to technical improvements.

However, also here the change in scale has an influence.

In Fig. 6.9, the production is efficient both in period t and period t + 1. And there

have been no technological changes. The change in productivity is due exclusively

to a change in scale and, in this example the producer uses a (technical) optimal

scale in period t + 1.

The described division of the changes in productivity into the three components,

as illustrated graphically in Figs. 6.7, 6.8, and 6.9, can be derived mathematically

(Coelli et al. 2005).

1 Please note that the concept of returns to scale is formally associated with a description of what

happens to the production when all inputs are increased by a certain factor. Hence, in the example

here, all inputs consist of only one input.
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The productivity in period t, when the productivity in period s is set equal to 1, is:

Pst ¼ yt xt=

ys xs=
(6.7)

The actual measured output yt can be expressed as:

yt ¼ ttftðxtÞ (6.8)

B

x1

y1
A

Fig. 6.6 Productivity

increase

x1

y1

f(x)B

A

Fig. 6.7 Efficiency increase
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in which tt is the expression for the efficiency in period t. The same is true for

period s. Inserting Eq. 6.8 in Eq. 6.7 yields:

Pst ¼ tt
ts
� ftðxtÞ xt=

fsðxsÞ=xs (6.9)

x1

y1 •

•
ft+1(x)B

A
ft(x)

Fig. 6.8 Technological

change

y1

f(x)B

x1

A

Fig. 6.9 Change of scale
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If the consumption of x is the same for both periods (xt ¼ xs ¼ x0), the produc-
tivity shown in Eq. 6.9 can be decomposed into the following two factors:

Pst ¼ tt
ts
� ftðx0Þ
fsðx0Þ (6.10)

in which the first fraction measures the change in efficiency, and the second fraction

measures the technical change at the input level x0.
Equation 6.10 can be expanded to accommodate different input consumption

(input scale) in period t and period s. If we look at only one input (or input vectors

where all inputs are changed by the same factor), the relation between input in the

two periods can be written as xt ¼ kxs, where k is a positive number. If the input

consumption in period t is higher (which is presupposed here), k is greater than 1. It

is furthermore presupposed that the production function ft(x) is homogeneous of

degree e at the input level xt. Hence, Eq. 6.9 can be written as:

Pst ¼ tt
ts
� ftðkxsÞ=kxs

fsðxsÞ=xs ¼ tt
ts
� ke�1 � ftðxsÞ

fsðxsÞ (6.11)

because functions that are homogeneous of degree e can be written as:

ftðkxsÞ
kxs

¼ ke � ftðxsÞ
kxs

In addition to the two components, changes in efficiency (the first component in

Eq. 6.11), and technological changes (the last component in the right hand side of

Eq. 6.11), there is one additional component k(e�1) expressing the scale effect, as

illustrated in Eq. 6.11. If the production function is homogeneous of degree one

(e ¼ 1) locally (i.e. for the observed input–output combinations), then the factor

k(e�1) is equal to 1, and the changes in scale do not affect productivity. Hence, in

such cases, the changes in productivity are solely due to changes in efficiency and

changes in technology.
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Input Demand Functions 7

7.1 Introduction

In this chapter, the theory introduced in Chap. 4 will be used to derive the

company’s demand for input used in production. Furthermore, how the theory

can be used to analyse what happens to the demand for input when the relative

prices vary will also be examined.

The representation in the first sections of this chapter presupposes a market with

perfect competition, i.e. the company is a price taker and does not have the

possibility of influencing the market price for the required inputs. At the end of

the chapter (Sect. 7.5), the input demand under the more general assumption that

the price for input can vary, depending on the amount demanded by the company, is

discussed.

What conditions determine how much of the variable input factor x1 a company

will buy and use?

First of all, the price (w1) must be a key factor. The higher the price, the smaller

the amount the company will be expected to buy. However, this will probably

depend on whether it is possible to use other (cheaper) inputs instead. Hence, the

price for other variable inputs (w2, . . ., wk) must also be a key factor. Furthermore,

there will be the price of output (py); the higher the price of output, the more input

the company will be expected to acquire. However, this will probably depend on

how the production function appears – i.e. how much more output would be

generated by adding more input. Therefore, the form of the production function

(parameters (a)) will have an influence. Finally, one could imagine that there are

budget constraints, so that it is not possible to buy the entire quantity that is

generally required. Hence, a budget constraint (C0) can be a key factor. In conclu-

sion, the point of reference regarding the input demand function is expected to be a

function with the following parameters:

x1 ¼ x1ðpy;w1; :::;wk; a;C0Þ (7.1)
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How such a functional relationship can be derived is demonstrated in the

following.

7.2 One Variable Input

The point of reference for the analysis is the criterion for profit maximisation

derived in Chap. 3 (see Eq. 3.2):

pyMPP1

w1

¼ VMP1

w1

¼ 1 (7.2)

where VMP1 (the value of the marginal product for input 1) is the marginal product

MPP1 multiplied by the product price py, and where w1 is the price of input 1. The

criterion means that the optimal level of input is where VMP1 ¼ w1 at the decreas-

ing part of the VMP-curve (see Sects. 3.1 and 3.2 in Chap. 3).

