MBA in Food \& Agribusiness Financial Management

Long Term Liabilities

Financial statements real example

- liabilities

vodafone
Non-current liabilities
Long term borrowings
22,662
17,798

24. Borrowings continued

The fair value and carrying value of the Group's long term borrowings is as follows:

	Fair value	
		2007
	2008 fm	Em
Financial liabilities measured at amortised cost:		
Bank loans	2,669	2,086
Redeemable preference shares	985	818
Finance lease obligations	60	59
Bonds:		
Euro FRN due July 2008	-	849
Euro FRN due February 2009	-	102
Euro FRN due February 2010	237	204
US dollar FRN due June 2011	227	224
Euro FRN due January 2012	775	683
Euro FRN due January 2012	232	205
US dollar FRN due February 2012	236	254
Euro FRN due September 2013	644	582
Euro FRN due June 2014	930	-
5.125\% euro 500m bond due April 2015	397	350
5% euro 750 m bond due June 2018	578	515
Other liabilities ${ }^{(1)}$	2,984	156

Agenda

- Management issues related to Issuing long term debt
- The nature of bonds
- Accounting for the issuance of bonds
- Amortization of Bond discount and Bond Premium
- Retirement of bonds
- Other Bonds payable issues

Deciding to issue Long term debt

How do companies raise long-term funds?

Issuance of
capital stock

Issuance of long-term debt

Types of Long-Term Debt

Bonds payable
Notes payable
Mortgages payable
Long-term leases
Pensions
Other postretirement benefits
Deferred income taxes

Bonds (IFRS9)

A security, usually long term, representing money that a corporation borrows from the investing public

\checkmark Principal must be repaid at a specified time
\checkmark Periodic payments of interest at a specified rate at specified times

Bonds

A security, usually long term, representing money that a corporation borrows from the investing public

Example \$100.000, 10\% 3 year bond

Pay Principal = \$ 100.000
Pay 10% * $\$ 100.000$ Pay 10% * $\$ 100.000$ Pay $10 \% * \$ 100.000$
$=\$ 10.000$ interest $=\$ 10.000$ interest $=\$ 10.000$ interest

Receive \$ 100.000

What Is a Bond Issue?

A bond issue is the total value of bonds issued at one time

For example, a $\$ 1,000,000$ bond issue could consist of one thousand, $\$ 1,000$ bonds

Prices of Bonds

Stated in terms of a percentage of face value

- Bonds selling at 100 Sell at face or par value
- Bonds selling above 100 Sell at a premium
- Bonds selling below 100 Sell at a discount

Selling Price of Bond Illustrated

A bond issue is quoted at 103 1/2

What is the selling price of a $\$ 1,000$ bond?
A bond issue quoted at $1031 / 2$ means that the bond sells at 103.5 percent of its face value

Bond Selling Price $=$ Face Value \times Quoted Percentage of Face Value

$$
\begin{aligned}
& =\$ 1,000 \times 1.035 \\
& =\$ 1,035
\end{aligned}
$$

This bond sells at a premium and would cost the buyer $\$ 1,035$

Interest Rates

Face Interest Rate
Fixed rate of interest paid to bondholders based on the face value of the bonds = Interest rate the company quotes when they sell the bond

Market Interest Rate

Rate of interest paid in the market on bonds of similar risk, also called the effective interest rate

Discounts and Premiums

Discount

- Equals the excess of the face value over the issue price.
- The issue price will be less than the face value when the market interest rate is higher than the face interest rate.

Premium

- Equals the excess of the issue price over the face value.
- The issue price will be more than the face value when the market interest rate is lower than the face interest rate.

Bonds Issued at Face Value

Katakis Corporation issues $\$ 100,000$ of 9 percent. 5 -year bonds on January 1, 20x4 and sells them on the same date for their face value. The bond indenture states that interest is to be paid on January 1 and July 1 of each year.