The criterion is illustrated graphically in Fig. 7.1, in which the initial price w1 is

presumed to be equal to w10, and the optimal application of input x1 therefore

equals x10.
If the price falls to w11, then the optimal application of (and thereby the demand

for) x1 increases to x11. If the price increases to w12, then the optimal application of

(and thereby the demand for) x1 falls to x12.
It follows that if the producer maximises profit, then the VMP curve represents

the relationship between the input price and the corresponding demand for the same

input. Hence, the VMP curve is identical to the demand curve for input.
As the marginal product MPP depends on x and the parameters (a) of the

production function, the criterion VMP1 ¼ w1 can be written pyMPP1(x1, a) ¼ w1.

Solving for x1 using the implicit function theorem provides the solution:

x1 ¼ x1ðpy;w1; aÞ (7.3)

Hence, the demand for a variable input x1 is a function of the price of output, the
price of the input in question, and the production function parameters. Please note

that Eq. 7.3 is based on the precondition that x1 is the only variable input (all other

inputs are presumed to be fixed) and that there are no budget constraints.

Example 7.1

We use a Cobb-Douglas production function:

Y ¼ f x1ð Þ ¼ Ax1
b (7.4)

The production function vector of parameter a is (A, b). The marginal product

is:
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MPP ¼ bAx1
ðb�1Þ (7.5)

and the criterion for profit maximisation is therefore:

pybAx1
b�1ð Þ ¼ w1 (7.6)

Isolating x1 generates:

x1 ¼ w
ð1 ðb�1Þ= Þ
1 pð�1 ðb�1ÞÞ=

y ðbAÞð�1 ðb�1ÞÞ=
(7.7)

If the parameter values (the vector a) e.g. are given the values A ¼ 1 and

b ¼ 0.5 and inserted in Eq. 7.7, the input demand function can be expressed as:

x1 ¼ 0:25p2y=w
2
1 (7.8)

which, for a given output price, is a decreasing function in w1 and, for a given

input price, is an increasing function in py. Hence, the demand for input

decreases (increases) with an increasing (decreasing) input price and increases

(decreases) with an increasing (decreasing) output price.

The demand for input can also be expressed by the demand elasticity. The
demand elasticity eD is defined as the relative (percentage) change in the demand

at a relative (percentage) change in the input price, or formally:

eD1 ¼ dx1 x1=

dw1 w1=
¼ dx1

dw1

w1

x1
¼ d ln x1

d lnw1

(7.9)
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The expression illustrated is referred to as the own-price elasticity which is the

(relative) change in the demanded quantity, when the price being changed is the

own-price of the input in question (as opposed to the cross-price elasticity where it
is the price of another input that is changed (discussed later)).

Example 7.2

Consider the previous example (see Eq. 7.7) and calculate the own-price elas-

ticity using the middle term formula in Eq. 7.9. Differentiate first Eq. 7.7 with

regard to w1, which produces:

dx1
dw1

¼ 1

b� 1

x1
w1

(7.10)

This is then multiplied by w1/x1, and the resulting own-price elasticity is

therefore equal to:

eD1 ¼ dx1
dw1

w1

x1
¼ 1

b� 1
(7.11)

The own-price elasticity could also be calculated using the last formula

element in Eq. 7.9. Taking the logarithm of x1 in Eq. 7.7 gives:

ln x1 ¼ 1

b� 1
lnw1 � 1

b� 1
ln py � 1

b� 1
ðln bþ lnAÞ (7.12)

and differentiating it with regard to ln w1 gives:

eD1 ¼ d ln x1
d lnw1

¼ 1

b� 1
(7.13)

which is the easiest way to calculate the own-price elasticity.

If the above parameter values (b ¼ 0.5) are used, you will find that the result

here is an own-price elasticity of �2. If the input price is increased by 10 %, the

demand will therefore fall by 20 %.

You can also calculate the output-price elasticity. The output-price elasticity
eDy is the relative change in the demand for an input when the price of output is

changed and calculated in accordance with formula Eq. 7.9 as:

eDy ¼ d ln x1
d ln py

(7.14)

Differentiating Eq. 7.12 gives:

eDy ¼ d ln x1
d ln py

¼ � 1

b� 1
(7.15)
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A parameter value of b ¼ 0.5 gives an output-price elasticity of 2. If the

output price increases by e.g. 10 %, then the demand for input is increased by

20 %.

7.3 Multiple Variable Inputs

When using multiple variable inputs the price changes for an input may not only

affect the demand for the input in question but also the demand for other inputs.

Using multiple variable inputs, it is possible to adjust the production so that input

that has experienced a price increase can be replaced by input that has now become

comparatively cheaper.

This substitution has previously been illustrated in Chap. 4 in which Fig. 4.2

shows that the optimal combination of two variable inputs depends on the relative

prices, and that an increased price for input x1 entails that a given amount of y can
be produced by using more of x2 and less of x1. Hence, price changes will entail that
the producer will adjust the production along the isoquant – i.e. cut down on the

input that is experiencing a price increase.