Jan. 1 Cash
100,000
Bonds Payable
100,000
Sold \$100,000 of 9\%, 5-year bonds at face value

Interest $=$ Principal \times Rate \times Time
$=\$ 100,000 \times .09 \times 6 / 12$ year
$=\$ 4,500$

Bonds Issued at Face Value

$$
\begin{aligned}
\text { Interest } & =\text { Principal } \times \text { Rate } \times \text { Time } \\
& =\$ 100,000 \times .09 \times 6 / 12 \text { year } \\
& =\$ 4,500
\end{aligned}
$$

Record a semiannual interest payment:

Bond Interest Expense	4,500	4,500
Cash (Interest Payable)		
Paid (or accrued) semiannual		
interest to bondholders of 9\%, 5-		
year bonds		

Bonds Issued at a Discount

Katakis Corporation issues $\$ 100,000$ of 9 percent, 5-year bonds at 96.149 on January 1, 20x4, when the market rate is $\mathbf{1 0}$ percent.

Record the issuance of the bonds at a discount:

$$
20 \mathrm{x} 4
$$

Jan. 1
Cash
96,149
Unamortized Bond Discount
3,851
Bonds Payable
Sold \$100,000 of 9\%, 5-year bonds at 96.149

Bonds Issued at a Discount

Face amount of bonds

$\$ 100,000$
96,149
$\$ \quad 3,851$

Carrying Value of Bonds $=$ Face Value - Unamortized Bond Discount

Bonds Issued at a Premium

Katakis Corporation issues $\$ 100,000$ of 9 percent, 5-year bonds for $\$ 104,100$ on January 1, 20x4, when the market rate is $\mathbf{8}$ percent.
Record the issuance of the bonds at a premium:
20x4
Jan. 1
Cash
104,100
Unamortized Bond Premium
Bonds Payable
Sold \$100,000 of 9\%, 5-year bonds at 104.1
(\$100,000 x 1.041)

Bonds Issued at a Premium

Purchase price of bonds	$\$ 104,100$
Less face amount of bonds	$\mathbf{1 0 0 , 0 0 0}$
Unamortized bond premium	$\$ \mathbf{4 , 1 0 0}$

Carrying Value of Bonds $=$ Face Value + Unamortized Bond Premium

Bond Discounts or Premiums

Amount by which the total interest cost is higher or lower than the total interest payments

Amortized over the life of the bonds
Use straight-line or effective interest method

Calculating Total Interest Cost -

discount

Cash to be paid to bondholders
Face value at maturity

$\$ 100,000$
45,000
$\$ 145,000$
96,149
$\$ 48,851$

Katakis Corporation issues $\$ 100,000$ of $9 \%, 5-y e a r$ bonds at 96.149 when the market rate is $\mathbf{1 0}$ percent. The bonds sold for $\$ 96,149$, resulting in an unamortized bond discount of $\$ 3,851$.

Calculating Total Interest Cost discount

Or, alternately
Interest payments (\$100,000 x . 09×5 years)
\$45,000
Bond discount
\(\begin{array}{r}3,851
\hline \$ 48,851\end{array}\)

The bond discount increases the interest paid on the bonds from the stated interest rate to the effective interest rate.

Accounting for Total Interest Cost discount

Effective Interest Rate $=$ Stated Rate + Discount

Amortization of the bond discount
\checkmark Must be allocated over the remaining life of the bonds as an increase in the interest expense each period
\checkmark Interest expense for each period will exceed the actual payment of interest by the amount of the bond discount amortized over the period

Effective Interest Method

Applies a constant interest rate to the carrying value of bonds at the beginning of the interest period

\checkmark Rate equals the market, or effective, rate at the time the bonds were issued.
\checkmark Amount amortized is the difference between interest computed and actual interest paid to bondholders

Interest and Amortization of a

Bond Discount: Effective Interest

Method

Semiannual Interest Period	A	B Semiannual Interest Expense at 10\% to Be Recorded* $(5 \% \times A)$	C	D	E Unamortized Bond Discount at End of Period $(E-D)$	F
	Carrying Value at Beginning of Period		Semiannual	Amortization of Bond Discount ($\mathrm{B}-\mathrm{C}$)		
			Interest			Carrying
			Payment			Value
			to Bondholders			at End of
			(41/2\% \times			Period
			\$100,000)			($\mathrm{A}+\mathrm{D}$)
0					\$3,851	\$ 96,14
1	\$96,149	\$4,807	\$4,500	\$307	3,544	96,456
2	96,456	4,823	4,500	323	3,221	96,779
3	96,779	4,839	4,500	339	2,882	97,118
4	97,118	4,856	4,500	356	2,526	97,474
5	97,474	4,874	4,500	374	2,152	97,848
6	97,848	4,892	4,500	392	1,760	98,240
7	98,240	4,912	4,500	412	1,348	98,652
8	98,652	4,933	4,500	433	915	99,085
9	99,085	4,954	4,500	454	461	99,539
10	99,539	4,961 \dagger	4,500	461	-	100,00

*Rounded to the nearest dollar. \quad LLast period's interest expense equals $\$ 4,961$ ($\$ 4,500+\$ 461$); it does not equal $\$ 4,977$ ($\$ 99,539 \times .05$) because of the cumulative effect of rounding.

Bond Amortization - effective Interest Method

> | Column B - Use market interest rate |
| :--- |
| $(\$ 96,149 \times .10 \times 6 / 12=\$ 4,807)$ |

Column C - Use face interest rate on bond ($\$ 100,00 \times .09 \times 6 / 12=\$ 4,500$)

B Interest Expense at 10\% to be Recorded (5\% x A)

Paid to
Bondholders
(4.5\% x

Amortization of Bond Discount (B-C)

E
Unamortized Bond Discount at End of Period (E - D) \$3,851

Carrying Value at End of Period (A + D)

Bond Amortization - effective Interest Method

Carrying value at beg. of period + Amort. during the period $(\$ 96,149+\$ 307=\$ 96,456)$

	A	B	C	D	E	F
Semiannual Interest Period	Carrying Value at Beginning of Period	Semiannual Interest Expense at 10% to be Recorded (5\% x A)	Semiannual Interest to be Paid to Bondholders (4.5\% x $\$ 100,000$)	Amortization of Bond Discount (B-C)	Unamortized Bond Discount at End of Period (E - D)	Carrying Value at End of Period (A + D)
0					\$3,851	\$96,149
1	\$96,149	\$4,807	\$4,500	\$307	3,544	96,456
			Bond discount at beg. of period Current pd amort. (\$3,851-\$307 = \$3,544)			

Bond Amortization - effective Interest Method

Record first semiannual interest payment and amortization of bond discount:

20x4
July 1 Bond Interest Expense
4,807
Unamortized Bond Discount
307
Cash (or Interest Payable)
Paid (or accrued) semiannual interest to bondholders and amortized discount on 9%, 5 -year bonds

Carrying Value and Interest Expense - Bonds Issued at a Discount

Total Interest Cost - premium

Cash to be paid to bondholders
Face value at maturity

$\$ 100,000$
45,000
$\$ 145,000$
104,100
$\$ 40,900$

Katakis Corporation issues $\$ 100,000$ of 9 percent, 5 -year bonds at 104.1 on January 1, 20x4, when the market rate is $\mathbf{8}$ percent. The bonds sold for $\$ 104,100$ resulting in an unamortized bond premium of $\$ 4,100$.

Total Interest Cost- Premium

Or, alternately

Interest payments ($\$ 100,000 \times .09 \times 5$ years)

$\$ 45,000$
4,100
$\$ 40,900$

The bond premium decreases the interest paid on the bonds from the stated interest rate to the effective interest rate.

Interest and Amortization of a Bond Premium: Effective Interest Method

TABLE 4. Interest and Amortization of a Bond Premium: Effective Interest Method

Semiannual Interest Period	A Carrying Value at Beginning of Period	B Semiannual Interest Expense at 8% to Be Recorded* $(4 \% \times A)$		D Amortization of Bond Premium ($\mathrm{C}-\mathrm{B}$)	E Unamortized Bond Premium at End of Period ($\mathrm{E}-\mathrm{D}$)	F Carrying Value at End of Period (A - D)
0					\$4,100	\$104,100
1	\$104,100	\$4,164	\$4,500	\$336	3,764	103,764
2	103,764	4,151	4,500	349	3,415	103,415
3	103,415	4,137	4,500	363	3,052	103,052
4	103,052	4,122	4,500	378	2,674	102,674
5	102,674	4,107	4,500	393	2,281	102,281
6	102,281	4,091	4,500	409	1,872	101,872
7	101,872	4,075	4,500	425	1,447	101,447
8	101,447	4,058	4,500	442	1,005	101,005
9	101,005	4,040	4,500	460	545	100,545
10	100,545	3,955 \dagger	4,500	545	-	100,000

[^0]\dagger Last period's interest expense equals \$3,955 (\$4,500 - \$545); it does not equal \$4,022 $(\$ 100,545 \times .04)$ because of the cumulative effect of rounding.