However, changes in the relative prices also have other implications. Moving

along the isoquant will also produce changes in the marginal products (MPP). This
means that the production y, which previously entailed a profit maximum, now has

to be adjusted as the profit maximum is to be found on another isoquant. However,

whether this is the case depends on whether the changes in the consumption of one

input affect the marginal product of other inputs.

In an effort to describe the interaction between various inputs, the two inputs

i and j can be described as being complementary, competitive, or independent. The
definition is as follows:

Complementary inputs: @MPPi

@xj
>0

Competitive inputs: @MPPi

@xj
<0

Independent inputs: @MPPi

@xj
¼ 0

An example of complementary inputs could be e.g. water and nitrogen fertiliser

for growing crops. Here the effect of the fertiliser is improved by the irrigation

of dry land. Another example is labour and management, whereby the productivity

of labour is improved by increasing the amount of management. An example of

competing inputs are inputs, which could very easily replace each other – for

example, nitrogen in the two nitrogen fertilisers, nitrate and ammonia. Another

example is fuel and electricity, both used for the heating of buildings. It is up to the

reader to find examples of independent inputs and also to find further examples of

complementary and competitive inputs.
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As illustrated in the top part of Fig. 7.2, the production function y ¼ f ðxijxjÞ has a
larger slope (MPPi) at an increased supply of xj. Hence, the two inputs “support”

each other – are complementary. In the lower part of the figure, an increased

amount of xj results in the production function y ¼ f ðxijxjÞ becoming flatter, i.e.

MPPi decreases as xj is increased – the two inputs are competitive.

For independent inputs, the production function y ¼ f ðxijxjÞ is independent of
the amount of xj.

Graphically, this relationship can be illustrated as shown in Fig. 7.2.

The derivation of the demand function for an input, when there are multiple

inputs, is – as before – based on the criterion for profit maximisation derived in

Chap. 4. The following criteria are true for profit maximisation (see Eqs. 4.18a and

4.18b) for two variable inputs:

w1 ¼ MPP1py � VMP1ð Þ (7.16a)

xj=1

xj=1

xj=2

xj=2

yy

xi xi

xi xi

Complementary inputs

Competitive inputs
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Fig. 7.2 Interaction between input i and input j
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w2 ¼ MPP2pyð� VMP2Þ (7.16b)

For each of the two inputs, the criterion can be illustrated graphically as

previously shown in Fig. 7.1. With two variable inputs, there will, however, be a

simultaneous adjustment of both inputs in connection with profit maximisation, so

that any substitution between the two inputs will have an influence. For “normal”

inputs, this means that the effect of a price change would be larger with multiple

variable inputs, as price increases will in fact give rise to a substitution of some of

the now more expensive inputs with other inputs. The effect of price changes is

illustrated in Fig. 7.3, which is similar to Fig. 7.1, with the sole difference that the

VMP curve for input x1 has a flatter shape (VMP1, 2) when there are two variable

inputs.

Hence, the VMP curve is identical to the demand curve for input. However, the
shape of the VMP curve depends on which of the other inputs are considered to be

variable. The better the possibility for substitution, the greater the effect of the price

change on a given input (the VMP curve in Fig. 7.3 turns counter clockwise).

Let’s have a look at the factors that this demand is dependent on. As can be seen

from the criterion (7.16a and 7.16b), both the output price py as well as the input

prices w1 and w2 are part of this relationship. Add to this the marginal products

MPP1 and MPP2 which both contain the production function parameters (a). The
demand function can therefore be expressed as in the following general function

expression:

x1 ¼ x1ðpy;w1;w2; aÞ (7.17)

Hence, the demand for a variable input x1 is a function of the price of output, the
price of the input in question, the price of other variable inputs (here w2), and the

production function parameters. Please note that Eq. 7.17 is based on the precondi-

tion that there are no budget constraints.

w11

w10

w12

w13

x13 x12 x10 x11

a3

a2

a0

a1

x1

w1

VMP1

VMP1,2

Fig. 7.3 Demand function

for input x1 with two variable

inputs
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Example 7.3

The use of a Cobb-Douglas production function is presupposed:

y ¼ Axa1x
b
2 (7.18)

The production function vector of parameters, a, is (A, a, and b). The criterion
for profit maximisation Eq. 7.16a is:

apyAx
a�1
1 xb2 ¼ w1 (7.19a)

and Eq. 7.16b:

bpyAx
a
1x

b�1
2 ¼ w2 (7.19b)

Isolating x1 in Eq. 7.19a generates:

x1 ¼ w
ð1 ða�1Þ= Þ
1 ðapyAÞ�1 ða�1Þ= x

ð�b ða�1ÞÞ=
2 (7.20)

from which it appears that the demand for input x1 depends on the input price w1,

the output price py, the amount of other variable inputs x2, and the production

function parameters a, b, and A.
The problem with the demand function for input x1 in Eq. 7.20 is that the

amount of the other variable inputs x2 also depends on the price w1 of input x1. It
is therefore not possible to differentiate Eq. 7.20 with regard to w1 before the

functional relationship between x2 and w1 is established.

The method for this is a simultaneous solution of Eqs. 7.19a and 7.19b.