Bond Amortization - Effective Interest Method

Record first semiannual interest payment and amortization of bond premium:

```
20x4
```

$$
\text { July } 1 \text { Bond Interest Expense 4,164 }
$$

Unamortized Bond Premium 336
Cash (or Interest Payable)
4,500
Paid (or accrued) semiannual interest
to bondholders and amortized
premium on $9 \%, 5$-year bonds

Carrying Value and Interest Expense - Bonds Issued at a Premium

Straight-Line Method

Equal amortization of the bond discount for each interest period

```
Face value = $100,000
Face interest rate = 9%
Life of bond = 5 years
```

Step 1: Determine the total number of interest payments
Total Interest Payments $=$ Interest Payments per Year \times Life of Bonds

$$
=2 \times 5=10 \text { periods }
$$

Straight-Line Method

Equal amortization of the bond discount for each interest period

Step 2: Determine the amount of bond discount to amortize each interest period
Amortization of Bond Discount per Period $=\frac{\text { Bond Discount }}{\text { Total Interest Payments }}$

$$
=\frac{\$ 3,851}{10 \text { periods }}=\$ 385 \text { (rounded) }
$$

Straight-Line Method

Step 3: Determine the cash interest payment amount
Cash Interest Payment $=$ Face Value \times Face Interest Rate \times Time

$$
=\$ 100,000 \times .09 \times \frac{6}{12}=\$ 4,500
$$

Step 4: Determine the total interest expense per interest period
Interest Expense per Period $=$ Interest Payment + Amortization of Bond Discount

$$
=\$ 4,500+\$ 385=\$ 4,885
$$

Straight-Line Method

Record first semiannual interest payment and amortization of bond discount 20x4
July 1 Bond Interest Expense 4,885
Unamortized Bond Discount
385
Cash (or Interest Payable)
Paid (or accrued) semiannual interest to bondholders and amortized discount on $9 \%, 5$-year bonds

Calling Bonds

The issuer has the right to buy back and retire bonds at a specified call price

Why call bonds before their maturity date?

\checkmark If bond interest rates drop, the company can call the bonds and reissue debt at a lower interest rate.
\checkmark Company has earned enough to pay off the debt.
\checkmark The reason for having the debt no longer exists.
\checkmark The company wants to restructure its debt to equity ratio.

Callable Bonds Illustrated

> Katakis Corporation can call or retire at 105 the $\$ 100,000$ of bonds it issued at a premium (104.1). It decides to do so on July $1,20 \times 7$. The entry for the required interest payment and amortization of the premium has already been made.

Record the retirement of the bonds:

$$
\begin{array}{llr}
20 \times 7 & & 100,000 \\
\text { July } 1 & \text { Bonds Payable } & 1,447 \\
& \text { Unamortized Bond Premium } & 3,553 \\
& \text { Loss on Retirement of Bonds } & \\
& \text { Cash } &
\end{array}
$$

$$
105,000
$$

The loss occurs because the call price of the bonds is greater than the carrying value

Year-End Accrual of Bond Interest

Expense

TABLE 4. Interest and Amortization of a Bond Premium: Effective Interest Method

Semiannual Interest Period	A Carrying Value at Beginning of Period	B Semiannual Interest Expense at 8% to Be Recorded* $(4 \% \times A)$	C Semiannual Interest Payment to Bondholders $\left(4^{1} / 2 \% \times\right.$ $\$ 100,000)$	Amortization of Bond Premium ($\mathrm{C}-\mathrm{B}$)	E Unamortized Bond Premium at End of Period (E - D)	$\begin{gathered} \text { F } \\ \text { Carrying } \\ \text { Value } \\ \text { at End } \\ \text { of Period } \\ (A-D) \end{gathered}$
0					\$4,100	\$104,100
1	\$104,100	\$4,164	\$4,500	\$336	3,764	103,764
2	103,764	4,151	4,500	349	3,415	103,415
3	103,415	4,131	4,500	363	3,052	103,052
4	103,052	4,122	4,500	378	2,674	102,674
5	102,674	4,107	4,500	393	2,281	102,281
6	102,281	4,091	4,500	409	1.872	101,872
7	101,872	4,075	4,500	425	1,447	101,447
8	101,447	4,058	4,500	442	1,005	101,005
9	101,005	4,040	4,500	460	545	100,545
10	100,545	3,955 \dagger	4,500	545	-	100,000

[^1]
Year-End Accrual of Bond Interest Expense

Year-End Accrual of Bond Interest Expense

Katakis Corporation issues $\$ 100,000$ of 9 percent, 5 -year bonds at 104.1 on January 1, 20x4. The company's fiscal year ends September 31, 20x4

Interest and amortization were recorded on July 1, 20x4. Three months of interest has accrued since then.