Dividing Eq. 7.19a by Eq. 7.19b generates:

x2 ¼ w1

bx1
aw2

(7.21)

which is the expression of the expansion path. Inserting this expression of x2 in
Eq. 7.20 generates the following demand function for input x1:

x1 ¼ w1
ð1�bÞ ðaþb�1Þ= w

b ðaþb�1Þ=
2 ðpyAÞ�1 ðaþb�1Þ= aðb�1Þ ðaþb�1Þ= b�b ðaþb�1Þ= (7.22)

Taking the logarithm and differentiating with respect to the logarithm yields:

eD1 ¼ d ln x1
d lnw1

¼ ð1� bÞ
ðaþ b� 1Þ (7.23)

which is less than zero when a + b is less than 1, i.e. when the returns to scale are
decreasing (see Chap. 4). Hence, the own-price elasticity for input, when the
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production function is a Cobb-Douglas function, is negative when the returns to

scale is decreasing.

Comparing Eq. 7.23 with Eq. 7.13 shows that the demand elasticity for input

x1 depends on whether there are other variable inputs. As mentioned before, the

effect would normally be greater when there are other variable inputs.

This relationship can be illustrated graphically, as shown in Fig. 7.4. The initial

price ratio corresponds to the dotted line with the tangent point at point A. The price

w1 of input x1 increases and the new price ratio is given by the dotted line through

point B (or C). The profit maximum is, initially, presumed to be achieved through

the production of the product amount y1. Furthermore, it is presumed that it is

optimal to produce the amount y2 (point C) after the increase of the price of input x1.
As can be seen, the price increase first results in a substitution, so that less x1 and

more x2 is used for a given production (movement along the isoquant from A to B

(substitution effect)). However, point B is not optimal as the high price level implies

that it is now no longer profitable to produce the amount y1. The supply of both x1
and x2 is reduced, and the final production after the adaptation to the new price

ratios is y2 in point C (from B to C, income effect).
The total adjustment described here entails that the consumption of x1 decreases

and the consumption of x2 increases, which is an indication of substitution between
the two inputs.

Generally speaking, the demand for an input decreases when the price of the
input increases. However, it is not possible to draw any general conclusions about

the effect of the use of other variable inputs. In the graphical example in Fig. 7.4,

the consumption of input x2 increases when the price of input x1 increases. This

might not always be the case though. There can be situations where the increase in

the price of an input not only results in a decrease in the amount of the input in

question but also a decrease in the amount of other inputs.

Δx2

Δx1

C

B

A

x2

x1

y2
y1

Fig. 7.4 Substitution effect

and income effect
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The change in the demand for an input when the price of another input is

changed is referred to as the cross-price elasticity. The cross-price elasticity

between input i and input j is defined by:

eDij ¼
dxj
xj
dwi

wi

¼ dxj
dwi

wi

xj
¼ d ln xj

d lnwi
(7.24)

It is not possible to say something general about the sign of this expression.

7.3.1 Increasing Output Price

What happens with the consumption of input when the output price py increases?
When the output price increases the producer will – everything else being equal –

increase the production of y (see Fig. 5.4). And an increased production of

y presupposes the use of more input.

Normally, increasing production of y will be a result in increasing consumption

of all inputs. However, this might not always be the case. It is possible to have

production conditions where increasing production of y results in decreasing use of
one or more inputs.1 In Fig. 7.4, you will find an example where an increase in the

production from y2 (point C) to y1 (point A) entails that the consumption of x2 in
fact decreases (however, the consumption of x1 increases in return).

Inputs, the consumption of which increases when production increases, are called

normal inputs, whilst inputs, the consumption of which decreases when production

increases, are called inferior inputs. In Fig. 7.4, both x1 and x2 are normal inputs as

the consumption of both inputs increases when production increases (at given input

prices).

In practice, there are not that many examples of inferior inputs. However, the

production ofmilkwith the use of two kinds of fodder “roughage” and “concentrates”

is a relevant example within farming (the example is borrowed from Flaten, 2001).

The example is illustrated in Fig. 7.5 in which the isoquants are drawn as

piecewise linear curves. Within certain intervals, roughage and concentrates can

basically replace each other in the ratio 1:1 (sloping part of isoquants). However,

due to biological conditions, this substitution is only possible within limited

intervals. Eventually, the isoquants become vertical/horizontal. Milk production

can be increased from y1 to y6 by increasing the amount of fodder (roughage or

concentrates). The price ratio between roughage and concentrates is illustrated by

the dotted lines. At low milk production (y1–y3), the milk can be produced solely by

1 The consumption of one or more of the inputs must, however, necessarily increase for the

production of y to increase. In situations with two (variable) inputs, the consumption of one of

the inputs will thus always increase.

78 7 Input Demand Functions

http://dx.doi.org/10.1007/978-3-642-30200-8_5


the application of roughage (e.g. grass). However, if the amount of milk is to be

increased to more than y3, part of the fodder should be in the form of more easily

digestible and energy rich concentrates. To allow room for absorption of increasing

amounts of concentrate the supply of roughage must be reduced, and at the

production level y6 the use of roughage is reduced considerably while the applica-

tion of concentrates is increased heavily. Hence, after reaching a certain level, an

increasing production will result in a decreasing roughage application, and rough-

age will thus be an inferior input here.

7.4 Input Demand Under Budget Constraint

In the above, the company was assumed to have the possibility of buying inputs

without constraints. However, sometimes, there may be budget constraints and the

question is then how this affects the adaptation when the input price increases.

The conditions are outlined in Fig. 7.6. The budget constraint is C0 and the initial

budget line is given by the flattest of the two budget lines through C0/w2. The price

of input x1 is now assumed to increase so that the budget line is given by the steeper

line through C0/w2 after the price increase.

In the first situation (A), the demand for both input x1 and input x2 decreases. In
the second situation (B), the demand for input x1 decreases, while the demand for

input x2 increases. In the last situation (C), the demand for input x1 decreases, while
the demand for input x2 is unchanged.

Hence, it appears that while the price increase of one input will always result in a

lower demand for the input in question, the effect on other variable inputs will be

higher, lower, or unchanged demand.

y1

y2

y3

y4

y5 y6

Concentrates (x1)

Roughage (x2)Fig. 7.5 Isoquants for milk

production

7.4 Input Demand Under Budget Constraint 79



7.5 Demand When the Input Price Depends on the Demand

In this last section, the precondition for perfect competition on the factor market is

abandoned, as each individual company is now presupposed to be big enough for its

demand to affect the input price. (We still assume that the output market is

competitive, i.e. the producer is a price taker on the output market). In principle

there are two possibilities: The input price w increases with the increasing demand

for x, i.e. dw/dx > 0. The other possibility is that the input price decreases with the

increasing demand, i.e. dw/dx < 0. This last possibility is e.g. relevant when a

company, due to its size, is eligible for a quantity discount in connection with bulk

buying.

C0/w2

C0/w2

C0/w2

Δx2

Δx2

Δx2

Δx1 Δx1

Δx1

x2 x2

x2

x1 x1

A B

C

Fig. 7.6 Substitution under budget constraint
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The demand function can be derived based on the expansion path, which is

derived as before, using the Lagrange function L which is maximised with respect

to the two variable inputs x1 and x2 (compare with Eqs. 4.10, 4.11, and 4.12 in

Chap. 4):

L ¼ f x1; x2ð Þ þ yðC � w1 x1ð Þx1 þ w2 x2ð Þx2ð Þ (7.25)

We use the term w(x) to indicate that the input price w is a function of x. The
maximisation with regard to the two variables x1 and x2, as well as the Lagrange

multiplier y, is done by taking the partial derivatives and setting them equal to zero.

This produces the following three conditions for an optimal solution:

MFC1 ¼ w1ðx1Þ þ @w1

@x1
x1 ¼ MPP1=y (7.26a)

MFC2 ¼ w2ðx2Þ þ @w2

@x2
x2 ¼ MPP2=y (7.26b)

C ¼ ðw1 x1ð Þx1 þ w2 x2ð Þx2 (7.26c)

Dividing Eq. 7.26a by Eq. 7.26b produces the necessary condition for the

maximisation of Eq. 7.25 for the given C:

MFC1

MFC2

¼ MPP1

MPP2

(7.27)

where MFCi stands for the marginal factor costs for the input i calculated as the

intermediate expression after the first equal sign in Eqs. 7.26a and 7.26b. The

marginal factor costs are expressed as the incremental cost in connection with

the purchase of one more unit of input. The marginal factor costs can also be

expressed as:

MFCi ¼ wiðxiÞð1þ ExiÞ (7.28)

in which Exi is the price elasticity for input xi given by:

Exi �
@wi

wi

@xi
xi

¼ @wi

@xi

xi
wi

(7.29)

If the price elasticity for an input is zero, then the marginal factor cost in Eq. 7.28

is equal to the factor price wi, corresponding to perfect competition. If the price

elasticity is positive, the price the company owner pays increases with the increase

in purchased input. However, if the price elasticity is negative, it is possible to

achieve a lower price with an increasing amount.
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The criterion for profit maximisation is generalised similarly when the possibil-

ity of varying input prices is included. As in formula (4.19) in Chap. 4, the criterion

for profit maximisation under varying input prices is thus equal to:

VMP1

MFC1

¼ VMP2

MFC2

¼ ::: ¼ VMPn

MFCn
¼ 1 (7.30)

where MFCi is given in Eq. 7.28.

The case of non-competitive output markets are treated in Chap. 13.
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Land and Other Inputs 8

8.1 Introduction

In the previous chapters we derived conditions for a cost minimising combination

of inputs (Chap. 4), and studied how the demand for variable input depends – not

only on the input price, but also on the prices of other variable inputs that may be

used to substitute the input in question (Chap. 7). However, there are special cases/

inputs when it is not possible to apply the previous models directly, and the concept

of the pseudo scale line becomes useful.