Record the year-end accrual of bond interest expense:
20x4
Sept. 30 Bond Interest Expense 2,075.50
Unamortized Bond Premium 174.50
Interest Payable
2,250.00
To record accrual of interest on 9\% bonds payable for 3 months and amortization of $1 / 2$ of premium for the second interest payment period

Year-End Accrual of Bond Interest Expense

Record second semiannual interest payment and amortization of bond premium:

$$
20 \times 5
$$

Jan. 1	Bond Interest Expense	$2,075.50$
	Interest Payable	$2,250.00$
	Unamortized Bond Premium	174.50

Cash
4,500.00
Paid semiannual interest, including interest previously accrued, and amortized the premium for the period since the end of the fiscal year

Evaluating Long-Term Debt

Measures how much risk a company is undertaking with its long-term debt

$$
\text { Debt to Equity Ratio }=\frac{\text { Total Liabilities }}{\text { Total Stockholders’ Equity }}
$$

$$
\text { McDonald's Debt to Equity Ratio }=\frac{\$ 3,520.5+\$ 10,115.5}{\$ 14,201.5}=1.0
$$

Interest Coverage Ratio

Measures the degree of protection a company has from default on interest payments

Interest Coverage Ratio $=\frac{\text { Income Before Income Taxes }+ \text { Interest Expense }}{\text { Interest Expense }}$

Leases (Old standard: IAS 17 vs New Standard: IFRS 16)

Companies may obtain an operating asset in three ways:
\checkmark Borrow the money and buy the asset
\checkmark Rent the asset on a short-term lease (operating lease; payments are treated as rent expense)
\checkmark Obtain the asset on a long-term lease (may be structured as a capital lease or an operating lease)

Capital Leases

(Old) accounting standard (IAS17) require that a lease be treated as a capital lease if the lease:
\checkmark Cannot be cancelled
\checkmark Has about the same duration as the useful life of the asset
\checkmark Stipulates that the lessee has the option to buy the asset at a nominal price at the end of the lease

Accounting for a Capital Lease

The lessee should:

1) Record the asset
2) Record depreciation on the asset
3) Record a liability equal to the present value of the total lease payments during the lease term

Capital Lease Illustrated

Glenellen Manufacturing Company enters into a long-term lease for a machine. The lease terms call for an annual payment of $\$ 4,000$ for six years, which approximates the useful life of the machine. At the end of the lease period, the title to the machine passes to Glenellen. The value of the machine is $\$ 14,740$.

```
Capital Lease Equipment
14,740
Capital Lease Obligations
To record capital lease on machinery
```


Capital Lease Illustrated

Each year, Glenellen must record depreciation on the leased asset. Assume the company uses the straight-line method and no salvage value.

Depreciation Expense, Capital Lease Equipment 2,457
Accum. Depreciation, Capital Lease Equip.
2,457
To record depr. expense on capital lease machinery

Capital Lease Illustrated

Year		B Interest of Unpaid Obligation (D $\times 16 \%$)	C Reduction of Lease Obligation $(\mathbf{A}-\mathbf{B})$	Balance of Lease Obligation (D-C)
Beginning				14,740
1	4,000	2,358	1,642	13,098
2	4,000	2,096	1,904	11,194
3	4,000	1,791	2,209	8,985
4	4,000	1,438	2,562	6,423
5	4,000	1,028	2,972	3,450
6	4,000	550	3,450	
	24,000	9,260	14,740	

Capital Lease Illustrated

Glenellen must also record interest expense for the lease. The interest expense for each year is computed by multiplying the interest rate of 16% (which is the effective interest rate) by the amount of remaining lease obligation.
Interest Expense
2,358
Capital Lease Obligations
1,642
Cash

[^0]: *Rounded to the nearest dollar.

[^1]: *Rounded to the nearest dollar.
 †Last period's interest expense equals \$3,955 (\$4,500 - \$545); it does not equal \$4,022 $(\$ 100,545 \times .04)$ because of the cumulative effect of rounding.