8.2 Land as a Special Input

Land is a special input. It is special in the sense that it is always acquired and thus

available in a certain amount before the other inputs are added. For instance, when
the farmer grows wheat, he first buys (or rents) land and then he applies the seed,

fertilisers, etc. that are necessary inputs to grow wheat. A car manufacturer in

Sweden with its cold climate first builds and insulates the factory buildings, and
then he decides how much fuel to buy and use for heating the buildings during the

production process. Thus, even though the amount of land, seed and fertiliser may

all be variable inputs, the optimal combination of land and seed or land and fertiliser

is not determined according to the principle in Eq. 4.19 in Chap. 4. And the optimal

combination for the insulation of the car factory building and fuel for heating is not
determined according to the principle in Eq. 4.19 in Chap. 4.

To see why, consider land as an input in agricultural production. Besides land

(x2), consider for simplicity’s sake that there is only one other input (x1), which is an
aggregate of all the other inputs except land. In the long run, when the farmer has

the possibility of buying and selling land, both land (x2) and “other input” (x1) are
variable inputs.
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Assume that this long run adjustment has taken place in the “normal way” as

described in Chap. 4, i.e. along the expansion path ee in Fig. 8.1.1 The optimal

combination of “other input” and land expanding the production along the expan-

sion path ee is the point A in Fig. 8.1 where VMP1 ¼ w1 and VMP2 ¼ w2.

However, land cannot be combined with other inputs used for cultivating land

(i.e. fertilisers, pesticides, irrigation etc.) in the same way that variable input would

normally be combined. In the example presented here, these “other inputs” are

added to the land, and land must therefore – per definition – be present as a fixed

factor when it is decided how much of the “other input” should be added. Just think

of the application of fertiliser when the acreage is given at the time when the

decision is made as to how much fertiliser should be applied. With land as the fixed

input in relation to “other input”, the adjustment of the amount of land and “other

input” therefore takes place along the pseudo scale line, which is the dotted curve

AEF, as illustrated in Fig. 8.1, and not along the expansion path ee.
To supplement the graphical representation in Fig. 8.1 above, consider the

following mathematical representation. The production is described by a produc-

tion function:

y ¼ f x1; x2ð Þ (8.1)

where y is the yield (e.g. kg of cereal crops), x1 is “other input” (the aggregate of

fertilisers, pesticides, labour, machinery etc.), and x2 is hectares of land.
With regard to the subsequent analysis, there is no problem in combining all

other inputs but land into one aggregate input, x1, which we briefly describe as the

Eb1

b0

F

C

x2

e

e

x1

y3

y2

y1

A

D

Fig. 8.1 Isoquants and

pseudo-scale line

1 For the sake of simplicity, the expansion path ee is drawn as a straight line (compare Fig. 4.5 in

Chap. 4).
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“other input”. However, it may be helpful to stop and consider the underlying

assumptions when you make such a simplification.

Firstly, the “other input” (x1) is now an aggregate of a number of inputs. It
represents a sum of all these inputs such as fertilisers, pesticides, seeds, labour,

machinery capacity etc. But what are the units in which x1 is actually measured?

One can hardly just add up kg, litres, hours etc. and use this as the input measure.

No, this is not what one would normally do. Instead, x1 should be calculated as a
quantity index where the general form of the calculation of a quantity index Q is:

x1 ¼ Q ¼ Q x11; . . . ; x1p
� �

(8.2)

Here, the function Q is the function used for aggregating all the p inputs

(fertilisers, pesticides, etc.) that are parts of x1.
A brief introduction to quantity indices was included in Chap. 6 (see Sect. 6.2.1),

where the formula for the calculation of a so-called Laspeyres quantity index was

introduced. Further issues in connection with the calculating of the relevant quan-

tity indices are not discussed in further detail here. Please refer to the extensive

literature about index theory (see e.g. Balk 1998). It should however be mentioned

that the function Q can in fact be interpreted as a production function which, based

on all the p inputs x11, . . ., x1p, “produces” the (intermediate) “product” x1 which is

then used as an input in the final production function f in Eq. 8.1. Hence, it is

possible to say that the function Q “produces” the basket of input x1 which is then

used for the final production (of for instance cereal crops).

The precondition for the use of an input aggregate (an index) as an independent

input in a production function as f in Eq. 8.1 is that there is a certain degree of

independence between the inputs that are part of the index x1 and the other input,

land (x2). This independence requirement can be formally formulated as:

@ MPP1i

MPP1j

� �
@x2

¼ @MRSij
@x2

¼ 0 ðfor all i and jÞ (8.3)

The condition (8.3) implies that the actual production technology should be of

such a nature that the marginal rate of substitution (MRS) between any two inputs

of the inputs being aggregated is independent of the amount applied of the other

input (x2). In this present example, the condition thus entails that the marginal rate

of substitution (the slope of the isoquant) between e.g. fertilisers and pesticides

should be independent of the amount of land used as input (see also Chambers

(1988), Chap.5).

Compared to practice, this precondition is hardly unreasonable. However, the

reader is encouraged to assess whether there are observations which are not

consistent with this precondition in practice.
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8.3 Example of Homogeneous Production Function

After this small digression, we will now return to the mathematical representation

of the function f in Eq. 8.1. Assume that the production function f is homogeneous

of degree one. In this case, the production function f can be expressed as:

f tx1; tx2ð Þ ¼ tf x1; x2ð Þ (8.4)

cf. the discussion in Sect. 4.3. The assumption that f is homogeneous of degree one

can hardly be said to be entirely unreasonable in this example. In reality, this entails

that each time the acreage is expanded by one hectare, and the same amount of the

“other input” (x1) as for all previous hectares is added to this extra hectare, then the
total yield y is increased by an amount corresponding to the average yield of

the previous hectares. The assumption of homogeneity is not decisive but facilitates

an easier representation in the following.

As mentioned before, the optimal supply of x1 is determined after the amount of

x2 has been chosen. Therefore x2 is a fixed input (and thus a constant), and t can
therefore be set equal to 1/x2 in Eq. 8.4, which means that Eq. 8.4 can be expressed

as:

z ¼ y

x2
¼ f

� x1
x2

;
x2
x2

�
¼ f ðx; 1Þ ¼ f ðxÞ (8.5)

in which �x is the number of units x1 per hectare and y/x2 is the yield per hectare.

Hence, the final production model is given by:

z ¼ f ð�xÞ (8.6)

whereby z is the yield per hectare as a function of the number of units of x1 added
per hectare. This means that under the given assumptions (homogeneous production

function), the optimal amount of “other input”(x1) per hectare is independent of the
number of hectares.

The profit is given by:

p ¼ x2ðpyf ðxÞ � w1x� w21Þ (8.7)

If the profit is maximised with regard to �x by differentiating p and setting the

derivative equal to zero, the condition for profit maximisation is given as:

pyMPPx ¼ VMPx ¼ w1 (8.8)

which is in fact a point on the pseudo scale line for x2 equal to 1

The equation for the pseudo scale line is found when:
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pyMPP1 ¼ py
@f ðx1; x2Þ

@x1
¼ w1 (8.9)

Let us look at a specific example. As f is assumed to be homogeneous of degree

one, it can be written as:

f ðx1; x2Þ ¼ g
� x1
x2

�
x2 (8.10)

and if we further assume that g is a quadratic function given by:

g
� x1
x2

�
¼ aþ b

� x1
x2

�
� c

� x1
x2

�2

(8.11)

in which a, b, and c are parameters, then the right hand side in Eq. 8.11 can now be

inserted in Eq. 8.10, and if f is then differentiated with regard to x1, MPP1 is:

MPP1 ¼ @f

@x1
¼ b� 2cx1x

�1
2 (8.12)

If this expression is inserted in Eq. 8.9, the equation for the pseudo scale line is

given by:

x1
x2

¼ pyb� w1

py2c
(8.13)

which constitutes a straight line through the zero point, as illustrated in Fig. 8.2.

Fig. 8.2 Pseudo scale line
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The Company’s Supply Function 9

9.1 Introduction

As described in Chap. 4, the company maximises its profit (profit maximisation) if

production is expanded to the point where the marginal cost (i.e. the incremental

cost of producing one more unit) is precisely equal to the product price. The product

price is in fact equal to the additional revenue achieved from selling one more

product unit. The criterion for profit maximisation can therefore also be expressed

as the point where the marginal cost is equal to the marginal revenue.

The marginal revenue – i.e. the additional revenue achieved by selling one more

unit – is not necessarily equal to the product price. Under special market conditions,

the additional revenue achieved will be less than the price because the price

decreases with an increase in sales. If this is the case, the units already being sold

should be taken into consideration, as the price decrease in such a case will also

affect the revenue from the sale of these units. Such situations, when the product

price depends on the amount produced and sold, will be analysed in further detail in

Chap. 13.

The present chapter is still based on the assumption that the company can

produce and sell any (even large) amounts at the same price (perfect competition).

Based on this, it is shown in the following that the company’s supply of a product y
can be derived from the cost function.

9.2 The Supply Curve

The criterion for profit maximisation when addressing the optimisation problem

from the cost side has previously been derived in Chap. 5 (see Eq. 5.18). The

optimal production is found when the output price equals the marginal costs.

In Fig. 9.1, the lower part of the previously derived Fig. 5.3 is repeated. The

optimal production at different prices is illustrated by the points a, b, c, and d. As
can be seen, the marginal cost curve (MC) in fact shows the relationship between
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the price and the produced (and thereby the supplied) amount. However, the

relationship between the price and the produced (supplied) amount is precisely

the definition of a supply function. Hence, the marginal cost curve is equal to the
company’s supply function or supply curve.

The supply function is, however, only part of the marginal cost curve. Presume

e.g. that the output price is p1. A price of p1 does not provide for cost coverage as
point a is situated lower than the average cost. From an overall perspective, the

company will, in such cases, produce at a loss and a rational company owner would,

thus, not produce or supply anything at this low price p1.
If the price is between p2 and p3, sales revenue per unit of output which is higher

than the average variable costs (AVC) is achieved. The company owner will thus

achieve a positive gross margin, i.e. a positive revenue to the coverage of (a part of)

the fixed costs. And as the fixed costs per definition are fixed in the short run,

production will be better than no production in the short run. However, in the long

run, prices between p2 and p3 will not be sufficient for a profitable production. In the
long run, there should also be coverage for the fixed costs (which are also variable

in the long run), and at this price level the production will therefore gradually

subside with the depreciation of the fixed assets.

If the price is higher than p3, sales revenue per unit which is higher than the

average total costs (ATC) is achieved. Hence, the company owner will achieve

complete cost coverage and, in addition, an actual positive profit per unit,

corresponding to the distance between the MC curve and the ATC curve. Hence,

with this higher price it is particularly beneficial to produce, and production will

take place – even in the long run – as the fixed costs (which will also be variable in

the long run) are also covered.

Therefore, when defining the supply curve, it is important to differentiate

between the short and the long run. In the short run, the company’s supply
curve is the part of the marginal cost curve that is above the average variable
cost curve (to the right of point b). In the long run, the company’s supply curve is

d
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Fig. 9.1 The company’s supply function
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the part of the marginal cost curve that is above the average total cost curve (to the
right of point c).

As described here, it will never be profitable for a company that produces and

sells under perfect competition to produce when the price is lower than the average

variable costs (e.g. below p2 in Fig. 9.1). By comparing with the derivation in

Fig. 5.3 and the related production function on which it is based (Fig. 5.1), it can be

seen that it will never be profitable to produce to the left of point A on the left hand

side of Fig. 5.1. As long as productivity is increasing, production should therefore
be increased, and the optimal production is found at the part of the production
function where productivity is diminishing.

9.3 Adjustment in the Long Run

Each individual company’s adjustment as described in Fig. 9.1 has some interesting

macroeconomic implications.

An industry such as farming has traditionally been described as an industry

under perfect competition.1 Let us presume that all companies within the industry

have an identical cost function, corresponding to the one shown in Fig. 9.1. Let us,

furthermore, presume that the price initially is lower than p3. In the long run, the

industry’s total supply will decrease with the wearing out of the companies’ fixed

assets under such conditions. As it is, there is no incentive for making new

investments. The implication of the decreasing supply will be – everything else

being equal – that the price will increase. When the price has increased to p3
(or higher) there will no longer be any incentive to reduce production.

Let us instead presume that the price initially is higher than p3. Each individual

company achieves a profit, new companies are attracted and existing companies

invest and expand production. The total effect is that the total supply of the industry

increases, which – everything else being equal – results in a price decrease. When

the price decreases to p3 (or below) there will no longer be any incentive to expand
production or to set up a company in the industry, as there is no longer any prospect

of a positive profit.

Key Result

" The implication of the above is that, within any industry under perfect competition,

there is a tendency for the price to move towards an equilibrium price

corresponding to p3 where complete cost coverage is achieved, and where pro-

ductivity is the highest, and the returns to scale equal 1. Assumptions about

companies in industries with perfect competition producing with constant returns

to scale can, thus, be substantiated by the adaptation mechanism described here.

1 There are segments of the industry in which this is no longer the case.
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9.4 Derivation of the Supply Function. An Example

In Chap. 5 we derived the variable cost function (5.13) for a two input, Cobb-

Douglas production function originally used in example 4.1 in Chap. 4. To show

an example of the relationship between the production function, the cost function

and the supply function, let us use the same production function as in example 4.1

and the following parameter values: A ¼ 6; b1 ¼ 0.3; b2 ¼ 0.5. This means that

the production function has the specific form, y ¼ 6x0:31 x0:52 . Let us further assume

that the input prices are w1 ¼ 1 and w2 ¼ 2. Then by inserting these parameter

values in the variable cost function (5.13), we get the following variable cost

function:

VCðyÞ ¼ 0:31825y1:25

By adding the fixed cost (FC) we get the total cost (TC). Taking the derivative

of TC with respect to y we get marginal cost (MC). Dividing the variable cost

by y we get average variable cost (AVC), and dividing total cost (TC) by y we

get average total cost (ATC). The formulas for each of these terms are given

below:

TCðyÞ ¼ VCðyÞ þ FC ¼ 0:31825y1:25 þ FC

MCðyÞ ¼ @TC

@y
¼ 0:397813y0:25

AVCðyÞ ¼ VCðyÞ
y

¼ 0:31825y0:25

ATCðyÞ ¼ TCðyÞ
y

¼ 0:31825y0:25 þ FC

y

If we assume that the fixed cost is 2, then we get the following graphical

illustration of the marginal and average cost curves (see Fig. 9.2) for this

example.

The supply function (the MC curve) cuts the long cost curve (ATC) around MU

0.75, which means that the long run supply function is the MC curve above the

value MU 0.75. Thus, in the long run the producer would not continue production

unless the product price is more the MU 0.75. But what about the short run? In

the special case illustrated here (Cobb-Douglas production function with the
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parameters and input prices as stated above), it always pays to produce in the short

run, because the average variable cost curve (AVC) is always below the MC curve.

Therefore, the short run supply function is the whole MC curve.2

Fig. 9.2 Cost curves

2 As a good exercise, I recommend that the student analyses what would happen to the supply

function if the input prices increase (from the present level of MU 1 and MU 2, respectively).

Would the supply function move up or down, or would the slope change?
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